M. LAUDET Contribution à l'étude du calcul numérique des champs et des trajectoires en optique électrique des systèmes cylindriques

Annales de la faculté des sciences de Toulouse 4^e série, tome 20 (1956), p. 111-230 ">http://www.numdam.org/item?id=AFST_1956_4_20_111_0>

© Université Paul Sabatier, 1956, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CONTRIBUTION A L'ETUDE DU CALCUL NUMERIQUE DES CHAMPS ET DES TRAJECTOIRES EN OPTIQUE ELECTRONIQUE DES SYSTÈMES CYLINDRIQUES

INTRODUCTION

Nous avons étudié, dans ce travail, les systèmes électromagnétiques cylindriques présentant un plan de symétrie. On peut distinguer deux grandes parties dans ces recherches. La première concerne le calcul numérique des champs et la deuxième celui des trajectoires.

Les fonctions analytiques qui donnent les champs sont assez souvent connues pour les systèmes cylindriques, grâce à la méthode des transformations conformes; mais les équations auxquelles on aboutit sont généralement très compliquées et leur utilisation est de ce fait difficile. Il en résulte que la « méthode de relaxation », à la fois très simple et très générale, est précieuse dans tous les cas. C'est pourquoi nous avons entrepris une étude systématique destinée à résoudre les nombreuses difficultés qui se rencontrent dans son emploi. Celles-ci tiennent essentiellement à la présence de singularités pour la fonction étudiée et de limites rejetées à l'infini ou possédant des angles vifs. Il était nécessaire, pour pouvoir traiter les problèmes qui se posent en électricité statique, de résoudre ces difficultés dont les théoriciens, qui exposent en quelques pages les principes de la méthode, n'ont pas semblé se préoccuper.

C'est pourquoi, dans la première partie de cette étude, nous examinons des systèmes variés présentant des particularités intéressantes. Dans la plupart des cas, nous disposons de la solution analytique qui nous permet de contrôler d'une manière très précise les solutions obtenues par la méthode de relaxation. Nous sommes ainsi en mesure d'affirmer qu'elle conduit à des résultats satisfaisants.

Dans la deuxième partie, nous donnons d'abord les formules générales qui régissent les trajectoires des particules dans les systèmes électroniques symétriques. La théorie des systèmes déviateurs (antisymétriques) a donné lieu à de nombreuses publications. On ne trouve, par contre, que peu de choses sur les dispositifs symétriques dont les applications au spectrographe de masse laissent prévoir un développement important. Enfin, dans les derniers chapitres, nous étudions les lentilles électrostatiques à trois fentes. Les calculs ont été conduits jusqu'au bout par les méthodes numériques.

En définitive, la méthode de relaxation dont la mise en œuvre absolument automatique constitue un avantage pratique des plus importants, nous paraît particulièrement adaptée aux exigences de l'optique électronique. Elle permet en particulier le calcul numérique des champs en des points régulièrement espacés comme l'exige le calcul aisé des trajectoires.

PREMIÈRE PARTIE

CONTRIBUTION A L'ÉTUDE DE L'INTÉGRATION NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES PAR LA MÉTHODE DE RELAXATION

Nous rappellerons brièvement le principe de la méthode utilisée dans le cas d'une fonction satisfaisant à l'équation de Laplace à deux variables. La méthode reste valable pour une équation aux dérivées partielles quelconque.

Considérons, dans le plan *xoy*, un domaine (D) tout entier à distance finie. Soit (Σ) la frontière de (D) (*fig.* 1). Proposons-nous de déterminer une fonction ψ satisfaisant à l'équation

$$\frac{\partial^{*} \psi}{\partial x^{*}} + \frac{\partial^{*} \psi}{\partial y^{*}} = 0$$

dans le domaine (D) et se réduisant à une fonction donnée sur (Σ) .

Traçons dans le plan *xoy* un réseau à mailles carrées obtenu au moyen des droites

$$x = mh$$
 $y = nh$

m et n étant deux entiers quelconques, et h une longueur fixe. Le problème préliminaire consiste à trouver une fonction :

1. exclusivement définie aux nœuds du réseau précédent,

2. telle qu'en chaque nœud intérieur à (D) elle satisfasse à l'équation aux différences finies

$$4 \psi_{i_1,k} = \psi_{i+1,k} + \psi_{i+2,k} + \psi_{i+3,k} + \psi_{i+4,k}$$

3. prenant des valeurs données aux nœuds périphériques.

C'est un problème linéaire ayant autant d'inconnues que d'équations et l'on démontre qu'il admet une solution et une seule. De plus, quelle que soit la discontinuité des valeurs sur la frontière, lorsque h tend vers zéro, les valeurs ψ_{i} , tendent vers les valeurs correspondantes ψ_{i} de la solution de l'équation de LAPLACE [1], [2], [3].

La détermination de $\psi_{i, \lambda}$ nécessite donc, au préalable, la résolution d'un système linéaire ayant en général un nombre d'inconnues tel que les procédés habituels de résolution ne sont pratiquement pas utilisables. Il est alors nécessaire de faire appel à la méthode dite « de relaxation » qui, par le procédé classique d'itération, permet la détermination aisée de $\psi_{i, \lambda}$. Cette méthode a fait l'objet de nombreuses publications (¹) [4] à [7]. Signalons, tout particulièrement, l'ouvrage de M. E. DURAND, qui consacre un chapitre entier à cette question (²).

La méthode classique consiste à utiliser un réseau (R) à mailles identiques (fig. 2 a). Dans les régions de forts gradients on utilise ensuite un quadrillage plus fin (r) en prenant pour valeur de ψ sur les nœuds périphériques les valeurs déduites du réseau précédent (fig. 2 b). Pour déterminer les régions où il est nécessaire d'opérer avec un quadrillage plus dense, on applique aux différents nœuds une formule faisant intervenir un plus grand nombre de points, et l'on regarde si le résultat est différent, à la précision que l'on s'est fixée.

Une bibliographie sommaire est indiquée à la fin de cette première partie.
 E. DURAND, Électrostatique et Magnétostatique, Masson, Paris, 1953, chapitre XII.

Si cette façon de procéder permet de délimiter les régions où deux réseaux sont nécessaires, elle ne permet pas de tenir compte des modifications, souvent très importantes de ψ sur les nœuds périphériques de (r), qui résulteraient de l'utilisation du quadrillage le plus fin s'étendant sur tout le domaine (D). C'est pourquoi nous avons utilisé des réseaux non homogènes (*fig.* 3) qui permettent, avec le même nombre de nœuds que précédemment, de ne faire appel qu'aux valeurs connues ψ_{\perp} , ψ_{Π} ... de ψ sur la limite (Σ) de (D) et d'obtenir, par suite, une précision bien meilleure sans pour cela augmenter la durée des calculs.

F1G. 3.

RICHARDSON et GAUNT [8] d'abord, HARTREE et WOMERSLEY [9] ensuite, ont montré qu'il était possible, à partir des valeurs relatives à différents réseaux, d'obtenir par extrapolation une solution plus correcte. Cette méthode n'a pourtant pas été pratiquement utilisée jusqu'ici par suite de la difficulté de choisir dans chaque cas particulier la formule à appliquer. Nous avons montré dans le chapitre III comment il convenait de procéder pour déterminer l'indice d'extrapolation de cette méthode. Son emploi systématique permet de diminuer considérablement la durée des calculs et d'avoir une idée très précise de l'erreur commise dans la détermination de ψ .

La Méthode de Relaxation suppose essentiellement la connaissance de ψ sur les nœuds périphériques du domaine étudié. C'est pourquoi, à notre connaissance, elle n'a pas été utilisée dans l'étude des systèmes pour lesquels les limites étaient rejetées à l'infini. Nous avons montré, dans le dernier chapitre, comment on pouvait aborder le problème dans les cas les plus fréquents en électricité statique.

Enfin, la présence de points aux voisinages desquels les gradients de ψ sont trop considérables (sommets de distributions volumiques ou superficielles de charges, de dipôles, de courants, par exemple) exigeaient, avec les formules classiques, l'emploi de réseaux trop denses pour être pratiquement utilisés. Nous avons montré sur différents exemples comment il convenait de procéder dans ces conditions.

CHAPITRE PREMIER.

RAPPEL DES FORMULES UTILISÉES

Nous nous sommes limités au cas de l'étude des fonctions potentiel scalaire V et flux d'induction Φ .

Dans le vide et dans le cas des systèmes à deux variables, ces deux fonctions satisfont à l'équation de Laplace

(1)
$$\frac{\partial^{*} \psi}{\partial x^{*}} + \frac{\partial^{*} \psi}{\partial y^{*}} = 0$$

Dans le cas des systèmes de révolution d'axe oz, elles vérifient l'équation

(2)
$$\frac{\partial^{*}\psi}{\partial z^{*}} + \frac{\partial^{*}\psi}{\partial \rho^{*}} + \frac{K}{\rho}\frac{\partial\psi}{\partial\rho} = 0$$

avec K = 1 pour la fonction potentiel V et K = -1 pour la fonction flux Φ .

Nous désignerons par ψ_i la valeur de ψ au nœud d'indice i (fig. 4 par exemple).

1. — SYSTÈMES A DEUX VARIABLES.

1° Réseaux à mailles carrées de côté h.

Au voisinage du point (x_0, y_0) la fonction ψ admet un développement de la forme

(3)
$$\psi(x,y) = \psi_{\bullet} + \sum_{n=1}^{\infty} \frac{1}{n!} \left\{ (x-x_{\bullet}) \frac{\partial}{\partial x} + (y-y_{\bullet}) \frac{\partial}{\partial y} \right\}_{\substack{x=x_{\bullet} \\ y=y_{\bullet}}}^{n} \psi_{\bullet}$$

Limité au second ordre et appliqué successivement aux quatre points 1, 2, 3, 4 (fig. 4) ce développement permet d'obtenir les relations :

$$\begin{pmatrix} \frac{\partial}{\partial x} \psi \\ \frac{\partial}{\partial x} \end{pmatrix}_{\bullet} = \frac{1}{2h} (\psi_{\bullet} - \psi_{\bullet}) \qquad \left(\frac{\partial \psi}{\partial y} \right)_{\bullet} = \frac{1}{2h} (\psi_{\bullet} - \psi_{\bullet})$$

$$\begin{pmatrix} \frac{\partial^{\bullet} \psi}{\partial x^{\bullet}} \end{pmatrix}_{\bullet} = \frac{1}{h^{\bullet}} (\psi_{\bullet} + \psi_{\bullet} - 2\psi_{\bullet}) \quad \left(\frac{\partial^{\bullet} \psi}{\partial y^{\bullet}} \right)_{\bullet} = \frac{1}{h^{\bullet}} (\psi_{\bullet} + \psi_{\bullet} - 2\psi_{\bullet})$$

$$\Delta \psi = \frac{1}{h^{\bullet}} (\psi_{\bullet} + \psi_{\bullet} + \psi_{\bullet} + \psi_{\bullet} - 4\psi_{\bullet})$$

et (1) s'écrit sous forme d'équation aux différences finies

 $(\mathbf{4})$

 $4 \psi_0 = \psi_1 + \psi_2 + \psi_3 + \psi_4$ En appliquant la formule (3) aux quatre points 5, 6, 7, 8, on trouve :

$$\left(\frac{\partial^{2}\psi}{\partial x \partial y}\right)_{\bullet} = \frac{1}{4h^{*}}(\psi_{\bullet} - \dot{\psi}_{\bullet} + \psi_{\tau} - \psi_{\bullet})$$
$$\Delta \psi = \frac{1}{2h^{*}}(\psi_{\bullet} + \psi_{\tau} + \psi_{\bullet} - 4\psi_{\bullet})$$

d'où la nouvelle expression de (1) :

(5)
$$4 \psi_0 = \psi_5 + \psi_6 + \psi_7 + \psi_8$$

Les formules (4) et (5) sont dites respectivement formules normales et diagonales. Ces relations ne seraient pas modifiées si l'on tenait compte des termes du troisième ordre dans le développement (3); c'est ce que l'on traduit généralement en disant qu'elles correspondent à l'approximation du troisième ordre. Ceci ne doit pas laisser supposer qu'il est indifférent au point de vue de la précision d'utiliser l'une ou l'autre de ces formules. Si la relation (4) correspond bien à des carrés de côté h, la formule (5) est relative en fait à des carrés de côté $h\sqrt{2}$.

On peut encore mettre l'équation (1) sous la forme

 $20 \ \psi_0 = 4 \ (\psi_1 + \psi_2 + \psi_3 + \psi_4) \ + \ (\psi_5 + \psi_6 + \psi_7 + \psi_8)$

Le premier terme négligé dans le développement (3) est alors du huitième ordre.

Lorsque les dérivées partielles sont discontinues au point 0, il est possible de les exprimer en fonction des valeurs de ψ en deux points situés d'un même côté de 0 (*fig.* 5). On obtient :

(7)
$$\left(\frac{\partial\psi}{\partial x}\right)_{0} = \frac{1}{2h}\left(-3\psi_{0}+4\psi_{1}-\psi_{2}\right)$$
 $\left(\frac{\partial\psi}{\partial y}\right)_{0} = \frac{1}{2h}\left(-3\psi_{0}+4\psi_{3}-\psi_{4}\right)$
(8) $\left(\frac{\partial^{*}\psi}{\partial x^{*}}\right)_{0} = \frac{1}{h^{*}}\left(\psi_{0}-2\psi_{1}+\psi_{2}\right)$ $\left(\frac{\partial^{*}\psi}{\partial y^{*}}\right)_{0} = \frac{1}{h^{*}}\left(\psi_{0}-2\psi_{3}+\psi_{4}\right)$

2° Distance inégale entre les nœuds du réseau utilisé.

On peut également, pour des points disposés comme il est indiqué sur la figure 6, calculer le Laplacien de ψ et obtenir pour l'équation (1) l'expression

(9)
$$\left(\frac{1}{s_{1}s_{3}}+\frac{1}{s_{2}s_{4}}\right)\psi_{0}=\frac{1}{s_{1}+s_{3}}\left(\frac{\psi_{1}}{s_{1}}+\frac{\psi_{3}}{s_{3}}\right)+\frac{1}{s_{2}+s_{4}}\left(\frac{\psi_{2}}{s_{2}}+\frac{\psi_{4}}{s_{4}}\right)$$

118

(6)

CALCUL NUMÉRIQUE DES CHAMPS ET DES TRAJECTOIRES

qui se réduit à (4) pour $S_1 = S_2 = S_3 = S_4$

2. --- SYSTÈMES DE RÉVOLUTION.

Au voisinage d'un point (ρ_0, z_0) , la fonction ψ (ρ, z) peut se développer suivant l'expression :

$$\psi(\varphi, z) = \psi_{\varphi} + \sum_{n=1}^{\infty} \frac{1}{n!} \left\{ (\varphi - \varphi_{\varphi}) \frac{\partial}{\partial \varphi} + (z - z_{\varphi}) \frac{\partial}{\partial z} \right\}_{\substack{\varphi = \varphi_{\varphi} \\ z = z_{\varphi}}}^{n} \psi$$

1° Points hors de l'axe (fig. 7).

Appliquée successivement aux points 1, 2, 3, 4, d'une part, 5, 6, 7, 8, d'autre part, la relation précédente, limitée aux termes du second ordre, permet d'écrire l'équation (2) sous les deux formes :

8 I $\psi_0 = 2$ I $\psi_1 + (2$ I + K) $\psi_2 + 2$ I $\psi_3 + (2$ I - K) ψ_4 8 I $\psi_0 = (2$ I + K) $\psi_5 + (2$ I + K) $\psi_6 + (2$ I - K) $\psi_7 + (2$ I - K) ψ_8

dites respectivement forme normale et forme diagonale.

F1G. 8.

Pour K = 1 on obtient l'équation de Laplace à laquelle satisfait dans le vide la fonction potentiel V :

(10) 8 I V₀ = 2 I V₁ + (2 I + 1) V₂ + 2 I V₃ + (2 I - 1) V₄

(11) 8 I V₀ = (2 I + 1) V₅ + (2 I + 1) V₆ + (2 I - 1) V₇ + (2 I - 1) V₈

Pour K = -1 on obtient les équations aux différences finies relatives à la fonction flux Φ dans le vide :

(12) $8 I \Phi_0 = 2 I \Phi_1 + (2 I - 1) \Phi_2 + 2 I \Phi_3 + (2 I + 1) \Phi_4$

(13) 8 I
$$\Phi_0 = (2 I - 1) \Phi_5 + (2 I - 1) \Phi_6 + (2 I + 1) \Phi_7 + (2 I + 1) \Phi_8$$

2° Points sur l'axe (fig. 8).

Les formules précédentes ne sont pas valables pour les points de l'axe. On établit pour ces nœuds les formules suivantes

$$2 (K + 2) \psi_0 = \psi_1 + 2 (K + 1) \psi_2 + \psi_3$$

2 (K + 1) $\psi_0 = \psi_5 + 2 K \psi_2 + \psi_6$

qui donnent pour le potentiel :

(14) (15) $6 V_0 = V_1 + 4 V_2 + V_3$ $4 V_0 = V_5 + 2 V_2 + V_6$

et pour la fonction flux

$$2 \Phi_0 = \Phi_1 + \Phi_2 \ 0 = \Phi_5 - 2 \Phi_2 + \Phi_6$$

Signalons enfin la relation

(16)

$$\left\{\frac{1}{\rho} \frac{\partial \psi}{\partial \rho}\right\}_{\rho=0} = \frac{2}{h^2} (\psi_* - \psi_*)$$

qui nous sera utile.

CHAPITRE II.

CHOIX DU RÉSEAU

Les réseaux formés de carrés, de triangles équilatéraux ou d'hexagones réguliers sont d'usage courant. Certains auteurs choisissent les uns de préférence aux autres, suivant la forme des limites du domaine étudié ou la discontinuité des valeurs de ψ sur la frontière.

Nous nous sommes efforcés dans les exemples qui suivent, de montrer que les réseaux à mailles carrées pouvaient être utilisés dans la plupart des cas.

1. --- POTENTIEL D'UNE TRIODE PLANE.

Nous donnons à propos de ce dispositif un exemple de détermination du potentiel fait à partir des trois réseaux précédemment indiqués.

Nous étudierons une triode constituée par une plaque et une cathode planes entre lesquelles sont régulièrement disposés les fils de la grille (fig. 9).

F1G. 9.

Le domaine étudié n'est pas limité, mais par suite de la périodicité, il suffit de considérer l'aire BCEF et même, AD étant un plan de symétrie, de se limiter à l'étude de la surface ABCD.

1° Réseau à mailles carrées.

Nous supposerons que la plaque, la cathode et la grille sont respectivement portées aux potentiels 1000, 0 et -250 (fig. 10).

Nous avons tracé un quadrillage régulier et nous avons appliqué la formule (4) dans tout le domaine. Toutefois, par suite de la symétrie, on doit poser $V_1 = V_3$ pour les nœuds situés sur la droite BC (*fig.* 11) et $V_3 = V_0$ pour les nœuds voisins de AD (*fig.* 12).

En l'absence d'indications précises, on a pris comme fonction de départ les valeurs obtenues en admettant une variation linéaire du potentiel entre la plaque et la grille d'une part, la grille et la cathode d'autre part. De plus, pour ne pas avoir à opérer avec des valeurs positives et négatives, ce qui entraînerait d'inutiles complications, nous avons supposé que les potentiels respectifs de la plaque de la cathode et de la grille étaient 1250, 250 et 0.

Il nous a suffi de retrancher ensuite 250 en chaque nœud pour être ramené au choix initial du potentiel sur les limites du domaine. Les résultats obtenus ont été indiqués sur la figure 10. Quelques équipotentielles ont été également tracées.

2° Réseaux à mailles hexagonales et à mailles triangulaires.

Nous avons donné sur les *fig.* (13) et (14) les résultats relatifs à une triode dont la plaque est au potentiel V = 1000, la cathode et la grille étant au même potentiel V = 0. La figure (13) correspond à un réseau hexagonal.

Sous forme d'équation aux différences finies, l'équation (1.) s'écrit alors (*fig.* 15)

$$V_0 = V_1 + V_2 + V_3$$

La figure (14) est relative à un réseau de triangles équilatéraux. Dans ce cas, l'équation (1) prend la forme (fig. 16)

$$6 V_0 = V_1 + V_2 + V_3 + V_4 + V_5 + V_6$$

						1250	1250	1250	1250	1250	1250
1200					_						1170
						1179	<i>""</i>	11/9	1///9	<i>""</i>	<i>"</i> ''''''''''''''''''''''''''''''''''''
1100						1108	1108	1108	1108	1108	1108
							l ·				
						1036	1036	1036	/036	1036	1036
7000						965	965	965	965	965	965
ann											
300					Ħ-	894	894	894	894	894	894
						822	822	823	823	823	823
800					F						ŀ
					+	751	75/	751	752	752	752
700					H	679	679	680	680	681	681
600					<u>⊢</u> i-	607	607	608	609	610	610
						534	535	537	538	540	540
500					F						
					<u> </u>	460	462	465	468	470	471
400					L.	385	388	393	398	402	403
									ŀ]
				-	╞╴	306	3/2	321	330	336	338
300						221	234	250	264	273	276
					F		1				1
200		\sim	F		F	124	151	18/	203	217	22/
	T						67	118	151	169	175
150				VÆ		$ \ge $		1]
/30		4	1///	¥==			jo	72	//3	134	/4/
120	Y1	$\left[\right]$	Y / ()]。	59	95	114	120
	1		Π				1				1
	$\left - \right $	+	\wedge	Υ			33	67	93	108	1/2
ŀ	$ \rangle$		$\langle \ \rangle$	\sim	20	51	66	85	101	111	1/4
120		\backslash			60 80						
Þ				\vdash	100	87	94	105	114	121	/23
		\geq			Ē.	116	120	125	131	135	/37
150			-		<u>⊢</u>	141	/43	146	150	152	/53
						164	165	167	169	171	171
					$\left \cdot \right $	/86	/87	/88	/89	190	190
200						208	200	209	209	210	210
											1
<u> </u>					+÷	229	229	229	230	230	230
						250	250	250	250	250	250
				Contraction of the local division of the loc	Contraction of the local division of the loc	And in case of the local division in which the local division in which the local division in which the local division is not the local division in the loc	the second value of the se	the second s	the second value of the se		-

.

F1G. 10.

Seuls, les points voisins de la plaque ou de la cathode sont obtenus à partir de la relation (fig. 17)

$$V_{\bullet} = \frac{V_{\bullet} + V_{s} + V_{\bullet} + V_{\bullet}}{8} + \frac{4 V_{s} + 2 V_{s}}{12}$$

.

qui est un cas particulier d'une formule plus générale dans laquelle le point 0 n'est plus équidistant des six points voisins.

Le réseau triangulaire étant plus dense que le réseau hexagonal, la répartition obtenue pour le potentiel est meilleure. L'allure de l'équipotentielle 40 % permet d'apprécier nettement la variation résultant du passage d'un réseau à l'autre.

2. — DEMI-CYLINDRE INDÉFINI PORTÉ A UN POTENTIEL DONNÉ.

Lorsque le domaine étudié n'est pas limité par un rectangle, comme c'est le cas dans cet exemple (fig. 18), l'utilisation d'un réseau à mailles carrées nécessite l'application des formules faisant intervenir des distances

Fig. 13.

F16. 14.

inégales entre les points. On aura par exemple, pour un nœud tel que celui de la figure (19)

$$V_{\bullet} = \frac{S_{\bullet} S_{\bullet}}{S_{\bullet} + S_{\bullet}} \left\{ \frac{V_{\bullet}}{S_{\bullet} (1 + S_{\bullet})} + \frac{V_{\bullet}}{S_{\bullet} (1 + S_{\bullet})} + \frac{V_{\bullet}}{1 + S_{\bullet}} + \frac{V_{\bullet}}{1 + S_{\bullet}} \right\}$$

afin de faciliter les calculs, on aura intérêt à effectuer la somme

$$\frac{V_{1}}{S_{1}(1+S_{1})} + \frac{V_{2}}{S_{2}(1+S_{2})}$$

et à écrire sur le réseau l'expression de V_0 au lieu des valeurs de V_1 et V_2 du potentiel sur la frontière. La disposition des calculs et les résultats numériques obtenus, sont indiqués sur la figure (20).

FIG. 20.

Nous avons admis que l'on avait $V = \theta$ sur la demi circonférence BMA et V = 0 sur le diamètre AB (*fig.* 18).

F1G. 18.

Signalons que la solution cherchée n'est autre que

$$V = 2 \alpha$$

On sait en effet que α satisfait à l'équation de Laplace à deux variables, et que sur le cylindre lui-même on a bien

V = 0

3. — TROIS CYLINDRES CONDUCTEURS COAXIAUX DE MÊME DIAMÈTRE ET DE LONGUEUR FINIE.

Nous montrons sur cet exemple comment il convient de procéder lorsque les valeurs de ψ sont discontinues sur les limites.

Le dispositif étudié (*fig.* 21) peut, en première approximation, représenter une lentille électrostatique de révolution.

Le système étant symétrique par rapport au plan OC, il nous suffit de nous limiter, dans un plan méridien, au domaine ABC. Nous avons tracé un quadrillage régulier disposé de telle sorte qu'un nœud périphérique ne

1000	1000	1000	1000	1000	0	0	0	0	_0
1					\sim]
934	927	900	838	690	290	139	<i></i> 69	29	0
900		Í,	V/	V	$\land \land$]
87/	859	817	735 '	590	370	2/8	121	54	0
1			VT				$\left \right\rangle$]
8/8	804	757	674	548	392	258	153	71	0
800]
i 1780	765	718	638	527	398	276	171	8/	0
1	1	/							1
1757 /	742	695	619	516	399	284	179	86	0
1	/		0	0 0					ľ
, 749	734	688	<u>9</u> 6/3	5/3	400 400	286	182	88 2	0

coïncide pas avec le point singulier F. Pour obtenir rapidement une fonction de départ satisfaisante, nous utiliserons d'abord un réseau ne comprenant que six nœuds (fig. 21). On passe ensuite à la fonction de départ

F1G. 22.

relative au réseau définitif, en interpolant à l'aide des formules à branches inégales. La discontinuité du potentiel au point F ne permet pas, en effet, de passer à un réseau formé de carrés de côté h/2, mais nécessite d'avoir recours à des mailles de côté h/3.

Les résultats numériques ont été rassemblés sur la figure (22).

4. — LIGNES DE COURANT DANS UN CYLINDRE CONDUCTEUR DE GRANDE RÉSISTIVITÉ ALIMENTÉ PAR L'INTERMÉDIAIRE DE DEUX ANNEAUX INFINIMENT MINCES DE GRANDE CONDUCTIBILITÉ.

Il est possible de simplifier les équations (10) et (12) en posant $\psi = \rho^{k/2}\psi$ dans l'équation (2). Nous donnons à propos du dispositif étudié un exemple de ce changement de variable.

Le système considéré schématise les résistances blocs (*fig.* 23) constituées par exemple par un bâton de charbon dans lequel l'arrivée et le départ du courant se font par l'intermédiaire de deux colliers en laiton.

Nous admettrons que l'intensité du courant dans le cylindre vérifie la loi d'Ohm

$$i = \gamma E$$

,

CALCUL NUMÉRIQUE DES CHAMPS ET DES TRAJECTOIRES

Les lignes de courant coincident donc avec les lignes de force du champ, c'est-à-dire avec les méridiennes des surfaces équiflux.

Par suite de la symétrie du système, nous nous limiterons à l'étude de la surface OABC (*fig.* 24).

Les lignes de courant suivant la surface du conducteur, ainsi d'ailleurs que l'axe du cylindre, nous prendrons pour la fonction flux, la valeur $\Phi = 1000$ le long de CF, et $\Phi = 0$ le long de FBAO.

On pourrait dans le domaine ainsi limité, appliquer les formules (12) ou (13) et obtenir la répartition cherchée. Mais il est préférable dans le cas présent où la valeur de Φ est connue sur l'axe de révolution du système, de poser

$$\Psi = o^{-1}/\Phi$$

En faisant K = -1 l'équation (2) s'écrit

$$\frac{\partial^{\mathbf{s}}\Psi}{\partial z^{\mathbf{s}}}+\frac{\partial^{\mathbf{s}}\Psi}{\partial \rho^{\mathbf{s}}}-\frac{3}{4}\frac{\Psi}{\rho^{\mathbf{s}}}=0$$

soit, sous forme d'équation aux différences finies

$$\left[4 + \frac{3}{4} \left(\frac{h}{\rho_{o}}\right)^{*}\right] \Psi_{o} = \Psi_{o} + \Psi_{o} + \Psi_{o} + \Psi_{o}$$

relation plus simple que (12) mais qui ne peut être utilisée que dans le cas où l'axe de révolution est exclu du domaine étudié, puisque, pour $\rho = 0$, ψ devient infini.

Les résultats ont été rassemblés sur la figure (25). Dans chaque carré sont inscrites, d'abord les valeurs correspondant à la fonction ψ , puis au-

dessus, celles de Φ déduites de ψ par la relation

Quelques lignes de courant ont été tracées. On voit que d'après l'allure de ces dernières, que l'on peut sans trop modifier la valeur de la résistance, remplacer les crayons pleins par des tubes de section convenable.

CHAPITRE III.

EXTRAPOLATION DES RÉSULTATS RELATIFS A DIFFÉRENTS RÉSEAUX

Il est en général impossible, avec un nombre raisonnable de nœuds, d'obtenir une bonne précision surtout au voisinage des points de discontinuité. Ce n'est que pour des réseaux suffisamment denses que la différence $\psi_{i, h} - \psi_{i}$ est pratiquement négligeable. Or, la mise en œuvre rationnelle de la méthode de relaxation, exige l'étude successive pour un même domaine de réseaux de côté h, h/2, h/4 ... conduisant en un même point P, aux valeurs

$\psi_i, h, \psi_i, h/2, \psi_i, h/4, \dots$

Nous allons dans ce chapitre préciser une méthode d'extrapolation qui permet, à partir des différentes valeurs ainsi calculées, d'obtenir une valeur meilleure.

1. --- PRINCIPE.

Supposons que, pour un problème bien déterminé, et avec un réseau à mailles carrées de côté h, on ait obtenu en un certain point P une valeur ψ_{h} . Lorsque h tend vers zéro, ψ_h tend vers la valeur exacte ψ que prend au point P la fonction cherchée.

L'ensemble des valeur ψ_h en ce point, définit une fonction $\varphi(h)$ telle que

$$\varphi(0) = \psi$$

Nous supposerons qu'au voisinage de h = 0, $\varphi(h)$ admet un développement limité généralisé de la forme

 $\varphi(h) = \varphi(0) + e_0 h^k + e_1 h^{k+1} + e_2 h^{k+2} + \dots$ $e_0, e_1, e_2 \dots$ et k étant des constantes.

Lorsque $h = h_1$, $\varphi(h_1) = \psi_{h_1}$ et la relation précédente s'écrit

$$\psi_{h_1} = \psi + e_0 h_1^{k} + e_1 h_1^{k+1} + e_2 h_1^{k+2} + \dots$$

Désignons par ψ_1 , ψ_2 , ψ_3 , les valeurs de ψ_h , ψ_{2^h} , ψ_{4^h} , en un même point P. La relation (17) limitée aux trois premiers termes donne :

$$\psi_{1} = \psi + e_{0} h^{k} + e^{1} h^{k+1}$$

$$\psi_{2} = \psi + 2^{k} e_{0} h^{k} + 2^{k+1} e_{1} h^{k+1}$$

$$\psi_{3} = \psi + 2^{2^{k}} e_{0} h^{k} + 2^{2^{(k+1)}} e_{1} h^{k+1}$$

En éliminant $e_0 h^k$ et $e_1 h^k$ entre ces trois équations, on obtient :

(18)
$$\psi = \psi_{4} + \frac{1}{2^{k} - 1} (\psi_{4} - \psi_{2}) + \frac{1}{(2^{k} - 1)(2^{k+1} - 1)} \left\{ 2^{k} (\psi_{4} - \psi_{2}) - (\psi_{2} - \psi_{3}) \right\}$$

La considération de deux valeurs ψ_1 et ψ_2 conduirait aux deux premiers termes-seulement.

En un point donnée P, la constante k dépend de la fonction φ qui, pour une équation aux dérivées partielles donnée, est liée à l'équation aux différences finies utilisée, et aux conditions aux limites imposées à ψ . La détermination a priori de k n'est pas toujours facile. Par contre, elle peut être faite aisément dès que l'on dispose des trois valeurs ψ_1 , ψ_2 , ψ_3 .

On a, en effet, en limitant le développement (17) aux deux premiers termes

$$egin{array}{lll} \psi_1 &= \psi + \, e_0 \, h^{st} \ \psi_2 &= \psi + \, 2^{st} \, e_0 \, h^{st} \ \psi_3 &= \psi + \, 2^{2^{st}} \, e_0 \, h^{st} \end{array}$$

En éliminant ψ et $e_0 h^*$ entre ces trois équations, on obtient

(19)
$$2^{*} = \frac{\psi_{\bullet} - \psi_{\bullet}}{\psi_{\bullet} - \psi_{\bullet}}$$

relation permettant de déterminer k.

Enfin, la constante k dépend du point P. Toutefois, on a constaté sur de nombreux exemples, que les valeurs k correspondant aux différents points P. du domaine étudié, oscillaient autour d'une valeur moyenne k_m voisine de 1 ou de 2. La valeur entière de k la plus voisine de k_m est appelée « indice » d'extrapolation de la méthode.

Nous obtiendrons une solution meilleure que celle relative au réseau le plus dense, en prenant pour ψ l'expression (18) après avoir remplacé k par l' « indice » correspondant.

La relation (18) donne :

(20)
$$\psi = \psi_{i} + (\psi_{i} - \psi_{s}) + \frac{1}{3} [2(\psi_{i} - \psi_{s}) - (\psi_{s} - \psi_{s})] \text{ pour } k = 1$$

(21) $\psi = \psi_{i} + \frac{1}{3}(\psi_{i} - \psi_{s}) + \frac{1}{21} [4(\psi_{i} - \psi_{s}) - (\psi_{s} - \psi_{s})] \text{ pour } k = 2$

Outre l'intérêt qu'elle présente pour l'amélioration des résultats, cette méthode d'extrapolation permet, par la considération des termes correctifs successifs, d'avoir une idée très nette de la précision avec laquelle est déterminée en chaque nœud la fonction ψ . On peut ainsi limiter aisément les régions où il est nécessaire de faire appel à un quadrillage plus fin.

2. — ÉTUDE DE QUELQUES EXEMPLES.

1° Potentiel à l'intérieur d'un carré.

Nous avons choisi cet exemple parce que les conditions aux limites étaient particulièrement simples et que la solution était connue. Nous nous sommes attachés à mettre en évidence l'intérêt considérable de l'extrapolation sous le double rapport de la précision et de la durée des calculs.

Le potentiel V (x, y) en un point P intérieur à un carré (fig. 26) dont

F1G. 27.

l'un des côtés est au potentiel $V = 10^n$, les trois autres côtés étant au potentiel zéro, a pour expression (1)

$$V(x,y) = 10^{n} \sum_{n=0}^{n} A_{2n+1} \sin \frac{(2n+1)\pi x}{(2n+1)\pi (1-y)} \frac{sh \frac{(2n+1)\pi (1-y)}{(2n+1)\pi (1-y)}}{sh \frac{(2n+1)\pi (1-y)}{(2n+1)\pi (1-y)}}$$
$$A_{2n+1} = \frac{4}{\pi} \frac{1}{2h+1}$$

avec

On en déduit les valeurs exactes du potentiel aux points

La médiane A'B' étant un axe de symétrie, il nous suffit, pour la détermination de V par la méthode de relaxation, de considérer le domaine A'ABB'. Nous avons utilisé la formule (4).

Signalons qu'au voisinage du point singulier A, les formules (5) et (6) qui font intervenir le potentiel de ce point ne peuvent pas être appliquées. Nous avons utilisé successivement des réseaux de côté 4h, 2h, et h. Les résultats relatifs à ce dernier quadrillage sont indiqués sur la figure 27.

Nous avons déterminé les valeurs de k en chaque nœud comme aux réseaux (fig. 28 a). Nous avons obtenu la valeur moyenne

$k_m = 1,9.$

L'indice est donc égal à 2.

La figure 28 (b) est relative à la répartition obtenue après extrapolation. Nous avons calculé ensuite le potentiel aux points P_1 et P_3 à partir de la formule (21).

1. E. DURAND, pp. 359 à 360.

0	0	0	0	0
R= 1.95	R= 1.99	k = 2,01	R=2.04	0
4435	4104	3/51	1711	
4445	411 3	3/60	1717	
4483	4152	3/97	1741	
fi = 1,96	A= 1,97	k = 2,01	k = 2,06	0
9548	8841	6804	3703	
9564	8859	6822	3716	
9627	8927	6895	3768	
R = 1.95	R = 1,96	k= 1,99	R=2,06	0
16099	14937	11554	6321	
16114	14957	11580	6343	
16173	15033	11687	6437	
1	R=1.87	Ŕ=1,89	Æ=1,99	0
1 <i>25000</i>	23295	18216	10086	
1 <i>25000</i>	23306	18252	10128	
1 <i>2500</i> 0	23346	18382	10294	
R=1,85	Ŕ = 1,90	R=1,67	k = 1,83	0
37312	35063	28058	15973	
37273	35043	28092	16057	
37136	34967	28203	16357	
k=1.88	k = 1,83	k = 1,99	R=1.51	0
54021	51549	43/96	26318	
53933	51469	43/78	26477	
53608	51 184	43/05	26930	
R = 1,98 75 394 75 300. 74 929	k = 1.88 73604 73486 73054	k = 1.59 66828 66647 66105	<i>k</i>	0
1 1 1 1/00000	100000	100000	100000	

(a)

Les résultats sont rassemblés dans le tableau I. Nous avons désigné par V_i , j les valeurs extrapolées à partir de V_i , V_j ...

	F	D ₁	P_3			
	V	V AV		Δv		
Vexact	54054	0	9 541	0		
V123	54052	_2	9 543	+ 2		
V23	54041	-/3	9 5 4 3	+ 2		
V,	54021	- 33	9548	+ 7		
V_2	53933	-121	9564	+23		
V ₃	53608	- 446	9627	+86		

F1G. 28.

TABLEAU 1

On constate en particulier que les valeurs V_{23} conduisent à une répartition du potentiel comparable, au point de la précision, à celle que l'on obtiendrait avec un réseau de côté h/2. Mais, tandis qu'un tel réseau-conduirait dans l'exemple traité à 2016 nœuds, le calcul de V_2 et V_3 n'exige respectivement que 120 et 28 points.

2º Plan conducteur percé d'une fente.

Cet exemple permet de mettre en évidence la difficulté de déterminer a priori l'indice d'extrapolation de la méthode. Alors que dans le cas précédent il était égal à 2, il est ici, pour la même équation aux dérivées partielles, égal à 1, que l'on utilise la formule (4) ou la formule (6).

Le potentiel créé en un point P (x, y) par un plan conducteur (fig. 29) porté au potentiel V et percé d'une fente de largeur a, a pour expression $(^2)$:

$$V(x,y) = V_{o} - \frac{1}{2}(E_{i} + E_{s})y + \frac{1}{2\sqrt{2}}(E_{i} - E_{s})a\left\{\left[1 - \left(\frac{x}{a}\right)^{s} + \left(\frac{y}{a}\right)^{s}\right]\right\}$$
$$+ \sqrt{\left[1 - \left(\frac{x}{a}\right)^{s} + \left(\frac{y}{a}\right)^{s}\right]^{s} + 4\left(\frac{x}{a}\right)^{s}\left(\frac{y}{a}\right)^{s}}\right]^{s}}$$

dans laquelle E_1 et E_2 sont les champs pour $y = -\infty$ et $y = +\infty$. Nous étudierons le cas particulier où

 $=\sqrt{2}.$

$$\mathbf{E}_1 = - \mathbf{E}_2 = \mathbf{E}$$
$$\mathbf{V}_2 = \mathbf{0} \qquad \mathbf{a}\mathbf{E} = \mathbf{E}$$

On obtient ainsi :

et nous poserons

Pour pouvoir appliquer la méthode de relaxation, nous avons calculé, par cette formule, les valeurs du potentiel sur le contour ACB. Nous avons ensuite utilisé successivement les formules (4) et (6) au domaine ainsi borné, et nous avons dans les deux cas, déterminé k aux nœuds communs

^{2.} E. DURAND, p. 318.

aux trois réseaux successivement utilisés. Les résultats sont indiqués sur les figures (30) et (31).

Nous avons obtenu ainsi

L'indice d'extrapolation est donc égal à 1 dans les deux cas. Il ne dépend pas de l'équation aux différences finies utilisée.

Nous avons calculé les potentiels aux points $P_1(0, 0)$, $P_2(1/2, 0)$, $P_3(0, 1/2)$ à partir de la formule (20). Les résultats ont été rassemblés dans les tableaux II et III.

		Ρ,	/	D ₂	P ₃		
	V	ΔV	V	ΔV	V	ΔV	
Vexact	14142	0	/58//	0	12248	0	
V123	14123	- 19	/5824	+13	123/5	+67	
V12	14200	+58	/5826	+ 15	12347	+9 9	
<i>v</i> ,	13798	- 344	/5587	- 224	11750	-498	
V2	13397	-745	15349	- 462	11 153	-1095	
V3	12365	-1777	14865	-946	9865	-2383	
	F	form	ule	(4)			

TABLEAU II

			r				
		<u> </u>		D2 ¹	P3		
	V	ΔV	V	ΔV	V	ΔV	
Vexact	14142	0	158//	0	12248	0	
V123	14/39	- 3	/58/7	+6	12253	+6	
V,2	14154	+12	/5821	+9	12269	+21	
ν,	1 387 5	_ 268	/5632	- 180	// 8 63	- 384	
V2	/3595	-547	15442	- 369	11458	- 790	
V3	12.989	-1/53	15054	- 757	10599	- 1649	
		Fori	nule	(6)			

TABLEAU III

Comme on pouvait le prévoir, les valeurs obtenues à partir de la formule (6) valable au sixième ordre, sont nettement meilleures que celles relatives à (4) valable au second ordre seulement. Dans les deux cas, l'extrapolation permet d'améliorer considérablement la précision des calculs.

3º Plaque conductrice percée d'un trou circulaire.

La simple considération de la différence $\psi_2 - \psi_1$ permet de délimiter aisément les régions où il est nécessaire de passer à un réseau plus fin. Nous montrons sur cet exemple comment il convient de procéder.

Un tel dispositif constitue la plus simple des lentilles électrostatiques de révolution (*fig.* 32). Nous étudierons la distribution du potentiel au voisinage de la plaque dans le cas où celle-ci est portée au potentiel V = 0, et où le champ devient uniforme à l'infini. Nous supposerons de plus, que le système admet la plaque comme plan de symétrie.

En un point P (ρ , z) le potentiel a pour expression (³) :

(23)
$$V = -\frac{2 a E \xi}{\pi} (1 + \gamma \operatorname{Arc} \operatorname{tg} \gamma)$$

avec

 $z = a \, \xi \, n$ $\rho^2 = a^2 \, (1 - \xi^2) \, (1 + n^2).$ e de la leptille on a :

Le long de l'axe de la lentille on a :

(24)
$$V(o, z) = -\frac{2 a E}{\pi} \left(1 + \frac{z}{a} \operatorname{Are} \operatorname{tg} \frac{z}{a} \right)$$

3. E. DURAND, pp. 416 à 419.

1602	1614	1631	1656	<i>1688</i>	6121	1747	1770	1781
1206	1219 1219 1217	1241 1238 1235	1241 1238 1263	1322 1313 1304	1376 1367 1357	1427 1418 1408	1463 1453 1443	1477
807	8/9	842	884	962	1057	147	1207	/228
	8/8	838	874	940	1036	126	1185	/205
	817	833	863	919	1016	105	1163	/183
405	411 412 412	428 425 422	469 458 447	591 551 511	785 749 713	943 906 869	1032 996 961	1060 1026 991
0	0	0	<u>0</u>	0	666 590 5/5	874 817 76/	972 927 88/	/000 960 921
5291 1625	5293	6295	6297	6300	6303	6305	6307	6308
55.06	5508	55/0	5512	55/6	55/9	5522	5524	5522
	5508	55/0	5512	55/5	55/8	5521	5523	5522
	5508	55/0	5512	55/4	55/7	5520	5522	5522
4721	4723	4725	4729	4733	4738	4742	4745	4 746
	4723	4725	4728	4731	4735	4739	4742	4 746
	4722	4724	4727	4730	4733	4736	4739	4 740
3935	3937	3941	3945	3951	3958	3965	397/	3973
	3937	3940	3943	3948	3954	3960	3965	3967
	3937	3939	3942	3945	3950	3955	3959	3967
3/50	3151	3/55	3161	3169	3181	3/95	3206	3211
	3151	3/54	3159	3165	3174	3/86	3196	3200
	3151	3/53	3156	3161	3168	3/77	3186	3189
2363	2365	2369	2376	2388	2407	2433	2457	2469
	2365	2368	2373	2382	2397	2418	2441	2450
	2364	2368	2373	2376	2386	2403	2424	2431
1576	1577	/58/	/588	/602	1631	/688	1747	1781
	1577	/580	/585	1596	1617	/66/	1747	1746
	1577	/579	/582	1589	1603	/633	1691	1711
788	789	161	796	807	840	956	//39	1231
	789	191	794	802	826	906	/088	1164
	789	197	792	798	812	856	/036	1097
0	0	0	0	0	0	0	876 749 622	984 907 829

۶.

Fig. 35.

FIG. 33.

Pour obtenir un domaine limité, nous avons calculé les valeurs du potentiel aux nœuds périphériques du réseau utilisé à partir de la formule (23) dans laquelle nous avons posé

$$-\frac{2aE}{\pi}=1$$

Nous avons ensuite appliqué le processus habituel de relaxation à partir de la formule (10). Les résultats sont rassemblés sur la figure (33). Dans chaque carré nous donnons les valeurs V_1 et V_2 relatives aux deux réseaux utilisés, et la valeur extrapolée avec l'indice 1. La figure (34) a trait à la comparaison des valeurs calculées sur l'axe par la méthode de relaxation à celles déduites de (24). La courbe (1) est relative aux valeurs obtenues directement à partir du réseau le plus dense, et la courbe (2) aux valeurs extrapolées.

On voit ainsi la valeur considérable que présente l'extrapolation des résultats. Toutefois, l'erreur demeure sensible au voisinage de la plaque où les gradients sont importants. Il est donc nécessaire d'utiliser dans cette région un quadrillage plus fin. Nous nous sommes limités au domaine A' C' B' (fig. 32). Les valeurs relatives aux nœuds périphériques sont celles obtenues précédemment après l'extrapolation. Les résultats sont indiqués sur la figure (35). L'erreur ΔV relative à cette nouvelle répartition est indiquée en pointillé sur la figure (34).

F1G. 34.

CHAPITRE IV.

EXEMPLES DANS LESQUELS LE DOMAINE D'INTÉGRATION N'EST PAS LIMITÉ

L'application de la méthode de relaxation nécessite la connaissance de la fonction sur la frontière du domaine étudié. Or, pour la plupart des systèmes couramment utilisés en électricité statique (distributions de charges, de courants...), les fonctions potentiel ou flux ne sont pas connues, et il n'est pas possible, comme dans les exemples précédents, de calculer les valeurs de ces fonctions à partir de leur expression analytique. Il est alors nécessaire de faire appel à des développements limités. Nous traiterons dans ce chapitre un certain nombre d'exemples en nous attachant à varier les méthodes qui permettent d'obtenir des domaines bornés.

1. --- DISQUE UNIFORMÉMENT CHARGÉ.

Nous nous sommes efforcés dans cet exemple de monter comment, pour une distribution superficielle donnée de charges, on peut, soit limiter complètement le domaine et faire ensuite appel au processus habituel de relaxation, soit, en tenant compte des discontinuités relatives aux dérivées partielles du potentiel, obtenir des équations aux différences finies valables sur la distribution elle-même.

Le disque de rayon a et d'axe oz est représenté par un trait épais sur la figure (36). Nous désignerons par σ la densité superficielle de charges, par Q la charge totale, et par $V_0 = \frac{\sigma a}{2\epsilon}$ le potentiel au centre du disque (¹).

1° Étude du potentiel.

A grande distance de l'origine, le potentiel peut se développer suivant l'expression (²)

$$V(\mathbf{R}, \theta) = V_{\bullet} \left\{ \frac{1}{2} \left(\frac{a}{\mathbf{R}} \right) \mathbf{P}_{\bullet} \left(\cos \theta \right) - \frac{1}{8} \left(\frac{a}{\mathbf{R}} \right)^{\bullet} \mathbf{P}_{\bullet} \left(\cos \theta \right) \right. \\ \left. + \frac{1}{16} \left(\frac{a}{\mathbf{R}} \right)^{\bullet} \mathbf{P}_{\bullet} \left(\cos \theta \right) - \frac{5}{128} \left(\frac{a}{\mathbf{R}} \right)^{\bullet} \mathbf{P}_{\bullet} \left(\cos \theta \right) + \dots \right\}$$

 $P_{\bullet}(u)$ étant le polynome de Legendre d'ordre n.

C'est à partir de ce développement limité aux trois premiers termes, que nous avons calculé les valeurs de V sur le contour ACB. Nous nous sommes assurés que les valeurs ainsi obtenues pour le terme suivant étaient suffisamment approchées, en vérifiant que le terme suivant du développement était négligeable. Avec $V_0 = 1000$ par exemple pour $\theta = 0$ et R/a = 2,4 le premier terme négligé est égal à 0,085.

1. E. DURAND, p. 394.

2. E. DURAND, p. 394.

Si l'on désirait une précision meilleure, on pourrait soit éloigner les limites du domaine étudié, soit conserver un plus grand nombre de termes dans le développement (25).

F1G. 36.

On obtient ainsi un domaine borné auquel la méthode de relaxation est applicable. En un point quelconque, on utiliserait la relation (10) par exemple. Sur EB qui est un axe de symétrie, il suffirait de faire $V_1 = V_3$ dans cette formule. Sur l'axe de révolution on ferait appel à la formule (14). Enfin, pour les points du disque lui-même, il est possible d'obtenir une équation aux différences finies analogue à (10).

Les points 0, 2, 4, étant considérés comme extérieurs à la distribution (fig. 37), les dérivées partielles du potentiel au point 0 s'écrivent :

$$\left(\frac{\partial \mathbf{V}}{\partial \rho}\right)_{\mathfrak{s}} = \frac{1}{2h} \left(\mathbf{V}_{\mathfrak{s}} - \mathbf{V}_{\mathfrak{s}}\right)$$

$$\left(\frac{\partial^{*} \mathbf{V}}{\partial z^{*}}\right)_{\mathfrak{s}} = \frac{1}{h^{*}} \left(\mathbf{V}_{\mathfrak{s}} + \mathbf{V}_{\mathfrak{s}} - 2 \mathbf{V}_{\mathfrak{s}}\right)$$

$$\left(\frac{\partial^{*} \mathbf{V}}{\partial z^{*}}\right)_{\mathfrak{s}} = \frac{1}{h^{*}} \left(\mathbf{V}_{\mathfrak{s}} + \mathbf{V}_{\mathfrak{s}} - 2 \mathbf{V}_{\mathfrak{s}}\right)$$

$$\left(\frac{\partial^{*} \mathbf{V}}{\partial z^{*}}\right)_{\mathfrak{s}} = \frac{1}{h^{*}} \left(\mathbf{V}_{\mathfrak{s}} + \mathbf{V}_{\mathfrak{s}} - 2 \mathbf{V}_{\mathfrak{s}}\right)$$

En portant ces valeurs dans l'équation de Laplace en coordonnées cylindriques, on trouve :

(26)
$$2 IV_0 = 4 IV_1 + (2 I + 1) V_2 + (2 I - 1) V_4 + 2 IV_3.$$

CALCUL NUMÉRIQUE DES CHAMPS ET DES TRAJECTOIRES

Compte tenu de la symétrie, la discontinuité σ/ε_0 de la composante normale du champ à la traversée du disque se traduit par la relation :

qui s'écrit sous forme d'équation aux différences finies :

(27) $3 V_0 - 4 V_1 + V_3 = \frac{\sigma h}{3}$

En éliminant V entre les équations (26) et (27), nous obtenons

8 IV_o = 4 I V_o + (2 I + 1) V_a + (2 I - 1) V_a + 4 V_o
$$\left(\frac{n}{a}\right)$$
 I

Dans ce cas on peut également calculer V sur tout le contour du domaine OACBO.

. . .

Sur l'axe, le potentiel a pour valeur

$$\mathbf{V} = \mathbf{V}_{o} \left\{ \sqrt{1 + (z/a)^2} - |z/a| \right\}$$

Au voisinage de l'axe il peut se développer suivant l'expression (³)

$$\mathbf{V}(z, z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n + 1)^2} \left(\frac{z}{2} \frac{d}{dz}\right)^{2^n} \mathbf{V}(\mathbf{0}, z)$$

soit

(28)

$$\frac{V(\rho, z) = V_{a} \left\{ [1 + (z/a)^{2}]^{1/2} - (z/a) - \frac{\rho^{2}}{4} [1 + (z/a)^{2}]^{-3/2} + \frac{3\rho^{4}}{64} [1 + (z/a)^{2}]^{-\frac{7}{2}} [4 (z/a)^{2} - 1] \dots \right\}$$

3. E. DURAND, pp. 382 à 384.

3142 213	2864	2593 210	2336	2096	1876	1678	1501	1344	1206	1085	978	38%
3000		2277		X	1		1	1	1	JAN .		
3142 235	2834 238	2536	2257 223	2002	209	1569	1390 192	1234	1098 175	990 167	878 160	788 152
3142	2796	2466	2163	1891	1652	1445	1267	1116	363	870	774	590
		1.26	1	100	1	213	1		180	175	167	1158
3142 289	2748	2378 280	2047	1759 257	15/14	1306 231	1132 218		861 194	756 134	667 174	591 165
3142	268V 326	2863	1902 299	1602	1354	1151 248	232	847	733	638	559 00	491
311.2 388	2584	2109	1719	1413	1171	960	826	703	603	520	452	394
\square	K	1	1				6 70			K		1.
	12426	1883	1464 877	1189 344	313	795 287	662 26 3	567 242	222	409	340 195	302 182
6142 684	2134	156E	425	632 372	744	604 306	492 278	414	34 8 234	296	253	218
\sum			849	658	519	417	340	281	234	198	150	144
131	825	672	514	398	313	248	202	166	137	115	98	83
	K	1005	1		585	340	804	275	250	229	211	195
503 959	781	311	240	186 463	146 401	116 353	93 313	76 282	63 255	53 233	44 214	37 198
126 990	101	80 669	62 561	48 477	38 411	30 360	24	20	16 258	13	11	9
8 0 1000	88 93 97 97	8 677	20 20 20	0	004 0 2	0	300	207	0	0	200	0

Fig. 38

Ce développement a été utilisé pour calculer V dans le plan du disque (z = 0) pour ρ/a égal à 0,2 à 0,4 et à 0,6.

Au voisinage des bords du disque, les calculs précis de V à partir des développements (25) et (28) exigerait un trop grand nombre de termes. Il est préférable d'utiliser l'expression intégrale (⁴)

$$V(\rho, z) = V_{\bullet} \int_{0}^{\infty} \mathcal{J}_{\bullet}(m\rho) \mathcal{J}_{\bullet}(ma) e^{-m_{1}z_{0}} \frac{dm}{m}$$

qui pour z = 0 se réduit à

$$\mathbf{V}(\boldsymbol{\rho},\mathbf{o}) = \mathbf{V}_{\mathbf{o}} \int_{\mathbf{o}}^{\infty} \tilde{\boldsymbol{\mathcal{J}}}_{\boldsymbol{u}}(\boldsymbol{m}\boldsymbol{\rho}) \tilde{\boldsymbol{\mathcal{J}}}_{\boldsymbol{u}}(\boldsymbol{m}\boldsymbol{a}) \frac{d\boldsymbol{m}}{\boldsymbol{m}}$$

 J_n étant la fonction de Bessel de première espèce d'ordre n.

Les valeurs du potentiel dans le plan du disque pour $0.6 < \rho/a < 2.4$ ont été calculées à partir de cette expression.

Nous avons ensuite appliqué la méthode de relaxation au domaine ainsi limité.

Les résultats numériques obtenus sont rassemblés sur la figure (38).

2° Étude de la fonction flux.

Dans le cas des systèmes de révolution, les fonctions V et Φ satisfont aux relations

$$rac{\partial}{\partial
ho} \left(rac{\Phi}{\epsilon_{ullet}}
ight) = -2 \pi
ho rac{\partial V}{\partial z} = rac{\partial}{\partial z} \left(rac{\Phi}{\epsilon_{ullet}}
ight) = 2 \pi
ho rac{\partial V}{\partial
ho}$$

qui s'écrivent sous forme d'équation aux différences finies

$$(\Phi/\varepsilon_0)_2 - (\Phi/\varepsilon_0)_4 = -2 \pi h I (V_1 - V_3) (\Phi/\varepsilon_0)_1 - (\Phi/\varepsilon_0)_3 = 2 \pi h I (V_2 - V_4).$$

Ces relations permettraient de déduire (Φ/ε_0) de la répartition obtenue pour V.

Mais les valeurs de Φ sur les nœuds périphériques étant particulièrement faciles à déterminer, nous avons préféré recommencer le calcul direct de Φ par la méthode de relaxation.

Dans le plan du disque, les valeurs de Φ se déduisent aisément du théorème de Gauss. On obtient, en partant de la valeur 0 sur l'axe :

$$(\Phi/\varepsilon_{\bullet}) = \pi \frac{V_{\bullet}}{a} \rho^{\bullet}$$
 pour $0 \leqslant \rho \leqslant a$

 $(\Phi/\varepsilon_0) - \pi V_0 a$ pour $\rho \ge a$. Le développement en série de Φ limité au terme quadrupolaire.

$$(\Phi/\varepsilon_{o}) = \pi \operatorname{V}_{o} a \left\{ 1 - \frac{z}{\mathrm{R}} - \frac{3}{8} z \left(\frac{1}{\mathrm{R}^{*}} - \frac{z^{*}}{\mathrm{R}^{*}} \right) \right\}$$

4. E. DURAND, p. 407.
permet de calculer Φ le long du contour ACB. Les calculs ont été effectués à partir de la relation (12). Les résultats sont indiqués sur la figure (38). Dans chaque carré, on a inscrit d'abord la valeur du potentiel, puis celle du flux, Quelques équipotentielles et quelques équiflux ont été également tracées.

2. --- DISQUE DE ROWLAND.

Nous avons montré sur cet exemple, comment la connaissance de la fonction ψ en des nœuds au voisinage desquels les gradients ont des valeurs notables, permet d'obtenir une bonne précision avec un très petit nombre de points. Nous avons utilisé un réseau non homogène formé de carrés de dimensions différentes.

On fait tourner, avec une vitesse angulaire constante ω un disque de rayon *a* portant une densité superficielle uniforme σ de charges électriques (*fig.* 39).

On se propose de déterminer la fonction flux d'induction magnétique en un point quelconque de l'espace. La densité superficielle k de courant en un point M du disque a pour expression (5)

$$k = v\sigma = \omega \sigma \xi$$

et l'induction B en un point de l'axe a pour valeur

$$B(o, z) = u_{o} \int_{0}^{a} \frac{\sin^{3} \theta}{2 z} k d z = \frac{u_{o} \omega \sigma}{2} \left\{ \frac{2 z^{*} + a^{*}}{\sqrt{z^{*} + a^{*}}} - 2 z \right\}$$

Soit, en désignant par $B_0 = -\frac{\mu_0 \omega \sigma}{2}$ l'induction au centre du disque :

(29)
$$B(o, z) = B_o \left\{ \frac{2(z/a)^s + 1}{\sqrt{(z/a)^s + 1}} - 2(z/a) \right\}$$

La fonction flux d'induction définie par

(30)
$$\frac{\partial \Phi}{\partial \rho} = 2 \pi \rho B_z$$
 $\frac{\partial \Phi}{\partial z} = -2 \pi \rho B_\rho$

satisfait à l'équation aux dérivées partielles

$$rac{\partial^{*} \Phi}{\partial z^{*}} + rac{\partial^{*} \Phi}{\partial
ho^{*}} - rac{1}{
ho} rac{\partial \Phi}{\partial
ho} = - 2 \pi \mu_{o} \rho i_{
ho}$$

qui, en dehors des courants $(i \varphi = 0)$, est identique à l'équation de la fonction flux électrostatique.

F1G. 40.

Au voisinage du disque, B satisfait aux conditions (fig. 40) B'z = B''z B' $\rho - B''\rho = \mu_0 k$.

En remplaçant Bz et B ρ par leurs expressions (30), et en tenant compte de la symétrie, on obtient :

$$\left(\frac{\partial \Phi}{\partial z}\right)_{z=0} = -\pi \,\mu_{0} \,\xi \,k = -2 \,\frac{\mathrm{B}_{0}}{a} \,\pi \,\xi^{*}$$

5. E. DURAND, p. 504.

Soit, sous forme d'équation aux différences finies (fig. 41)

8 I
$$\Phi_{\bullet} = 4$$
 I $\Phi_{\bullet} + (2$ I $- 1) \Phi_{\bullet} + (2$ I $+ 1) \Phi_{\bullet} + 8 \pi$ B_e $a^{\bullet} \left(\frac{h}{a}\right)^{\circ}$

Dans le cas des systèmes de révolution Φ se déduit de la composante $A\phi$ du potentiel vecteur par la relation

$$\Phi = 2 \pi \rho A \varphi.$$

De l'expression classique (6)

$$d \mathbf{A}_{\varphi} = \frac{\mu_{o} k db}{2 \pi} \int_{o}^{\pi} \frac{b \cos \varphi}{r} d\varphi$$

du potentiel vecteur d'une spire de rayon b, parcourue par un courant d'intensité kdb, on obtient par intégration

Soit ,en remarquant que l'on a (fig. 42) R $\cos \theta = \rho \cos \varphi$

et en remplaçant $\frac{1}{r}$ par son développement en série de polynomes de Legendre :

$$\mathbf{A}_{\varphi} = \frac{\mathbf{B}_{\bullet}}{\pi a} \int_{0}^{\pi} \cos \varphi \, d\varphi \int_{0}^{a} \left\{ \mathbf{P}_{\bullet} \left(\cos \theta \right) + \begin{pmatrix} b \\ \overline{\mathbf{R}} \end{pmatrix} \mathbf{P}_{\bullet} \left(\cos \theta \right) + \begin{pmatrix} b \\ \overline{\mathbf{R}} \end{pmatrix}^{\bullet} \mathbf{P}_{\bullet} \left(\cos \theta \right) + \dots \left\{ \frac{b^{\bullet}}{\mathbf{R}} db \right\}$$

6. E. DURAND, pp. 491 à 495.

d'où

$$\Phi = \frac{\pi}{4} a^{*} B_{\bullet} \frac{1}{R/a} \left(\frac{\rho}{R}\right)^{*} \left\{ 1 + \frac{1}{(R/a)^{*}} \left[\frac{5}{4} \left(\frac{\rho}{R}\right)^{*} - 1\right] + \dots \right\}$$

C'est l'expression à partir de laquelle ont été calculées les valeurs de Φ sur le contour ACB. On a posé $\frac{\pi}{4} a^2 B_0 = 1$. Le sommet du disque étant un point au voisinage duquel les gradients ont une valeur notable, la connaissance de Φ en ce point permet d'obtenir une bonne précision dans la détermination de la fonction flux avec un réseau n'ayant qu'un petit nombre de nœuds.

Posons
$$\varphi = \pi + 2\psi$$
 $\sin^3 \alpha = \frac{4 a b}{(a+b)^3}$

l'intégrale (31) devient

$$A_{\bullet} = \frac{4a B_{\bullet}}{\pi} \int_{0}^{\pi/2} \frac{tg^{*}}{2} \frac{\alpha}{2} \left\{ \frac{1 + \cos^{*} \alpha}{2} \quad \mathfrak{I}_{\bullet} - \mathfrak{I}_{2} \right\} d\alpha$$

avec

$$\mathfrak{I}_{\mathfrak{s}} = \int_{\mathfrak{o}}^{\pi/2} \frac{d\psi}{\sqrt{1-\sin^{2}\alpha\sin^{2}\psi}} \qquad \mathfrak{I}_{\mathfrak{s}} = \int_{\mathfrak{o}}^{\pi/2} \sqrt{1-\sin^{2}\alpha\sin^{2}\psi} d\psi$$

On en déduit

$$\Phi = 8 \operatorname{B}_{\bullet} a^{\bullet} \int_{0}^{\pi/2} \frac{\operatorname{tg}^{s} \frac{\alpha}{2}}{\sin^{s} \alpha} \left\{ \frac{1 + \cos^{s} \alpha}{2} \operatorname{J}_{t} - \operatorname{J}_{t}^{\prime} \right\} d\alpha$$

Le calcul approché de cette intégrale a été effectué à partir de la formule de Simpson pour $0 < \alpha < 89^{\circ}$ puis, en substituant à \tilde{J}_1 qui devient infini pour $\alpha = \pi/2$ sa formule asymptotique :

$$\mathfrak{I}_{\iota} = |\mathrm{Log}\;\frac{4}{\cos\alpha}$$

La variation brusque des gradients à proximité du disque nécessite dans cette région l'emploi d'un quadrillage plus fin qu'au voisinage des nœuds périphériques. Nous avons tracé un réseau non homogène constitué par des mailles de côté h et 2h disposé comme il est indiqué sur la figure (43). Les calculs ont été effectués à partir de la formule (12). Seuls, les points mitoyens aux deux quadrillages, ont été calculés en appliquant alternativement les formules normales et diagonales.

L'induction sur l'axe du disque peut se déduire des résultats relatifs à la fonction flux. On a, en effet, d'après (30)

$$\mathbf{B}(\mathbf{o}, z) = \frac{1}{2\pi} \left(\frac{1}{\rho} \frac{\partial \Phi}{\partial \rho} \right)_{\bullet}$$

qui s'écrit en tenant compte de (16)

$$\mathbf{B}_{\mathbf{o}}(\mathbf{0}, \mathbf{z}) = \frac{\Phi_{\mathbf{s}}}{\pi h^{\mathbf{s}}}$$

.

.

.

.

.

.

.

<u> </u>	327	288	239	190	148	115
400		300	002	101		
444	408	335	238	191	/39	10
500					109	
588	508	374	259	177	120	8
688 650	569 .479	390 314	252 202			
843 765	632 500	389 300	233 181	143	90	56
1116 912	682 499	365 269	201 152			
1709 1055	680 453	310 218	157 115	87	50	25
1638 916	546 341	222 150	104 .74			
894 519	307 187	118 78	53 37	28	15	8
249 149	89 54	34 22	14 10			
0 0	0.0	0 0	0 0	0	o n	0

F1G. 43.

Nous avons rassemblé dans le tableau IV les valeurs ainsi obtenues pour B et celles calculées à partir de la formule (29).

L'erreur relative $\Delta B/B_0$ est inférieure à 0,02.

3/a	0.00	0.25	0,50	0,75	1,00	1,25	1,50	2,00	2,50	3.00
Bexact	1273	753	435	255	154	98	65	32	18	11
B relax.	1268	759	453	275	173	112	71	36	19	10
.∆ B	_ 5	+ 6	+ 18	+20	+ 19	+14	+ 6	+ 4	+1	- 1

TABLEAU IV

3. --- BANDE DE LARGEUR FINIE UNIFORMÉMENT CHARGÉE.

Lorsque la fonction ψ n'est pas aisément calculable en un point où les gradients sont forts, comme au sommet d'une distribution de charges ou de dipôles, il est nécessaire d'appliquer en ce point une formule faisant intervenir un grand nombre de nœuds. Nous montrerons à propos de cet

F16. 44.

exemple, comment il convient de procéder dans le cas d'une distribution superficielle de charges.

La bande, de largeur 2a, est représentée par un trait épais sur la figure (44). Nous désignerons par σ la densité superficielle de charge, et par Q la charge totale par unité de longueur.

1° Étude du potentiel.

Le potentiel d'une distribution cylindrique de charges peut se développer suivant l'expression (7)

(32)
$$\mathbf{V} = -\frac{1}{2\pi\epsilon_o} \left\{ \mathbf{Q} \operatorname{Log} \mathbf{R} - \frac{p_u x^u}{\mathbf{R}^*} + \frac{1}{2} \frac{p_{uv}}{\mathbf{R}^*} \left(\delta^{uv} - \frac{r}{\mathbf{R}^*} x^u x^v \right) + \dots \right\}$$
dans laquelle on a posé

dans laquelle on a posé

 $Q = \int \sigma \, ds$, $p_u = \int \sigma \xi_u \, ds$, $p_{uv} = \int \sigma \, \xi_u \, \xi_u \, ds$ et la somme sur l'indice *n* allant de 1 à 2 seulement. Dans le cas étudié, et en se limitant au terme quadrupolaire, la relation (32) se réduit à :

(33)
$$V = -\frac{Q}{2\pi r_o} \left\{ \log R + \frac{a^2}{6 R^2} \left[1 - 2 \frac{y^2}{R^2} \right] \right\}$$

C'est à partir de cette expression de V, dans laquelle nous avons posé

$$-\frac{Q}{2\pi r_{o}}=1$$

que nous avons calculé les valeurs du potentiel sur le contour ACB.

Dans le domaine ainsi borné, nous avons tracé un réseau semblable à celui utilisé dans l'exemple précédent.

Les calculs ont été effectués à partir de l'équation (4). Sur la bande ellemême, nous avons établi la relation (*fig.* 45)

(34) $4 V_{o} = 2 V_{1} + V_{2} + V_{4} + \frac{Q h}{2_{a} r_{a}}$

7. E. DURAND, pp. 40 à 41.

Le sommet E de la distribution étant un point essentiel pour la rapidité de convergence de la méthode, nous avons adopté pour ce point, une formule faisant intervenir les valeurs du potentiel en un plus grand nombre de nœuds. La formule (4) appliquée successivement aux points I, II, I' permet d'écrire (fig. 46)

$$V_{0} = 4 V_{1} - (V_{1} + V_{4} + V_{5})$$

$$V_{0} = 4 V_{11} - (V_{2} + V_{4'} + V_{4})$$

$$V_{0} = 4 V_{1'} - (V_{1'} + V_{4'} + V_{5'}).$$

Au point III la relation (34) donne :

$$V_{\bullet} = 4 V_{III} - (V_{\bullet} + 2 V_{\bullet}) - \frac{Q h}{2a r_{\bullet}}$$

Soit, en prenant pour V_0 la moyenne arithmétique de ces quatre valeurs, et en tenant compte de la symétrie :

$$V_{\bullet} = 2 V_{I} + X_{II} + V_{III} - \left\{ \frac{V_{\bullet} + V_{\bullet} + V_{\bullet}}{2} + \frac{V_{\bullet} + V_{\bullet}}{4} + V_{\bullet} + V_{\bullet} \right\} - \frac{Qh}{2a \varepsilon_{\bullet}}$$

Les résultats numériques obtenus sont indiqués sur la figure (47). Dans chaque carré se trouve d'abord la valeur de V correspondant au réseau tracé sur la figure elle-même, au-dessus les valeurs relatives au quadrillage de côté moitié, enfin les valeurs extrapolées avec l'indice 2.

x/a	0,00	0,50	1,00	2,00	3.00	4,00	5,00
Vexact	.1000	.334	132	732	1117	1397	1616
V relax.	- 1002	- 336	130	73 1	1116	1397	1616
ΔV	- 2	- 2	- 2	-1	-1	0	0
V đéduil de Ø	_ 982	_ 322	138	734	1117	1397	1616
۵V	18	12	6	2	0	0	0

TABLEAU V

Les tableaux V et VI ont trait à la comparaison des résultats obtenus pour le potentiel sur les axes de symétrie ox et oy de la bande. Les valeurs exactes de V ont été calculées à partir de l'expression (*fig.* 48) :

(35)
$$\mathbf{V} = -\frac{\mathbf{Q}}{2\pi r_{\bullet}} \frac{1}{2} \left\{ \left(\frac{y}{a} - 1 \right) \operatorname{Log} \frac{\mathbf{R}_{\bullet}}{a} - \left(\frac{y}{a} + 1 \right) \operatorname{Log} \frac{\mathbf{R}_{\bullet}}{a} + \frac{x}{a} \left(\alpha_{\bullet} - \alpha_{\bullet} \right) \right\}$$

1603		1623	1680	1761	1856	1956
 /376 /375 /373		1408 1408 1408	/493 /494 /495	1607 1608 1610	1733 1733 1734	1858
 /080 /078 /073		//38 //38 //39	1278 1279 1284	1445 1447 1450	/6// /6/2 /6/3	1766
1 648 1646 1641	686 687 690	785 787 793	1041 1043 1050	/288 /289 /293	503 503 505	168 8
1317 1312 299 1-307 1-298 1-271	403 406 414 54 61 80	573 577 586 358 362 376	825 826 83 /	1164 1165 1166	1425 1425 1425	1635
- 969 -851 -795 -1002 - 986 -938	- 235 - 226 - 199 - 336 - 326 - 296	192 197 213 130 136 154	731 732 733	///6 ///6 1#5	1397 1396 1395	1616

•

F1G. 47

Fig.	48.
------	-----

У/а	0,00	0,50	1,00	1,50	2,00	3,00	4,00	5,00
Vexact	_ / 000	- 869	- 307	318	648	1080	1376	1603
V relax.	_1002	_ 869	_ 307	317	648	1080	1376	1603
ΔV	- 2	0	0	_1	0	0	0	0
V déduitée Ø	_ 982	_ 846	- 305	301	639	1078	13.77	1603
ΔV	18	23	2	_17	_ 9	-2	+ 1	0

2° Étude de la fonction flux.

Les fonctions V (x, y) et $\Phi(x, y)$ étant conjuguées et V (x, o) étant réelle et paire, Φ peut être obtenu sans quadrature, en prenant la partie imaginaire du potentiel complexe :

$$V(x+iy, 0)$$

1571	1470	1371	1276	1186	1103	1026	956	892	834	782
1571	/458 /458 /458	/349 /349 /349	1245 1245 1245	48 48 48	1059 1059 1059	978 978 978	905 905 905	840 840 840	781 781 781	729
1571	444 444 444	/321 /321 /321	1206 1206 1206	0 0 0	1006 1006 1006	922 922 922	847 847 847	78/ 78/ 78/	722 722 722	671
/57/	1425 1425 1425	1286 1286 1286	//58 //58 //58	1044 1044 1044	943 943 943	855 855 855	779 779 779	714 714 714	656 656 656	607
/571	1400 1400 1400	240 240 239	1096 1096 1096	972 972 973	867 867 867	777 777 778	702 702 702	638 638 638	583 583 583	536
/57/	/363 /363 /363	1175 1175 1175	1014 1014 1015	882 882 883	774 774 775	685 686 687	6/3 6/3 6/4	553 553 553	502 502 503	459
1571	/305 /305 /306	1080 1081 1083	903 904 907	766 767 770	661 661 664	578 578 580	512 512 513	458 458 459	414 414 414	377
1571	1201 1203 1209	934 936 944	750 752 759	620 622 626	525 526 529	453 454 456	398 398 399	353 354 355	318 318 318	288
1571	974 984 1014	705 711 727	545 548 557	440 442 447	366 368 371	3/3 3/4 3/6	273 273 274	241 241 242	216 216 216	195
785	540 542 548	383 385 393	289 291 296	229 230 234	/89 /89 /92	/60 /60 /62	139 139 140	/22 /22 /23	109 109 109	98
0	0	0	0	0	0	0	0	0	0	0
]	Fig. 49.					

On obtient ainsi, à partir de (33) et de (35) le développement de ϕ limité au terme quadrupolaire

(36)
$$(\Phi/\varepsilon_{o}) = -\frac{Q}{2\pi r_{o}} \left\{ \operatorname{Are} \operatorname{tg} \frac{y}{x} - \frac{x y}{3 R^{*}} \right\}$$

et son expression analytique exacte :

(37)
$$(\Phi/\varepsilon_{o}) = -\frac{Q}{2\pi r_{o}} \frac{1}{2} \left\{ \frac{x}{a} \operatorname{Log} \frac{R_{i}}{R_{a}} + \frac{y}{a} (z_{o} - z_{i}) + (z_{a} + z_{i}) \right\}$$

Nous sommes partis de la valeur zéro du flux sur l'axe ox. Les valeurs du flux sur le contour ACB ont été calculées à partir de (36). Enfin, le théorème de Gauss permet de déterminer ϕ/ε_0 dans le plan de la bande. On obtient :

$$\Phi/\epsilon_{\bullet} = -\frac{Q}{2 \pi r_{\bullet}} \frac{\pi}{2} y \quad \text{pour} \quad 0 \leqslant y \leqslant a$$
$$\Phi/\epsilon_{\bullet} = -\frac{Q}{2 \pi r_{\bullet}} \frac{\pi}{2} y \quad \text{pour} \quad y \geqslant a$$

Nous avons effectué les calculs à partir de la relation (4). Les résultats numériques ont été rassemblés sur la figure (49). Nous avons indiqué dans chaque carré les valeurs relatives aux deux réseaux successivement utilisés, ainsi que les valeurs extrapolées avec l'indice 2. Nous donnons dans le tableau VII les résultats de la comparaison des valeurs obtenues par cette méthode sur la diagonale OC aux valeurs exactes de Φ calculées à partir de (37).

d/a	. 0	1	2	3	4	5
∮ exact	0	705	765	776	780	782
<i>∳relax</i>	0	705	766	777	781	782
∆∳	0	0	1	1	1	0

TABLEAU VII

3° Fonction potentiel déduite de la fonction flux.

Les relations $\frac{\partial \mathbf{V}}{\partial x} = \frac{\partial (\Phi/\varepsilon_0)}{\partial y} \frac{\partial \mathbf{V}}{\partial y} = -\frac{\partial (\Phi/\varepsilon_0)}{\partial x}$ préalablement transfor-

mées en équation aux différences finies, permettent de déterminer l'une des fonctions à partir de l'autre. Dans l'exemple traité, la fonction ϕ/ε_0 étant connue sur tout le contour OACBO, il est préférable de déduire V de ϕ . Les résultats ainsi obtenus sont indiqués sur la figure (50). Dans chaque carré se trouve la valeur de ϕ/ε_0 , et au-dessus celle de V. Quelques équiflux et quelques équipotentielles ont été tracées. Les valeurs de V ainsi obtenues sont toutefois moins bonnes que celles résultant de la détermination directe du potentiel (tableaux V et VI).

Remarque.

Le problème ainsi résolu en électrostatique permet de passer immédiatement à celui de la détermination des lignes d'induction d'une nappe de courant de largeur finie plane et uniforme, les lignes de courant étant normales au plan xy. On sait, en effet, que les fonctions A, et V d'une part, V^{*} et ϕ d'autre part, se correspondent. On a, en particulier, dans ce cas

$$\frac{A_s}{I\mu_{\bullet}} = \frac{\varepsilon_{\bullet}V}{Q}$$

1603 1571	1604 1520	1608 1470	1614 1417	1623 1371	1634 1323	/647 /276	/663 1230	1680 1186	1698 1144	1718 1193	1739 1064	1761 1026	1784 990	1807 956	1831 923	1856 892	1 8 8/ 862	1906 834	1929 807	1956 782
1554 1571	1555 1517	1560 1464	1565-	1575_	1587	1602 1261	1618 1214	/637 //68	1656 1/24	/678 /082	1701 1041	1725 1003	1749 966	1774	1795 898	/826 867	1852 837	1878 808	1904 782	1931 756
/498 /57/	1499 1514	1504 1458	1512 1403	1522 1349	1536 1296	1552	1570	1591 1148	1613 1102	/636 /059	1661 1017	/686 978	1713 940	1740 905	1767 871	1795 840	1823 / 810	1851 781	1879 754	1907 729
/439 1571	1441 1511	1446 1451	1455 1393	1467 1336	1482 1280	1500 1227	1521 1175	1543 1126	1567	1593 1034/	1620 991	1648 951	1676 9/3	1705 877	/734 843	1764 811	1794 781	/823 753	1853 726	1882 701
1377 1571	1379 1507	1385	/395 /382	1409 1321	1426 1263	1446 1207	1469 1152	1494 1102	1520 1052	1549	1578 963	1608 922	/639 883	1670 847	1702/ 813	1733 781	1765	/796 722	1827 696	/858 671
310 571	1313 1503	1320 1435	1331 1369	1347 1305	1367	1389 1184	1415 1127	1442 1080	1472 1023	1503 976	1535 932	1568 890	1601 851	1635 / 814	1669 780	1702 748	1736 718	1769 690	1801 664	1834 639
1239 1571	1242 1498	1250 1425	1263 1355	1281 1286	1304	1330 1158	1358	1389 1044	1422 992	1456 943	1492 898	1527 855	1563	1600 779	1636 745	1671 714	1707	1742 656	1776	1810 607
1162 1571	1165 1492	1175	1191 1338	1212	1237	1267 1129	/300 /068	1335 1010	1371 956	1409 907	1448 861	1487/ 818	1526 779	1565 742	1603 708	1641 677	1679 548	1716 621	1752	1788 572
1079 1571	1082 1485	1094 1400	1112 1318	1137	1167	1201 10 96	1238/ 1032	1278 972	1319 917	1361 867	1403/ 820	1445	/488 738	1530 702	1571	/6// 638	1651	1690 583	1728	1766 536
986 /57/	991 1476	/005 383	1028 1294	1057 1210	1093 1131	1132 1058	1175 991	1219 930	1265 874	13/2 / 823	/358 776	1405 733	1450 694	1495 659	1539 626	/582 597	1625 569	1666 544	1705	1744
884 /57/	890 1466	908 1363	936	972 1175	1014 1091	1060	1109 945	1160 882	1212 / 825	1263 774	1314 727	1364 685	14 14 64 7	1462 613	1509 581	1555	1599 526	1642 502	1684 480	1724
770 1571-	778	80/ 1338	836 1230	880 1132	931	985 963	1042 891	1100 / 827	115B	1215 720	1271 674	1325 634	1378	1430 564	/480 534	1528 507	1575 482	1620 459	/663 438	1705
639 1571	651 1435	681 1305	727	782 2080	844 985	909 903	974 830	1040 766	1/04 710	1167 661	1229 617	1288 578	1345 543	1399 512	/452 483	1503 458	1552 435	1599	1644- 394	1688 377
487 1571	1504- 1410	547 1261	608 1129	679 1015	754 917	831 832	907 760	981 697	1053 643	1122 596	1/88 554	1252 518	/3/3 485	/37/ 456	1427 430	1480 407/	/53/ 386	1580 366	1627 349	1672 333
- 3 01_ 1571	332 1374	1395 1201	481	571 934	663 834	753 750	8 41 680	924 620	1004	1079 525	1151 487	1219 453	1284 424	1345	1404 374	1459 353	/5/2 335	1563 3/8	16// 302	1658 288
58	126	229	347 955	462 832	574 734	680 655	779 589	872 534	959 488	1041 448	1118	1190	1258 359	1322 336	1383 316	1441 298	1496 282	1548 267	1598 254	1645 242
-305	-116 1203	57 973	2/5 82 1	360 705	492	613 545	724 487	826 440	920 400	1007	1089 338	\ 1165 313	1236 291	1303 273	/366 256	1426 241	/482 228	1535 216	1586 205 -	1635 195
- 652 - 1/78	- 342	-101 780	97 652	269	421 481	555 423_	677 376	787 338	888 306	980 280	1065 257	1144	12/8 221	1287 206	1352	1413- 182	1471 172	/525 /63	1577 155	1627 147
-846	- 501 652-	_223 540	5 451	199 383	365 330	512 289	641 256	\ 758 229	863 207	960 189	1048- 173	1129	1205	1276 139	1342 130	1404 122	1463 115	1518 109	1571 104	1621 98
-949 393-	593	-297 275	- 53 230	154	330 /68	484	619 130	740	848 105	947 95	1037 87	//20 81	1197 75	1269 70	/336 65	1399 61	/458 58	1514 55	1567 52	1617 49
-982	622	_322	.72	/38	3/8	474	6/2 0	734	843 0	945	1033 0	1117 0	1194	1266	1334 0	1397	1456	1512	1566	1616

FIG. 50.

Les lignes d'induction magnétique qui correspondent aux équipotentielles, changent brusquement de direction à la traversée de la nappe de courant (*fig.* 50).

4. — DISTRIBUTION UNIFORME DE CHARGES DANS UN CYLINDRE INDÉFINI DE SECTION RECTANGULAIRE.

Cet exemple est relatif à la résolution numérique de l'équation de Poisson. Il nous permet également de préciser la méthode pour obtenir des formules satisfaisantes sur la surface et aux sommets d'une distribution volumique de charges.

La distribution est représentée en grisé sur la figure (51). Nous désignerons par ρ la densité volumique de charge et par Q la charge totale par unité de longueur.

Limité au terme quadrupolaire, le développement (32) s'écrit dans ce cas

FIG. 51.

C'est à partir de cette expression dans laquelle nous avons posé

$$-\frac{2}{\varepsilon_0}=1$$
 et $a=1$

que nous avons déterminé les valeurs de V sur le contour ACB.

A l'extérieur de la distribution, nous avons effectué les calculs à partir de la relation (4).

A l'intérieur, le potentiel satisfait à l'équation de Poisson

$$\Delta V = -\frac{\varepsilon}{\varepsilon_0}$$

que nous avons traduite sous forme d'équation aux différences finies par l'expression :

$$4 V_{\bullet} = V_{\bullet} + V_{\bullet} + V_{\bullet} + V_{\bullet} + \frac{c}{c_{\bullet}} h^{\bullet}$$

Sur la surface elle-même, la discontinuité des dérivées secondes nécessite l'établissement d'une nouvelle formule. Supposons d'abord que la surface soit parallèle au plan xoz (fig. 52). Les points 1, 0, 3, étant considérés comme extérieurs à la distribution, nous avons

$$\begin{pmatrix} \frac{\partial^{*} \mathbf{V}}{\partial \mathbf{x}^{*}} \end{pmatrix}_{\bullet} = \frac{1}{h^{*}} \left\{ \mathbf{V}_{\bullet} + \mathbf{V}_{\bullet} - 2 \mathbf{V}_{\bullet} \right\}$$
$$\begin{pmatrix} \frac{\partial^{*} \mathbf{V}}{\partial y^{*}} \end{pmatrix}_{\bullet} = \frac{1}{h^{*}} \left\{ \mathbf{V}_{\bullet} + \mathbf{V}_{\bullet} - 2 \mathbf{V}_{\bullet} \right\}$$

et l'équation de Laplace s'écrit :

$$V_0 ext = V_1 + V_3 + V_9 - 2V_2$$

Les points 1, 0, 3 étant considérés comme faisant partie de la distribution, il vient

$$\begin{pmatrix} \frac{\partial^{\bullet} \mathbf{V}}{\partial x^{\bullet}} \end{pmatrix}_{\bullet} = \frac{1}{h^{\bullet}} \left\{ \mathbf{V}_{\bullet} + \mathbf{V}_{\bullet} - 2 \mathbf{V}_{\bullet} \right\}$$
$$\begin{pmatrix} \frac{\partial^{\bullet} \mathbf{V}}{\partial y^{\bullet}} \end{pmatrix}_{\bullet} = \frac{1}{h^{\bullet}} \left\{ \mathbf{V}_{\bullet} + \mathbf{V}_{\bullet} - 2 \mathbf{V}_{\bullet} \right\}$$

D'où, en portant dans (38)

$$V_{i}$$
 int = $V_{i} + V_{i} + V_{i} - 2V_{i} + \frac{p}{s_{i}}$

2299		236/		2520	2723	2930	3/25	3304
 /80/ /793		1925 1918		2205 2201	2510 2507	2784 2782	3022 3021	
1770		/896		2/89	2498	2776	30/8	3224
1019 1011 1988	/100 1090 1060	1324 1309 1265	1611 1598 1560	1885 1874 1842	2333 2326 2305	2677 2672 2659	2950 2948 2942	3/77
4/2 4/0 405	536 528 505	930 905 837	/408 /389 /333	1765 1751 1709				
153 148 134	203 193 164	7/8 691 6/0	/3/9 /298 /233	1719 1703 1656	2261 2251 2220	2636 2630 2613	2925 2923 2914	3/60
					FIG. 55.			

Pour les nœuds situés sur la surface, on pourrait utiliser l'une ou l'autre de ces expressions de V_0 . Mais il est préférable de faire appel à une formule faisant intervenir simultanément les valeurs du potentiel en des points situés de part et d'autre de la surface. Nous avons adopté pour V_0 l'expression :

$$\mathbf{V}_{\bullet} = \frac{1}{2} \left\{ \mathbf{V}_{\bullet} \operatorname{ext.} + \mathbf{V}_{\bullet} \operatorname{int.} \right\}$$

soit :

,

$$2 V_0 = 2 (V_1 + V_3) + (V_9 + V_{10}) - 2 (V_2 + V_4) + \frac{\rho}{s_0}$$

Comme d'autre part on a :

$$V_{9} = 4 V_{2} - V_{0} - V_{5} - V_{6}$$
$$V_{10} = 4 V_{4} - V_{0} - V_{7} - V_{8} - \frac{\rho}{\epsilon_{a}}$$

en éliminant V₉ et V₁₀ entre ces trois dernières équations, on obtient : (39) $4 V_0 = 2 (V_1 + V_2 + V_3 + V_4) - (V_5 + V_6 + V_7 + V_8)$

La même formule est applicable dans le cas où la surface de la distribution est parallèle au plan yoz (fig. 53).

Enfin, pour le sommet lui-même, nous avons établi une formule particulière. Les notations étant celles de la figure (54), les relations (4) et (39) appliquées aux nœuds I, I', II, II' donnent :

$$V_{0} = 4 V_{I} - V_{I} - V_{2} - V_{A}$$

$$V_{0} = 4 V_{I'} - V_{I'} - V_{2'} - V_{A}$$

$$V_{\bullet} = \frac{1}{2} \left\{ V_{I} + 4 V_{II} + 4 V_{II'} + V_{\bullet} + V_{\bullet} - 2 V_{\bullet} - 2 V_{\bullet} - 2 V_{B} \right\}$$

$$V_{\bullet} = \left\{ V_{I'} + 4 V_{II'} + V_{II} + V_{\bullet'} + V_{\bullet'} - 2 V_{\bullet'} - 2 V_{\bullet'} - 2 V_{B} \right\}$$

En prenant pour valeur du potentiel au point 0 la moyenne arithmétique de ces quatre expressions, on obtient :

$$8 V_{0} = 9 (V_{I} + V_{I'}) + 5 (V_{II} + V_{II'}) + (V_{4} + V_{4'}) + (V_{5} + V_{5'}) - 4 (V_{A} + V_{B})^{-1} - 2 (V_{1} + V_{1'}) - 4 (V_{2} + V_{2'}) - 2 (V_{3} + V_{3'})$$

x/a	0	1	2	3	4	6	8	10	12
Vexact	57	209	729	1326	1724	2263	2638	2925	3159
V <u>r</u> elax.	53	203	7/8	1319	1719	2261	2636	2925	3159
ΔV	-4	_ 6	_//	_7	- 5	-2	_ 2	0	0

TABLEAU VIII

Les résultats numériques ont été rassemblés dans les figures (55) et (56). La disposition des nombres est la même que dans l'exemple précédent. Le tableau VIII est relatif à la comparaison des valeurs obtenues ainsi pour le potentiel sur l'axe *ox* aux valeurs calculées à partir de l'expression (*fig.* 51)

$$\mathbf{V} = - \frac{\hat{\mathbf{\rho}}}{2\pi \, \varepsilon^{\circ}} \, \int_{s} \, \mathrm{Log} \, r \, ds \, .$$

5. — LENTILLE ÉLECTROSTATIQUE SYMÉTRIQUE DE RÉVOLUTION.

Lorsqu'on ne peut pas limiter le domaine étudié par des développements en série, on peut toujours admettre que les conditions aux limites à l'infini sont valables à l'approximation désirée à une distance suffisante mais finie du système.

On vérifie à postériori que le contour Σ de la région considérée est assez éloigné en constatant que les conditions aux limites sont réalisées avant d'atteindre Σ . Les gradients sont alors nuls sur la frontière et la répartition obtenue ne serait pas modifiée par la considération d'un domaine plus étendu.

Nous avons appliqué cette méthode à la détermination du potentiel dans le cas d'une lentille symétrique constituée par trois électrodes planes parallèles infiniment minces percées de trous circulaires coaxiaux (*fig.* 57).

Les calculs ont été effectués en supposant que l'électrode centrale était portée au potentiel V = 1000, tandis que les diaphragmes extérieurs étaient au potentiel V = 0. Le domaine a été limité en admettant que V était nul à

CALCUL NUMÉRIQUE DES CHAMPS ET DES TRAJECTOIRES

F1G. 56.

163 ,

.

의		÷			·	- 1		2		5
0	••	1	-	8	8	5	ŝ	3	m	m
0		-	5	7	3	3	4	4	5	5
			5	5 5	. m	34	5	9 5	9	99
		-	5	س	4	5	~	<u>∞</u>	6	6
。		-	5	5 3	4	5	6	1 6	13	13
٥		_	8	<u>س</u>	2	×	12	1	61	61
			5	5 3	5	<u>היס</u>	17	50 53	28	29 24
		<u> </u>		6	-প্ৰ	6	24	36	43	46
0.	0	¢	•	0	0	0	40	59 49	68	71 65
125	125	63	63	64	66	71	86	86	çoi	108
		125	126	127 126	92 I	133 130	141	147 144	152	153 148
250		188	188	190	161	194	198	202	204	205
	250	250	251	252	253	255 253	257	259 257	260	261 259
375		312	313	313	314	315	316	318	318	319
	37 5	375	375	375 375	375	$376 \\ 375$	377	377 376	377	378 377
		437	437	437	437	437	437	437	437	(37
500	500	499	499	498 · 498	498	497 498	497	497 497	496	497 497
625		561	561	560	559	558	557	556	556	556
	624	623	622	621 622	620	618 620	617	615 617	614	614 616
750		686	684	683	681	678	676	673	671	671
	749	748	747	745	742	738 742	733	729 73 3	726	725
875		811	809	807	803	797	789.	782	776	774
	874	874	872	870 871	865	857 864	842	828 836	820	817 827
		937	936	934	930	920	889	865	851	846
1000	1000	1000	1000	1000	1000	1000	920	882 902	863	857 869

FIG. 58.

l'extérieur des diaphragmes, et qu'il variait linéairement entre les électrodes. Nous avons ensuite appliqué la méthode de relaxation à partir des

formules (10) et (14). Les valeurs relatives aux deux réseaux successivement utilisés sont indiqués sur la figure (58). La solution analytique n'étant pas connue, nous avons comparé les valeurs obtenues après extrapolation linéaire, à un relevé fait à la cuve rhéographique (8) (*fig.* 59). Les valeurs indiquées entre parenthèses ont été relevées à la cuve rhéographique. Les autres ont été obtenues par le calcul après extrapolation. Les résultats donnés par ces deux méthodes concordent à moins de 1/100 de la différence de potentiel établie entre les diaphragmes.

La considération d'électrodes épaisses compliquerait la réalisation des maquettes utilisées pour les relevés à la cuve rhéographique (°). Elle conduirait au contraire à des calculs plus rapides. Les valeurs plus faibles des gradients au voisinage des diaphragmes permettrait, en effet, d'utiliser des réseaux moins denses.

6. — LIGNE BIFILAIRE DANS UNE CAVITÉ CYLINDRIQUE CREUSÉE DANS UN MILIEU MAGNÉTIQUE DE PERMÉABILITÉ INFINIE.

Nous donnons à propos de cet exemple le principe du calcul de l'induction produite par des courants en présence de l'aimantation induite.

Le dispositif étudié est représenté sur la figure 60. Les deux courants A et B sont linéraires et parcourus en sens inverses par la même intensité I. L'induction \overrightarrow{B} dans l'a cavité est la résultante de l'induction $\overrightarrow{B_0}$ produite par les courants et de l'induction $\overrightarrow{B_0}$ due à l'aimantation induite.

^{8.} M. LAUDET et P. PILLOD, J. Phys. Rad., t. 14, mai 1953, pp. 323-328.

^{9.} P. PILLOD et R. SAPORTE, Congrès de microscopie électronique, Édition de la Revue d'Optique, Paris, 1952.

			- [N 1		0]		4		2		اف		9		5		2	
			_	ć			n.		2		9		~		6		01		=	
**			<u>.</u>				4	(II)	ون	(14)	2	(91)	11	.(61)	13	(50)	15	(21)	9]	
-			_			,	4	(12)	9	(91)	2	(20)	15	(24)	61	(27)	22	(27)	23	
0					1		4	(13)	_	(18)	14	(36)	21	(32)	27	(36)	32	(38)	34	
			_			ç	s	(11)	9	(50)	12	(36)	32	(46)	43	(52)	50	(54)	52	
0				. (。		0		•		0	(65)	46	(20)	69	(28)	76	(98)	5	•
		(<u>)</u>	63	(62) 23	8	(62) Ç	ç	(65)	68	(28)	74	.(96)	95	(901)	105	(112)	112	(114)	113	
(123) 125'		(I25)	125	(126)	120	(127)	128	(131)	131	(I38)	137	(146)	145	(152)	163	(157)	155	(158)	158	
		(186)	188	(187)	681	(188)	60	(i61)	193	(361)	197	(200)	201	(205)	205	(207)	208	(208)	209	-
(249) 250		(549)	250	(250)	102	(251)	202	(253)	254	(256)	256	(258)	259	360)	261	(262)	262	(263)	263	
		(309)	312	(310)	313	(311)	314	(311)	315	(312)	316	(314)	318	(315)	319	(317)	320	(317)	320	
(371) 375		(371)	375	(37i)	370	(371)	375	(372)	376	(373)	377	()	377	(374)	378	(375)	378	(375)	378	
		(431)	437	(431)	437	((430)	437	(431)	437	(431)	437	(432)	437	(432)	437	(432)	437	(433)	437	
(494) 500		(464)	499	(493)	499	(492)	498	(492)	498	(164)	497	(161)	497	(164)	496	(164)	496	(161)	496	Ī
	024	(553)	561	(553)	000	(221)	559	(550)	558	(640)	557	(679)	556	(646)	555	(646)	554	(646)	554	
(617) 624		(010)	623	(615)	022	(614)	621	(613)	619	(119)	617	(010)	615	(609)	613	(608)	612	(608)	612	
	749	(676)	685	(675)	984	(674)	682	(672)	679	(669)	676	(999)	673	(663)	670	(662)	668	(662)	668	ĺ
(744) 749		(141)	748	(239)	740	(737)	743	(734)	739	(729)	734	(724)	729	(720)	725	(216)	722	(212)	720	Ī
		(801)	811	(662)	808	(297)	805	(262)	800	(786)	792	(776)	783	(169)	776	(764)	770	(763)	768	
(866) 874		(865)	873.	(863)	871	(860)	868	(853)	861	(843)	850	(828)	833	(814)	821	(\$05)	81-1	(803)	806	
			937		935		933		926		914	(873)	872	(848)	850	(835)	838	(831)	834	Ī
000	1		000		000		000		000		000	894)	907	862)	862	846)	848	841)	845	Ī

¥

FIG. 59.

166

.

La perméabilité étant infinie, les lignes de forces du champ résultant aboutissent normalement à la surface S de la cavité, qui est par suite une équipotentielle magnétique (10).

Le plus simple est donc de faire appel au potentiel scalaire magnétique $V(1^0)$.

Nous prendrons $V_S^* = 0$ car ceci donne une masse magnétique totale nulle sur S, par raison de symétrie.

Le champ magnétique \mathbf{B}_0/μ_0 produit par les courants est le même que le champ magnétique \mathbf{H}_0 du feuillet équivalent (*fig.* 60). Le potentiel scalaire V_0^* correspondant a pour valeur (¹¹)

$$V_{o}^{*} = -\frac{I}{2\pi} \phi$$

Nous prendrons pour les calculs 1 = -2. On a par suite $V_0^* = \pm 1$ de part et d'autre de AB et $V_0^* = 0$ sur oy à l'extérieur de AB (fig. 61 a).

On peut donc calculer aisément le potentiel scalaire V_i^* dû aux masses magnétiques induites. Il suffit, en effet, de prendre la valeur $(V_i^*) = --(V_0^*)$ sur la surface et $(V_i^*) = 0$ le long de l'axe *oy*, puis de chercher par relaxation le potentiel V_i^* en un point quelconque intérieur à la cavité (fig. 61 b).

En l'ajoutant ensuite au potentiel magnétique influençant V_0^* , on obtient le potentiel résultant V^{*}. On voit en définitive que ce dernier satisfait aux conditions aux limites indiquées sur la figure 61 c.

On peut donc calculer directement le potentiel résultant par la méthode de relaxation. C'est d'ailleurs plus simple que de décomposer V^* en V_0^* et V_i^* . Cependant la connaissance de ce dernier donne des indications utiles sur la distribution du magnétisme induit qui apparaît sur S et c'est pourquoi nous l'avons également déterminé. Nous avons effectué les calculs à partir de la formule (4). Au point A, nous avons pris la valeur V = 1/2. On sait, en effet, que l'équation 1/2 aboutit normalement en ce point. Les résultats sont rassemblés sur la figure 62.

Nous avons indiqué, à gauche, la répartition correspondant au potentiel V^{*}, et, à droite, celle relative à V^{*}. Afin de déterminer plus aisément les lignes de forces du champ nous avons également calculé la fonction flux ϕ/μ_0 qui est la fonction conjuguée de V^{*}. Nous sommes partis de la valeur 0 sur l'axe *ox* et nous avons calculé ϕ/μ_0 de proche en proche à partir des relations

$$\phi_2/\mu_0 - \phi_4/\mu_0 = V_1 - V_3$$

$$\phi_1/\mu_0 - \phi_3/\mu_0 = - (V_2 - V_4)$$

10. E. DURAND, p. 536. 11. E. DURAND, p. 306.

F14. 61.

BIBLIOGRAPHIE

- [1] J. LE ROUX. Sur le problème de Dirichlet. (Journ. Math. pures et appl., t. 10, 1914, pp. 189-230.)
- [2] H. B. PHILIPP et N. WIENER. Nets and the Dirichlet's problem. (Journal of Math. and Phys., t. 2, 1923, pp. 105-124.)
- [3] G. BOULIGAND. Fonctions harmoniques. Principes de Picard et de Dirichlet. (Mémorial des sciences mathématiques, fasc. XI, 1926.)
- [4] E. DURAND. Électrostatique et Magnétostatique. Masson, Paris, 1953.
- [5] R. W. SOUTHWELL. Relaxation Methods in theoretical physics. Clarendon Press, Oxford, 1952.
- [6] F. S. SHAW. An Introduction to Relaxation Methods. Lover Publ., 1953.
- [7] G. ALLEN. Relaxation Methods. Mc Graw-Hill, 1954.
- [8] L. F. RICHARDSON et J. A. GAUNT. The Deferred Approach to the Limit. (Phil. Trans., 1927, série A, vol. 226, pp. 299 à 361.)
- [9] D. R. HARTREE et J. R. WOMERSLEY. A Method for the Numerical or Mechanical Solution of Certain Types of Partial Differential Equations. (1937, Proc. Roy. Soc., A, 161, 353.)

DEUXIÈME PARTIE

OPTIQUE ÉLECTRONIQUE DES SYSTÈMES CYLINDRIQUES PRÉSENTANT UN PLAN DE SYMÉTRIE

De très nombreux travaux ont été consacrés à l'étude des lentilles électroniques électromagnétiques à symétrie axiale [1], [2].

Les systèmes cylindriques ont été moins étudiés, peut-être à cause de la correspondance point-droite qui, aux débuts de l'optique électronique, les rendait inutilisables en microscopie.

Leur intérêt est allé en croissant avec l'importance du spectrographe de masse d'abord [3], [4], avec leur emploi pour la correction du stigmatisme et de l'aberration sphérique et chromatique des lentilles de révolution ensuite [5], [6], enfin avec leur utilisation comme filtres de vitesse [7], [8].

Toutefois, à notre connaissance, aucune théorie d'ensemble de ces systèmes n'a été donnée. Nous nous proposons dans cette deuxième partie, d'étudier le cas des systèmes possédant un plan de symétrie.

Nous déterminons d'abord le trajet des particules dans le cas de l'approximation du premier ordre, puis nous calculons les aberrations suivant le schéma méthodique d'approximations successives proposé par M. E. DURAND pour les systèmes de révolution (¹).

Nous étudions ensuite plus particulièrement les lentilles électrostatiques à trois fentes. Nous établissons les expressions analytiques du potentiel et du champ par la méthode des transformations conformes, puis nous calculons numériquement les trajectoires et les aberrations dans le cas d'une lentille symétrique.

1. E. DURAND, Revue d'optique théorique et instrumentale, t. 33, nº 12, 1954.

CHAPITRE I.

L'APPROXIMATION DU PREMIER ORDRE

Un champ électromagnétique est dit cylindrique ou à deux variables lorsque le vecteur qui le définit est en tout point parallèle à un certain plan (P), et demeure équipollent à lui-même lorsqu'on se déplace sur une perpendiculaire à (P).

En prenant le plan xoy parallèle à (P) on peut définir le champ par deux composantes X (x, y) et Y (x, y) seulement. Nous nous limiterons dans cette seconde partie au cas où le champ possède un plan de symétrie que nous prendrons pour plan de coordonnées xoz (fig. 1).

I. — ÉQUATIONS GÉNÉRALES DES TRAJECTOIRES ET DÉVELOPPEMENT EN SÉRIE DU LAGRANGIEN.

1º Équations générales des trajectoires.

Le lagrangien des systèmes à deux variables a pour expression

$$\mathbf{F}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y}' \boldsymbol{z}') = \sqrt{(\mathbf{V} + \varepsilon) + \alpha (\mathbf{V} + \varepsilon)^{*}} \sqrt{1 + {y'}^{*} + {z'}^{*}} \pm \gamma \boldsymbol{z}' \boldsymbol{A}\boldsymbol{z}$$

avec

$$\gamma = \sqrt{\frac{|q|}{2 m_o}} \quad , \quad \alpha = \frac{|q|}{2 m_o c^*} \quad ;$$

 $(V + \varepsilon)$ est le potentiel scalaire et À le potentiel vecteur du champ magnétique. ε est la tension d'accélération de la particule, q sa charge, m_0 sa « masse propre » et c la vitesse de la lumière dans le vide. Les signes (+) et (-) correspondent respectivement à des charges positives et négatives et les accents désignent les dérivés par rapport à la variable x.

F peut s'écrire encore

(1)
$$\mathbf{F} = (\mathbf{V} + \varepsilon)^{1/2} \{ \mathbf{1} + \alpha (\mathbf{V} + \varepsilon) \}^{1/2} (\mathbf{1} + y'^* + z'^*)^{1/2} \pm \gamma z' \mathbf{A}z$$

le terme correctif

$$\{1 + \alpha (V + \varepsilon)\}^{1/2}$$

est dû à la relativité. L'approximation newtonienne est obtenue en négligeant les termes en α .

Les équations rigoureuses de la trajectoire s'écrivent :

$$\frac{d}{dx}\left\{\frac{\partial \mathbf{F}}{\partial y'}\right\} - \frac{\partial \mathbf{F}}{\partial y} = 0 \qquad \frac{d}{dx}\left\{\frac{\partial \mathbf{F}}{\partial z'}\right\} = \mathbf{0}$$

Ces relations sont trop compliquées pour être utilisées sous cette forme à partir de l'expression (1) du lagrangien. Pour pouvoir intégrer commodément ces équations, il est nécessaire de développer la fonction F suivant les puissances croissantes de y, y', z'.

2° Développement en série du lagrangien.

a) Expression du potentiel scalaire $V + \varepsilon$ et du potentiel vecteur A.

Désignons par f(x) le potentiel dans le plan de symétrie de la lentille. Le potentiel en un point quelconque peut être développé suivant l'expression (1)

(2)
$$V(x, y) + \epsilon = f(x) - \frac{y^*}{2!} \left(\frac{d}{dx}\right)^* f(x) + \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{y^{*n}}{(2n)!} \left(\frac{d}{dx}\right)^{*n} f(x)$$

Le même développement demeurant valable pour le potentiel scalaire magnétique V^{*} (x, y), les composantes du champ magnétique H s'écrivent :

$$H_{x}(x,y) = -\frac{\partial V^{*}}{\partial x} = H_{x}(x,0) - \frac{y^{*}}{2!} \left(\frac{d}{dx}\right)^{*} H_{x}(x,0) + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{y^{**}}{(2n)!} \left(\frac{d}{dx}\right)^{**} H_{s}(x,0)$$

$$H_{v}(x,y) = -\frac{\partial V^{*}}{\partial y} = -y \left(\frac{d}{dx}\right) H_{x}(x,0) + \frac{y^{*}}{3!} \left(\frac{d}{dx}\right)^{*} H_{x}(x,0) + \dots = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{y^{**+1}}{(2n+1)!} \left(\frac{d}{dx}\right)^{**+1} H_{s}(x,0)$$

$$H_{v}(x,y) = -\frac{\partial V^{*}}{\partial z} = 0$$

1. E. DURAND, p. 367.

Le potentiel vecteur A s'écrit

$$\mathbf{A}_{x} = \mathbf{A}_{y} = \mathbf{0}$$

$$\frac{1}{\mu_{o}} \mathbf{A}z = y \mathbf{H}_{x}(x, \mathbf{o}) - \frac{y^{*}}{3!} \left(\frac{d}{dx}\right)^{*} \mathbf{H}_{x}(x, \mathbf{o}) + \dots$$

ou encore en posant $\vec{B} = \mu_0 \vec{H}$

(3)
$$\begin{cases} A_{x} = Ay = 0 \\ Az = y B_{x}(x, 0) - \frac{y^{3}}{3!} \left(\frac{d}{dx}\right)^{s} B_{x}(x, 0) + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{y^{3^{n+4}}}{(2n+1)!} \left(\frac{d}{dx}\right)^{s^{n}} B_{x}(x, 0) \end{cases}$$

b) Développement en série du lagrangien. De la relation (2) nous déduisons

$$(\mathbf{V}+\varepsilon)^{1/2} = f^{1/2} - \frac{f''}{4f^{1/2}} y^2 + \left\{ \frac{f^{1V}}{3} - \frac{f''^2}{2f} \right\} \frac{y^4}{16f^{1/2}} - \dots$$
$$\left\{ 1 + \alpha \left(\mathbf{V}+\varepsilon\right) \right\}^{1/2} = (1 + \alpha f)^{1/2} - \frac{\alpha f''}{4(1 + \alpha f)^{1/2}} y^2 + \left\{ \frac{\alpha f^{1V}}{3} - \frac{\alpha^2 f''^4}{2(1 + \alpha f)} \right\} \frac{y^4}{16(1 + \alpha f)^{1/2}}$$

d'où

(4)
$$(\mathbf{V}+\varepsilon)^{1/2} \ ; \ \mathbf{1}+\alpha \ (\mathbf{V}+\varepsilon) \ ; \ ^{1/2} = \mathbf{S} - \mathbf{M}y^{*} + \mathbf{N}y^{*} - \dots$$

avec

(5)
$$S = f^{1/2} (1 + \alpha f)^{1/2}$$
$$M = \frac{f''}{4S} (1 + 2\alpha f)$$
$$N = \frac{1}{165} \left\{ \frac{f^{1V} (1 + 2\alpha f)}{3} - \frac{f''^{*}}{2S^{*}} \right\}$$

En désignant par B l'induction dans le plan de symétrie, et en tenant compte de (3) nous obtenons

(6)
$$(\pm) \gamma z' Az = (\pm) \gamma y z' \left\{ B - \frac{y'}{6} B'' + \dots \right\}$$

D'autre part on a

(7)
$$\left\{1+y'^2+z'^2\right\}^{1/2} = 1+\frac{1}{2}(y'^2+z'^2)-\frac{1}{8}(y'^2+z'^2)^2+\ldots$$

En portant (4), (6) et (7) dans (1), le développement en série du lagrangien s'écrit :

$$\mathbf{F}(x, y, y', z') = \mathbf{F}_0 + \mathbf{F}_2 + \mathbf{F}_4$$

avec

(8)
$$F_{0} = S$$

$$F_{*} = -My^{*} + \frac{S}{2}(y'^{*} + z'^{*}) \pm \gamma B y z'$$

(9)
$$\mathbf{F}_{4} = \mathbf{N}y^{4} - \frac{\mathbf{M}}{2}y^{3}(y'^{3} + z'^{2}) - \frac{\mathbf{S}}{\mathbf{S}}(y'^{3} + z'')^{2} - (\pm)\frac{\mathbf{\gamma}\mathbf{B}''}{\mathbf{6}}y^{3}z'$$

174

/ 1

l'indice i indiquant le degré du terme F_i .

Le terme F_o ne joue aucun rôle car les dérivées $\frac{\partial F_o}{\partial y}$, $\frac{\partial F_o}{\partial z}$, $\frac{\partial F_o}{\partial z}$ qui

figurent dans l'équation des trajectoires sont nulles.

Le terme F_2 correspond à l'approximation du premier ordre, et le terme Len F_4 nous donnerá les aberrations du troisième ordre.

Remarquons que, dans le cas d'une lentille purement magnétique, c'està-dire pour laquelle le potentiel est constant, les relations (5) se réduisent à

$$\begin{cases} S = \varepsilon^{1/2} (1 + \alpha \varepsilon)^{1/2} \\ M = N = 0 \end{cases}$$

Dans le cas d'un champ purement électrique, on aura :

$$\mathbf{B} = \mathbf{0} \qquad \mathbf{B}'' = \mathbf{0}$$

2. ---- L'APPROXIMATION DU PREMIER ORDRE.

1° Les équations différentielles des trajectoires.

Les équations différentielles des trajectoires gaussiennes sont obtenues en ne conservant dans l'expression du lagrangien que les termes du second ordre. Elles s'écrivent :

$$\frac{d}{dx}\left\{\frac{\partial \mathbf{F}_{z}}{\partial y'}\right\} - \frac{\partial \mathbf{F}_{z}}{\partial y} = 0 \qquad \qquad \frac{d}{dx}\left\{\frac{\partial \mathbf{F}_{z}}{\partial z'}\right\} = 0$$

soit, en tenant compte de (8)

(10)
$$\frac{d}{dx}\left\{Sy'\right\} + 2 My - (\pm) \gamma B z' = 0$$

(11)
$$\frac{d}{dx}\left\{ S z' \pm \gamma By \right\} = 0$$

La relation (11) fournit l'intégrale première

(12)
$$z' = \frac{C}{S} - (\pm) \frac{\gamma B}{S} y \qquad C = \text{const.}$$

En portant (12) dans (10) et en posant

$$\mathbf{T} = -\frac{1}{S} \left(2 \mathbf{M} \mathbf{S} + \gamma^* \mathbf{B}^* \right)$$

nous obtenons

(13)
$$\frac{d}{dx} \left\{ Sy' \right\} - Ty = \pm C \frac{\gamma B}{S}$$

2º Représentation d'une trajectoire quelconque par trois trajectoires particulières.

Désignons par y_0 et z_0 les coordonnées d'un point-objet dans le plan de front qui le contient (fig. 2).

Le système étant cylindrique on peut, sans nuire à la généralité, poser $z_0 = 0$.

A un point-objet correspond une infinité de trajectoires. Nous individualiserons chacune d'elles en nous donnant les coordonnées $y_{\rm D}$ et $z_{\rm D}$ du point où elle coupe un certain plan de front pris comme plan du diaphragme.

Soient enfin y et z les coordonnées du point où cette trajectoire calculée dans le cas de l'approximation du premier ordre couperait un plan de front pris pour plan d'observation.

Soient h(x) et k(x) deux solutions de l'équation homogène

(14)
$$\frac{d}{dx} \left\{ S y' \right\} - Ty = 0$$

telles que l'on ait

$$\begin{cases} h(x_{0}) = 0 & k(x_{0}) = 1 \\ h(x_{D}) = 1 & k(x_{D}) = 0 \end{cases}$$

et soit l(x) une solution de l'équation

(15)
$$\frac{d}{dx}\left\{SY'\right\} - TY = \pm \frac{\gamma B}{S}$$

nulle pour $x = x_0$ et $x = x_D$ (fig. 3).

L'intégrale de l'équation (13) satisfaisant aux conditions

$$y(x_{0}) = y_{0} \qquad y(x_{D}) = y_{D}$$

s'écrit

$$y = y_0 k + y_D h + C l$$

En portant (16) dans (12), on obtient

(17)
$$z' = -(\pm) \frac{\gamma B}{S} ky_{\bullet} - (\pm) \frac{\gamma B}{S} hy_{\mathsf{D}} + \frac{1 - (\pm) \gamma B l}{S} C.$$

c'est-à-dire si $1/(\pm) \gamma B$ n'est pas solution de (15).

Supposons que la condition (18) soit remplie. L'intégration de (17) donne

(19) $z = y_0 \alpha + y_D \beta + C \delta$

avec

$$\alpha = -\int_{x_0}^{x} (\pm) \frac{\gamma B}{S} k dz$$
$$\beta = -\int_{x_0}^{x} (\pm) \frac{\gamma B}{S} h dx$$
$$\delta = \int_{x_0}^{x} \frac{1 - (\pm) \gamma Bl}{S} dx$$

Déterminons la constante C par la condition

$$z(x_{\rm D})=z_{\rm D}$$

nous obtenons

(20)

$$\mathbf{C} = \frac{1}{\delta_{\mathrm{D}}} \left(y_{\mathrm{o}} \, \alpha_{\mathrm{D}} + y_{\mathrm{D}} \, \beta_{\mathrm{D}} - z_{\mathrm{D}} \right)$$

En tenant compte de (20) et de (16) l'équation (19) s'écrit

$$y = y_{o} \left(k - l \frac{\alpha_{\rm D}}{\delta_{\rm D}} \right) + y_{\rm D} \left(h - l \frac{\beta_{\rm D}}{\delta_{\rm D}} \right) + z_{\rm D} \frac{l}{\delta_{\rm D}}$$
$$z = y_{o} \left(\alpha - \delta \frac{\alpha_{\rm D}}{\delta_{\rm D}} \right) + y_{\rm D} \left(\beta - \delta \frac{\beta_{\rm D}}{\delta_{\rm D}} \right) + z_{\rm D} \frac{\delta}{\delta_{\rm D}}$$

soit, pour simplifier les notations :

(21)
$$\begin{cases} y = y_0 a_1 (x) + y_D a_2 (x) + z_D a_3 (x) \\ z = y_0 b_1 (x) + y_D b_2 (x) + z_D b_3 (x) \end{cases}$$

3° Correspondance objet-image.

Pour qu'il y ait stigmatisme, il faudrait que pour une certaine valeur de x, on ait simultanément

Considérons les différentes trajectoires des particules émises par un point-objet et venant percer le plan du diaphragme le long d'une droite d'équation (fig. 4).

$$x = x_{\mathrm{p}}, \qquad y = y_{\mathrm{p}}$$

Les coordonnées (x, y) des points où ces trajectoires coupent le plan d'observation sont obtenues en éliminant z entre les deux équations (21). On trouve

(22)
$$z = \frac{b_3}{a_3}y - \frac{a_4b_3 - b_4a_3}{a_3}y_9 - \frac{a_2b_3 - b_2a_3}{a_3}y_1$$

C'est l'équation d'une droite dont le coefficient angulaire

(23)
$$\operatorname{tg} \theta = \frac{b_{s}}{a_{s}} = \frac{1}{l} \int_{x_{0}}^{x} \frac{1 - (\pm) \gamma \operatorname{B} l}{\operatorname{S}} dx$$

est indépendant de y_0 et de y_D .

Il en résulte que, si l'on déplace la fente d'équation $y = y_{\text{D}}$ parallèlement à elle-même, la droite précédente se déplace dans le plan d'observation en demeurant également parallèle à elle-même. On obtiendrait un résultat analogue en déplaçant le point-objet.

La droite précédente sera indépendante de la position de la fente diaphragme si l'équation (22) est indépendante de y_{D} , c'est-à-dire si l'on a

$$a_2 b_3 - b_2 a_3 = 0$$

soit

(24)
$$h_i \int_{x_0}^{x_i} \frac{1-(\pm)\gamma Bl}{S} dx + l_i \int_{x_0}^{x_i} \pm \frac{\gamma B}{S} h dx = 0$$

Toutes les trajectoires issues du point-objet y_0 coupent le plan de front x_i défini par (24) suivant une droite unique que l'on peut considérer comme « l'image » du point-objet. La relation (24) peut être considérée comme l'équation de conjugaison entre les plans de front « objet » et « image ».

Contrairement aux systèmes de révolution, on n'a pas une correspondance ponctuelle objet-image, mais une correspondance point-droite.

On peut donner à la condition (24) une forme plus simple.

Les fonctions h(x) et l(x) satisfaisant respectivement aux équations (14) et (15), nous avons

$$\frac{d}{dx} \left\{ s h' \right\} - Th = 0$$
$$\frac{d}{dx} \left\{ S l' \right\} - Tl = \pm \frac{\gamma E}{S}$$

Multiplions la première équation par l et la seconde par h, et retranchons membre à membre ces deux égalités, nous obtenons

$$\frac{d}{dx}\left| S\left(hl'-h'l\right) \right| = \pm \frac{\gamma}{S} h$$

En tenant compte des conditions initiales

$$h(x_0) = 0$$
 $l(x_0) = 0$

nous obtenons

(25)
$$S(hl' - h'l) = \int_{x_0}^{x} \pm \frac{\gamma B}{S} h dx$$

soit, en portant (25) dans (24) :

(26)
$$h_i \int_{x_0}^x \frac{1 - (\pm) \gamma Bl}{S} dx + S_i l_i (h_i l'_i - h'_i l_i) = 0$$

D'autre part, la comparaison de (26) et de (23) donne pour coefficient angulaire de la droite image

$$\operatorname{tg} \theta = \frac{S_i}{h_i} (h_i \, l'_i - l_i \, h'_i)$$

4° Objet « éclairé » par un faisceau parallèle à l'axe Ox.

Proposons-nous de déterminer la trajectoire d'une particule issue d'un point de coordonnées x_0 y_0 z_0 et dont la vitesse initiale v_0 est normale au plan de front x_D (fig. 5).

Désignons par y et z les coordonnées du point où cette trajectoire perce le plan de front d'abcisse x.

Les conditions initiales relatives à cette trajectoire s'écrivent :

(27)
$$y(x_0) = y_0 \qquad y'(x_0) = 0$$

(28) $z(x_0) = z_0 \qquad z'(x_0) = 0$

La relation (12) donne, en tenant compte de (27) et de (28)

F1G. 5.

Soient h_1 et k_1 , deux solutions de l'équation (14) et l_1 , une solution de (15) satisfaisant aux conditions (*fig.* 6)

En remplaçant C par son expression (29), l'intégrale générale de (14) s'écrit

$$y = C_1 h_1 + C_2 k_1 \pm \gamma B_0 y_0 l_1$$

Nous déterminerons les deux constantes C_1 et C_2 en écrivant que y satisfait aux conditions (27).

180

۰.,

Nous obtenons

(30)

$$y = y_0 \quad \{ k_1 \pm \gamma B_0 (l_1 - h_1) \}$$

En portant (30) dans (12) et en intégrant, nous avons :

$$z = z_{\circ} \pm y_{\circ} \int_{x_{\circ}}^{x} \frac{dx}{S} \left\{ \gamma B_{\circ} - \gamma B \left[k_{i} \pm \gamma B_{\circ} \left(l_{i} - h_{i} \right) \right] \right\}$$

Soit, en définitive :

(31)
$$\begin{cases} y = y_0 a(x) \\ z = y_0 b(x) + z_0 \end{cases}$$

Lorsque le point-objet P_0 est placé dans une région où le champ magnétique est négligeable, les coefficients a(x) et b(x) se simplifient et deviennent

$$a(x) = k_1(x)$$

$$b(x) = -\int_{x_0}^x \pm \frac{\gamma B}{S} k_1 dx$$

Dans le cas d'un système purement électrostatique, ces coefficients se réduisent à

$$a(x) = k_1(x)$$
$$b(x) = 0$$

et les équations (31) s'écrivent :

(32)
$$\begin{cases} y = y_0 k_1(x) \\ z = z_0 \end{cases}$$

Si le plan d'observation est situé dans le plan x_i défini par (33) $a(x_i) = 0$

^

on obtient

(34)
$$\begin{cases} y \equiv 0 \\ z = z_0 - (\pm) \gamma B_0 y_0 \int_{x_0}^x \frac{dx}{S} \end{cases}$$

Quelle que soit la forme de l' « objet » situé dans le plan de front x_0 son « ombre portée » dans le plan x = x, est donc un segment de droite défini par (34).

En particulier, si l'on considère un faisceau de rayons incidents parallèles dans une région où le champ est négligeable, la relation (33) devient :

$$k_i(x_i)=0$$

Le plan de front ainsi défini qui correspond au plan « image » conjugué d'un plan objet à l'infini par rapport au système, peut être considéré comme le plan « focal image ». Dans ce plan, la droite y = 0 conjuguée d'un pointobjet situé à l'infini dans la direction Ox sera la droite focale image.

« Ombre portée » d'un carré.

A un carré de côté c situé dans le plan de front x_0 (fig. 7), les relations
(31) font correspondre en général un parallélogramme disposé comme il est indiqué sur la figure (8).

Pour que ce parallélogramme soit un rectangle, il faudrait choisir le plan d'observation x de telle sorte que l'on ait :

(35)
$$\int_{x_0}^x \left\{ \gamma \mathbf{B}_0 - \gamma \mathbf{B} \left[k_i \pm \gamma \mathbf{B}_0 y_0 \left(l_i - h_i \right) \right] \right\} \frac{dx}{\mathbf{S}} = 0$$

Si l'on voulait que ce parallélogramme soit un carré, il faudrait de plus (36) $k_1 \pm \gamma B_0 \ l_1 - h_1 \ l_2 = \pm 1$

Dans le cas d'un système électrostatique, la condition (35) est toujours réalisée, et la condition (36) se réduit à

$$k_1 = \pm 1$$

« Ombre portée » d'un cercle.

Au cercle
$$y_0^2 + z_0^2 = 1$$

situé dans le plan objet x_0 (fig 9) correspond dans le plan de front x l'ellipse (fig. 10).

(37)
$$y^{*} \frac{1+b^{*}}{a^{*}} - 2\frac{b}{a}y^{*}z + z^{*} = 1$$

Si la condition (35) est satisfaite, l'équation (37) se réduit à

$$\frac{y^2}{a^2} + z^2 = 1$$

et l'ellipse admet oy et oz pour axe de symétrie.

Enfin, si (36) est remplie, on obtient un cercle égal au cercle objet.

5° Application au cas particulier d'une lentille purement magnétique.

Une telle lentille est caractérisée par

$$S_0 = \epsilon^{1/2} (1 + \alpha \epsilon)^{1/2}$$

 $M = N = 0$

et les équations différentielles des trajectoires s'écrivent

(38)
$$\begin{cases} z' = \frac{C}{S_o} - (\pm) \frac{\gamma}{s} \frac{B}{S_o} y \\ y'' + \frac{\gamma^* B^*}{S_o^*} y = \pm \frac{C}{S_o} \frac{\gamma}{S_o} \frac{B}{S_o} \end{cases}$$

Il est possible d'obtenir la solution analytique des équations précédentes dans le cas où l'induction magnétique B dans le plan de symétrie est de la forme (champ de Glaser)

$$B = B_{o} \frac{1}{1 + (x/c)^{\circ}}$$

La figure (11) donne l'allure de la variation de $B/B_{\rm 0}$

La constante c est demi-largeur de la courbe correspondant à $B/B_0 > 1/2$ Posons

$$\begin{cases} X = \frac{x}{c} \quad Y = \frac{y}{c} \quad z = \frac{z}{c} \\ k = \pm \frac{\gamma B_o}{S_o} c \quad K = \frac{C}{S_o} \end{cases}$$

Le système (42) s'écrit

$$\begin{cases} \frac{dz}{dX} = K - k \frac{Y}{1 + X^*} \\ [1 + X^*]^* \frac{d^*Y}{dX^*} + k^* Y = Kk [1 + X^*] \end{cases}$$

Posons encore

$$\begin{array}{l} X = \cot g \varphi \\ Y = u/\sin \varphi \end{array}$$

Les équations précédentes deviennent :

(39)
$$\frac{dZ}{d\varphi} = k \frac{u}{\sin^2 \varphi} - \frac{K}{\sin^2 \varphi}$$
(40)
$$\frac{d^2 u}{d\varphi^2} + (1 + k^2) u = \frac{K k}{\sin \varphi}$$

(40)

Nous poursuivrons la résolution du système dans le cas particulier où $k^2 = 3$. L'équation (44) donne dans ces conditions

(41)
$$\frac{u}{\bar{K}} = \pm \frac{\sqrt{3}}{2} \left\{ C_{i} \sin 2\varphi + C_{s} \cos 2\varphi + 2 \sin \varphi \right. \\ \left[1 + \cos \varphi \log \left| tg \frac{\varphi}{2} \right| \right] \right\}$$

En portant (41) dans (39), nous avons :

$$\frac{Z}{K} = \cot g \varphi + 3 \left\{ \begin{array}{c} C_{i} \sin \varphi + C_{s} \left[\frac{1}{2} \log \left| tg \frac{\varphi}{2} \right| - \cos \varphi \right] \right. \\ \left. + \sin \varphi \log \left| tg \frac{\varphi}{2} \right| \right\} + C_{s} \end{array}$$

Enfin, en revenant aux coordonnées initiales, nous obtenons l'équation de la trajectoire sous la forme paramétrique

$$\frac{x}{c} = \cot g \varphi$$

$$\frac{y}{\pm \sqrt{3 ck}} = C_{i} \cos \varphi + C_{s} \frac{\cos 2 \varphi}{2 \sin \varphi} + \cos \varphi \log \left| \operatorname{tg} \frac{\varphi}{2} \right| + 1$$

$$\frac{z}{ck} = \cot g \varphi + 3 \left\{ C_{i} \sin \varphi + C_{s} \left[\frac{1}{2} \log \left| \operatorname{tg} \frac{\varphi}{2} \right| - \cos \varphi \right] \right\}$$

$$+ \sin \varphi \log \left| \operatorname{tg} \frac{\varphi}{2} \right| + C_{s}$$

Plaçons le diaphragme au centre de la lentille et proposons-nous de déterminer l'image d'un point situé dans le plan de front

$$x = c$$

Il suffit de déterminer les quatre constances C_1 , C_2 C_3 et K de telle sorte que dans le plan x = c qui correspond à $\varphi = \pi/4$ on ait

$$y = y_0$$
 $z = 0$
et que, dans le plan $x = 0$ obtenu pour $\varphi = \pi/2$ on ait
 $y = y_p$ $z = z_p$

On trouve

$$y = \begin{array}{c|c} y_{0} \\ y = \begin{array}{c|c} 1,505 \\ -0,503 \\ \pm z_{D} \end{array} \begin{vmatrix} -0,170 \\ -0,503 \\ -0,127 \end{vmatrix} \begin{vmatrix} -0,055 \\ +0,238 \end{vmatrix} \begin{vmatrix} \cos\varphi & -0,055 \\ \sin\varphi & +0.945 \\ +0,238 \end{vmatrix} \begin{pmatrix} 1+\cos\varphi \log \left| \lg\frac{\varphi}{2} \right| \end{pmatrix} \\ \begin{pmatrix} 1+\cos\varphi \log \left| \lg\frac{\varphi}{2} \right| \end{pmatrix} \\ \\ \frac{y_{0}}{2,607} \\ -0,872 \\ \pm z_{D} \end{vmatrix} \begin{vmatrix} -0,872 \\ -0,219 \end{vmatrix} \begin{vmatrix} -0,591 \\ +0,823 \end{vmatrix} \begin{vmatrix} \frac{1}{2} \log \left| \lg\frac{\varphi}{2} \right| - \cos\varphi \\ \\ +0,546 \\ +0,137 \end{vmatrix} \begin{bmatrix} \frac{1}{2} \log \left| \lg\frac{\varphi}{2} \right| - \cos\varphi \\ \\ -2,607 \\ +1,219 \end{bmatrix}$$

de la forme

$$... y = y_0 a_1 + y_D a_2 \pm z_D a_3 \pm z = y_0 b_1 + y_D b_2 \pm z_D b_3$$

Dans le plan de front x on obtient une droite d'équation

 $\pm a_3 \, z_3 - b_3 \, y = (b_1 \, a_3 - a_1 \, b_3) \, y_0 + (b_2 \, a_3 - a_2 \, b_3) \, y_D$ qui sera indépendante de y si l'on a :

$$b_{2} a_{3} - a_{2} b_{3} = 0$$

Cette relation est vérifiée pour

$$\varphi = 155^{\circ}445$$

et l'équation de la droite « image » du point P ($c, y_0, 0$) s'écrit

$$\frac{x}{c} = -2,189$$

$$\pm z = 6,201 \ y + 7,263 \ y_{0}$$

CHAPITRE II

L'ABERRATION CHROMATIQUE

Les équations (17) et (15) sont relatives à une valeur ϵ de la tension d'accélaration de la particule. Pour une valeur voisine $\varepsilon + \Delta \varepsilon$ de cette tension, ces équations deviennent respectivement :

(42)
$$\frac{d}{dx} \left\{ (S + \Delta S) (y + \Delta y)' \right\} - (T + \Delta T) (y + \Delta y) = -(\pm) C \frac{\gamma B}{S + \Delta S}$$

(43)
$$(z + \Delta z)' = \frac{C}{S + \Delta S} - (\pm) \frac{\gamma B}{S + \Delta S} (y + \Delta y)$$

En retranchant membre à membre (42) et (17) d'une part, (43) et (15) d'autre part, nous obtenons, en nous limitant aux termes du premier ordre :

$$\frac{d}{dx}\left\{S\left(\Delta y\right)'\right\} - T \Delta y = -\left\{\frac{d}{dx}\left(\Delta S, y'\right) - \Delta T. \ y \pm C \ \frac{\gamma}{S^*} \Delta S\right\}$$
$$(\Delta z)' = -\left\{\frac{c}{S^*} \Delta S \pm \gamma B \Delta \left(\frac{y}{S}\right)\right\}$$

Posons

$$\Delta \mathbf{P} = -\left\{ \frac{d}{dx} \left(\Delta \mathbf{S}, y' \right) - \Delta \mathbf{T} \ y \pm \mathbf{C} \ \frac{\gamma \mathbf{B}}{\mathbf{S}^*} \Delta \mathbf{S} \right\}$$
$$\Delta \mathbf{Q} = -\left\{ \frac{c}{\mathbf{S}^*} \ \Delta \mathbf{S} \pm \gamma \mathbf{B} \ \Delta \left(\frac{y}{s} \right) \right\}$$

Les équations (36) et (37) s'écrivent

(44)
$$\frac{d}{dx} \left(S (\Delta y)' \right) - T \Delta y = \Delta P$$
(45)
$$(\Delta z)' = \Delta Q$$

(45)

Les conditions initiales relatives aux deux trajectoires ε et $\varepsilon + \Delta \varepsilon$ étant les mêmes, nous avons

(46)
$$(\Delta y)_0 = 0$$
 $(\Delta y)'_0 = 0$
 $(\Delta z)_0 = 0$ $(\Delta z)'_0 = 0$

Soit l(x) une solution de l'équation (18) qui ne s'annule pas pour x compris entre x_0 et x_i . Par combinaison linéaire des équations (18) et (44), nous obtenons

$$\frac{d}{dx}\left\{ S\left[l\left(\Delta y\right)'-l'\left(\Delta y\right)\right]\right\} =l\ \Delta P$$

soit en intégrant et en tenant compte de (46)

$$l(\Delta y)' - l'(\Delta y) = \frac{1}{S} \int_{x_0}^x l \,\Delta \mathbf{P} \, d\xi,$$

Cette équation peut s'écrire encore :

$$\frac{d}{dx}\left(\frac{\Delta y}{l}\right) = \frac{1}{|\mathbf{S}|l^*} \int_{x_0}^x l \,\Delta \mathbf{P} \, d \,\xi_4$$

d'où l'on déduit par une nouvelle intégration

$$\Delta y = l \int_{x_0}^x \frac{d\xi_2}{sl^2} \int_{x_0}^{\xi_2} l \Delta P d\xi_1$$

En portant cette valeur de Δy dans ΔQ et en intégrant (45) nous obtenons

$$\Delta z = \int_{x_0}^x \Delta \mathbf{Q} \ dx$$

 ΔP et ΔQ étant des fonctions linéaires de y_0 , y_p et z_p , l'image d'un point est encore une droite. Signalons que, au point de vue qualitatif, ce résultat se déduit immédiatement des relations (21).

Considérons un point-objet P_0 de coordonnées (fig. 12a)

$$= x_0 \qquad y = y_0 \qquad z = 0$$

et un diaphragme d'équation (fig. 12b)

x

$$x = x_{\scriptscriptstyle \mathrm{D}}$$
 $y = y_{\scriptscriptstyle \mathrm{D}}$

Pour une tension d'accélération ε on obtient dans le plan de front x_i conjugué au plan $x = x_0$ une droite $D\varepsilon$ d'équation

$$z = \left(\frac{b_s}{a_s}\right)_{\varepsilon} y - \left(\frac{a_s b_s - b_s a_s}{a_s}\right)_{\varepsilon} y_s$$

M. LAUDET

Pour une valeur $\varepsilon + \Delta \varepsilon$ de la tension, nous avons une droite d'équation (fig. 12c)

$$z = \left(\frac{b_s}{a_s}\right)_{\varepsilon + \Delta \varepsilon} y - \left(\frac{a_s b_s - b_s a_s}{a_s}\right)_{\varepsilon + \Delta \varepsilon} y_o - \left(\frac{a_s b_s - b_s a_s}{a_s}\right)_{\varepsilon + \Delta \varepsilon} y_D$$

faisant avec $D\varepsilon$ un angle $\Delta\theta$ défini par

$$\operatorname{tg} \Delta \theta = \frac{\left(\frac{b_{s}}{a_{s}}\right)_{\varepsilon + \Delta \varepsilon} - \left(\frac{b_{s}}{a_{s}}\right)_{\varepsilon}}{1 + \left(\frac{b_{s}}{a_{s}}\right)_{\varepsilon + \Delta \varepsilon} \left(\frac{b_{s}}{a_{s}}\right)_{\varepsilon}}$$

où

tg
$$\Delta \theta = \sigma_{\theta}, \Delta \varepsilon$$

avec

$$\sigma_{\theta} = \theta'_{\epsilon}$$
 et $\operatorname{tg} \theta = \left(\frac{b_{s}}{a_{s}}\right)_{\varepsilon}$

L'angle $\Delta \theta$ caractérise l'aberration chromatique de rotation. Il est indé-

pendant de y_0 et y_p et n'existe qu'en présence d'une induction magnétique. Désignons par δ_{ϵ} et $\delta_{\epsilon+\Delta\epsilon}$ la distance de l'origine aux droites D_{ϵ} et $D_{\varepsilon+\Delta}$

$$fig. 12 c$$
). La différence

$$\delta = \delta_{\epsilon + \Delta \epsilon} - \delta \epsilon$$

caractérise l'aberration chromatique de translation.

Elle a pour expression :

$$\delta = \left| \frac{(a, b_{3} - b, a_{3}) y_{0} + (a_{5} b_{3} - b_{2} a_{3}) y_{D}}{\sqrt{a_{3}^{2} + b_{3}^{2}}} \right|_{\varepsilon + \Delta \varepsilon} - \left| \frac{(a_{1} b_{3} - b, a_{3}) y_{0}}{\sqrt{a_{5}^{2} + b_{5}^{2}}} \right|_{\varepsilon}$$

soit

$$\delta = \{\sigma_{\delta_0}, y_0 + \sigma_{\delta D}, y_D\} \Delta \epsilon$$

avec

$$\sigma_{\delta_0} = \left| \frac{a_{\star} b_{\star} - b_{\star} a_{\star}}{\sqrt{a_{\star}^2 + b_{\star}^2}} \right|_{\epsilon}'$$
$$\sigma_{\delta D} = \left| \frac{a_{\star} b_{\star} - b_{\star} a_{\star}}{\sqrt{a_{\star}^2 + b_{\star}^2}} \right|_{\epsilon}'$$

 δ est nul pour

$$y_{\rm o}=y_{\rm d}=0.$$

On passe donc de D_{ϵ} à $D_{\epsilon+\Delta\epsilon}$ par le déplacement produit de la rotation θ et de la translation δ normale à D_i.

Pour la même position du point-objet P₀ (fig. 13 a) considérons dans le même plan de front $x = x_{p}$, une fente diaphragme d'équation (fig. 13 b)

$$y_{\rm d} - d < y < y_{\rm d} + d.$$

/

Pour la tension ϵ , l'image de P₀ dans le plan x_i conjugué de x_0 est la droite D_i.

Pour la valeur $\varepsilon + \Delta \varepsilon$ de la tension, les plans x_0 et x_i ne sont plus conjugués et la droite précédente devient une bande lumineuse (fig. 13 c) parallèle à la droite $D_{\varepsilon + \Delta \varepsilon}$ et de largeur

$$\Delta = 2 d \left| \frac{a_{s} b_{s} - a_{s} b_{s}}{\sqrt{a_{s}^{2} + b_{s}^{2}}} \right|_{\varepsilon + \Delta \varepsilon}$$

Soit, en tenant compte de $\sigma_{\delta D}$

$$\Delta = 2 d \sigma_{\delta D} \Delta \varepsilon$$

 Δ tend vers zéro avec l'ouverture 2 d du diaphragme. Elle peut donc servir à caractériser l'aberration chromatique d'ouverture.

On peut enfin définir une aberration chromatique longitudinale par la distance Δx_i , séparant les deux plans de front image x_i et $x_i + \Delta x_i$, conjugués d'un même plan de front objet x_0 et correspondant aux deux valeurs ε et $\varepsilon + \Delta \varepsilon$ de la tension d'accélération des particules.

Les conditions de conjugaisons entre les plans images x_i et $x_i + \Delta x_i$ et le plan objet x_0 s'écrivent :

$$(a_{s} b_{s} - b_{s} a_{s})$$
 , $xi = 0$
 $(a_{s} b_{s} - b_{s} a_{s})$, $+ \Delta i$, $xi + \Delta xi = 0$

Nous en déduisons

$$\Delta x_i = -\frac{(a_s b_s - b_s a_s)'_{\iota}}{(a_s b_s - b_s a_s)' x} \Delta \varepsilon$$

CHAPITRE III.

L'APPROXIMATION DU TROISIÈME ORDRE

I. — LES ÉQUATIONS DIFFÉRENTIELLES DES TRAJECTOIRES.

Il suffit de considérer les termes F_2 et F_4 dans l'expression du lagrangien F.

Les équations de la trajectoire s'écrivent alors

(47)
$$\frac{d}{dx} \left(\frac{\partial \mathbf{F}_{\star}}{\partial y'}\right) - \left(\frac{\partial \mathbf{F}_{\star}}{\partial y}\right) = -\left\{\frac{d}{dx} \left(\frac{\partial \mathbf{F}_{\star}}{\partial y'}\right) - \frac{\partial \mathbf{F}_{\star}}{\partial y}\right\}$$

(48)
$$\frac{d}{dx} \left(\frac{\partial \mathbf{F}_{\star}}{\partial z'}\right) = -\frac{d}{dx} \left(\frac{\partial \mathbf{F}_{\star}}{\partial z'}\right)$$

Les seconds membres de ces équations contiennent les termes du troisième ordre en y, y', z'. Nous pouvons donc, à la même approximation remplacer y et z par les solutions relatives à l'approximation du premier ordre.

Désignons par $y + \Delta y$ et $z + \Delta z$ les solutions (47) et (48) pour les distinguer des solutions y et z des équations (13) et (14). En retranchant membre à membre (13) de (47) et (14) de (48), nous obtenons

(49)
$$\frac{d}{dx}\left\{S \Delta y'\right\} + 2 M \Delta y - (\pm) \gamma B \Delta z' = -\left\{\frac{d}{dx}\left(\frac{\partial F_{\star}}{\partial y'}\right) - \frac{\partial F_{\star}}{\partial y}\right\}$$
$$\frac{d}{dx}\left\{S \Delta z' \pm \gamma B \Delta y\right\} = -\frac{d}{dx}\left(\frac{\partial F_{\star}}{\partial z'}\right)$$

Cette dernière équation fournit l'intégrale première

S
$$\Delta z' \pm \gamma$$
 B $\Delta y = -\frac{\partial \mathbf{F}_{\star}}{\partial z'}$

En portant (50) dans (49) et en tenant compte de (16), on obtient :

(51)
$$\frac{d}{dx}\left(S \Delta y'\right) - T \Delta y = -(\pm) \frac{\gamma B}{S} \frac{\partial F}{\partial z'} - \left\{\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y}\right\}$$

Les seconds membres de (50) et (51) sont des fonctions connues de x puisqu'on y a remplacé y et z par les solutions supposées connues de l'approximation du second ordre.

On aura Δy en résolvant (51). On obtiendra ensuite Δz en portant cette valeur de Δy dans (50) et en intégrant.

Les conditions initiales étant les mêmes pour les trajectoires (y, z) et $(y + \Delta y, z + \Delta z)$, nous avons

(52)
$$(\Delta y)_0 = 0$$
 $(\Delta y)_0' = 0$
(53) $(\Delta z)_0 = 0$ $(\Delta z)_0' = 0$

2. --- INTÉGRATION DES ÉQUATIONS DES TRAJECTOIRES.

Par combinaison linéaire des équations (18) et (51) nous obtenons

$$l \left| \frac{d}{dx} \right\rangle S \,\Delta y' \left\rangle - \Delta y \left| \frac{d}{dx} \right\rangle S \left| l' \right\rangle = - \left\langle (\pm) \frac{\gamma B}{S} \frac{\delta F_*}{\delta z'} - \frac{\delta F}{\delta y} \right\rangle l - l \left| \frac{d}{dx} \left\{ \frac{\delta F_*}{\delta y'} \right\rangle$$

ou encore

$$\frac{d}{dx}\left| Sl^{*} \frac{d}{dx} \left(\frac{\Delta y}{l} \right) \right| = -l \left[(\pm) \frac{\gamma B}{S} \frac{\partial F_{\star}}{\partial z'} - \frac{\partial F_{\star}}{\partial y} \right] + l' \frac{\partial F_{\star}}{\partial y'} - \frac{d}{dx} \left(l \frac{\partial F_{\star}}{\partial y'} \right)$$

En intégrant du plan objet $x = x_0$ au plan d'observation x, on obtient : $\frac{d}{dx} \left\{ \frac{\Delta y}{l} \right\} = \frac{1}{Sl^*} \left\{ l_* \left(\frac{\partial F_*}{\partial y'} \right)_* - l \frac{\partial F_*}{\partial y'} \right\} - \frac{1}{Sl^*} \int_{x_0}^x \left\{ l \left[(\pm) \frac{\gamma B}{S} \frac{\partial F_*}{\partial z'} - \frac{\partial F_*}{\partial y} \right] - l' \frac{\partial F_*}{\partial y'} \right\} d\xi_1$ Une nouvelle intégration donne, en tenant compte de (52)

(54)
$$\Delta y = l \int_{x_0}^{x} \frac{1}{Sl^2} \left\{ l_0 \left(\frac{\partial \mathbf{F}}{\partial y'} \right)_0 - l \frac{\partial \mathbf{F}_*}{\partial y'} \right\} d\xi \\ - l \int_{x_0}^{x} \frac{d\xi_*}{Sl^2} \int_{x_0}^{\xi_2} \left\{ l \left[\pm \frac{\gamma \mathbf{B}}{S} \frac{\partial \mathbf{F}_*}{\partial z'} - \frac{\partial \mathbf{F}_*}{\partial y} \right] - l' \frac{\partial \mathbf{F}_*}{\partial y'} \right\} d\xi,$$

La relation (50) donne ensuite, compte tenu de (53)

$$(55) \qquad \Delta z = -\int_{x_{o}}^{x} \left\{ \pm \gamma B \Delta y + \frac{\partial F_{*}}{\partial z'} \right\} \frac{dx}{S}$$

3. - EXPRESSION DES COEFFICIENTS D'ABERRATION.

En dérivant la relation (10), nous obtenons les expressions des dérivées partielles de ${\rm F_4}$

$$\frac{\partial \mathbf{F}_{\star}}{\partial y} = 4 \operatorname{N} y^{*} - \mathbf{M} \left(y'^{*} + z'^{*} \right) y - (\pm) \frac{\gamma}{2} \frac{\mathbf{B}''}{2} y^{*} z'$$

$$\frac{\partial \mathbf{F}_{\star}}{\partial y'} = -\operatorname{M} y^{*} y' - \frac{\mathbf{S}}{2} \left(y'^{*} + z'^{*} \right) y'$$

$$\frac{\partial \mathbf{F}_{\star}}{\partial z'} = -\operatorname{M} y^{*} z' - \frac{\mathbf{S}}{2} \left(y'^{*} + z'^{*} \right) z' - (\pm) \frac{\gamma}{6} \frac{\mathbf{B}''}{9} y^{*}$$

Soit, en tenant compte de (29)

(56)
$$\frac{\partial F_{4}}{\partial y} = A_{4} y_{0}^{3} + B_{4} y_{0}^{2} y_{D} + C_{4} y_{0}^{2} z_{D} + D_{4} y_{0} y_{D}^{2} + 2 E_{4} y_{0} y_{D} z_{D} + F_{4} y_{0} z_{D}^{2} + G_{4} y_{D}^{3} + H_{4} y_{D}^{4} z_{D} + I_{4} y_{D} z_{D}^{4} + J_{4} z_{D}^{8}$$

avec

$$A_{1} = 4 \operatorname{Na}_{4}^{s} - \operatorname{M} \left(a_{4}^{\prime *} + b_{4}^{\prime *} \right) a_{4} - (\pm) \frac{\gamma \operatorname{B}^{u}}{2} a_{4}^{*} b_{4}^{\prime}$$

$$B_{4} = 12 \operatorname{Na}_{4}^{*} a_{2} - \operatorname{M} \left\{ 2 a_{4} \left(a_{4}^{\prime} a_{3}^{\prime} + b_{4}^{\prime} b_{3}^{\prime} \right) + \left(a_{4}^{\prime *} + b_{4}^{\prime *} \right) a_{4} \right\}$$

$$- (\pm) \frac{\gamma \operatorname{B}^{u}}{2} \left(2 a_{4} a_{5} b_{4}^{\prime} + a_{4}^{*} b_{2}^{\prime} \right)$$

M. LAUDET

$$\begin{split} C_{\iota} &= 12 \text{ Na}_{\iota}^{*} a_{s} - M \left\{ 2 a_{\iota} (a'_{\iota} a'_{s} + b'_{\iota} b'_{s}) + (a'_{\iota}^{*} + b'_{\iota}^{*}) a_{s} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{s} b'_{\iota} + a_{\iota}^{*} b'_{s}) \\ D_{\iota} &= 12 \text{ Na}_{\iota} a_{s}^{*} - M \left\{ 2a_{\iota} (a'_{\iota} a'_{\star} + b'_{\iota} b'_{\star}) + (a'_{\iota}^{*} + b'_{\star}^{*}) a_{\iota} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{s} b'_{s} + a_{\star}^{*} b'_{\iota}) \\ E_{\iota} &= 12 \text{ Na}_{\iota} a_{\iota} a_{s} - M \right\} \left\{ a_{\iota} (a'_{\iota} a'_{s} + b'_{\iota} b'_{s}) + a_{\iota} (a'_{\iota} a'_{s} + b'_{\iota} b'_{s}) + a_{\iota} (a'_{\iota} a'_{s} + b'_{\iota} b'_{\star}) \\ &\quad - (\pm) \frac{\gamma B''}{2} (a_{\iota} a_{s} b'_{\iota} + a_{\iota} a_{s} b'_{\iota} + a_{\iota} a_{\star} b'_{\star} \\ F_{\iota} &= 12 \text{ Na}_{\iota} a_{s}^{*} - M \right\} \left\{ 2a_{\iota} (a'_{\iota} a'_{s} + b'_{\iota} b'_{s}) + (a'_{\iota}^{*} + b'_{\star}^{*}) a_{\iota} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{s} b'_{\iota} + a_{\iota}^{*} b'_{\iota}) \\ G_{\iota} &= 4 \text{ Na}_{\star}^{*} - M (a'_{\star}^{*} + b'_{\star}^{*}) a_{\star} - (\pm) \frac{\gamma B''}{2} a_{\star}^{*} b'_{\star} \\ H_{\iota} &= 12 \text{ Na}_{\star} a_{\star} - M \right\} \left\{ 2a_{\iota} (a'_{\iota} a'_{s} + b'_{\iota} b'_{\iota}) + (a'_{\star}^{*} + b'_{\star}^{*}) a_{\star} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{s} b'_{\iota} + a_{\star}^{*} b'_{\iota}) \\ I_{\iota} &= 12 \text{ Na}_{\star} a^{*}_{\star} - M \right\} \left\{ 2a_{\iota} (a'_{\iota} a'_{\star} + b'_{\star} b'_{\iota}) + (a'_{\star}^{*} + b'_{\star}^{*}) a_{\star} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{s} b'_{\iota} + a^{*}_{\star} b'_{\iota}) \\ I_{\iota} &= 12 \text{ Na}_{\star} a^{*}_{\star} - M \right\} \left\{ 2a_{\iota} (a'_{\iota} a'_{\star} + b'_{\star} b'_{\iota}) + (a'_{\star}^{*} + b^{*}_{\star}) a_{\star} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{\iota} b'_{\iota} + a^{*}_{\star} b'_{\iota}) \\ I_{\iota} &= 12 \text{ Na}_{\star} a^{*}_{\star} - M \right\} \left\{ 2a_{\iota} (a'_{\iota} a'_{\star} + b'_{\star} b'_{\iota}) + (a'_{\star}^{*} + b^{*}_{\star}) a_{\star} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{\iota} b'_{\iota} + a^{*}_{\star} b'_{\iota}) \\ I_{\iota} &= 12 \text{ Na}_{\star} a^{*}_{\star} - M \right\} \left\{ 2a_{\iota} (a'_{\iota} a'_{\star} + b'_{\star} b'_{\iota}) + (a'_{\star}^{*} + b^{*}_{\star}) a_{\star} \right\} \\ &\quad - (\pm) \frac{\gamma B''}{2} (2a_{\iota} a_{\iota} b'_{\iota} + a^{*}_{\star} b'_{\iota}) \\ J_{\iota} &= 4 \text{ Na}_{\star}^{*} - M \left(a'_{\star}^{*} + b'_{\star}^{*} \right) a_{\star} - (\pm) \frac{\gamma B''}{2} a_{\star}^{*} b'_{\iota} \right\}$$

 $\left(\right)$

On obtient de même

.

(57)
$$\frac{\partial F_{4}}{\partial y'} = A_{2} y_{0}^{3} + B_{2} y_{0}^{*} y_{D} + C_{3} y_{0}^{*} z_{D} + D_{2} y_{0} y_{D}^{2} + 2 E_{2} y_{0} y_{D} z_{D} + F_{2} y_{0} z_{D}^{2} + G_{3} y_{D}^{3} + H_{3} y_{D}^{3} z_{D} + I_{4} y_{D} z_{D}^{3} + J_{4} z_{D}^{3}$$

avec

1

$$\begin{split} \mathbf{A}_{s} &= -\operatorname{Ma}_{\iota}^{s}a'_{\iota} - \frac{S}{2}\left(a'_{\iota}^{s} + b'_{\iota}^{s}\right)a'_{\iota} \\ \mathbf{B}_{s} &= -\operatorname{M}\left(2a_{\iota}a_{s}a'_{\iota} + a_{\iota}^{s}a'_{s}\right) - \frac{S}{2}\left\{2a'_{\iota}\left(a'_{\iota}a'_{s} + b'_{\iota}b'_{s}\right) + \left(a'_{\iota}^{s} + b'_{\iota}^{s}\right)a'_{s}\right\} \\ \mathbf{C}_{s} &= -\operatorname{M}\left(2a_{\iota}a_{s}a'_{\iota} + a_{\iota}^{s}a'_{s}\right) - \frac{S}{2}\left\{2a'_{\iota}\left(a'_{\iota}a'_{s} + b'_{\iota}b'_{s}\right) + \left(a'_{\iota}^{s} + b'_{\iota}^{s}\right)a'_{s}\right\} \\ \mathbf{D}_{s} &= -\operatorname{M}\left(2a_{\iota}a_{s}a'_{s} + \frac{s}{\epsilon}a'_{\iota}\right) - \frac{S}{2}\left\{2a'_{s}\left(a'_{\iota}a'_{s} + b'_{\iota}b'_{s}\right) + \left(a'_{\iota}^{s} + b'_{s}^{s}\right)a'_{\iota}\right\} \\ \mathbf{E}_{s} &= -\operatorname{M}\left(a_{\iota}a_{s}a'_{\iota} + a_{\iota}a_{s}a'_{s} + a_{\iota}a_{s}a'_{s}\right) - \frac{S}{2}\left\{a'_{\iota}\left(a'_{s}a'_{s} + b'_{\iota}b'_{s}\right) + a'_{s}\left(a'_{\iota}a'_{s} + b'_{\iota}b'_{s}\right)\right\} \\ &\quad + a'_{s}\left(a'_{\iota}a'_{s} + b'_{\iota}b'_{s}\right) + a'_{s}\left(a'_{\iota}a'_{s} + b'_{\iota}b'_{s}\right)\right\} \end{split}$$

$$\begin{split} \mathbf{F}_{s} &= - \mathrm{M} \left(2a_{i} a_{s} a'_{s} + a_{s}^{*} a'_{i} \right) - \frac{\mathrm{S}}{2} \left\{ 2a'_{s} \left(a'_{i} a'_{s} + b'_{i} b'_{s} \right) + \left(a'_{s}^{*} + b'_{s}^{*} \right) a'_{i} \right\} \\ \mathbf{G}_{s} &= - \mathrm{M} a_{s}^{*} a'_{s} - \frac{\mathrm{S}}{2} \left(a'_{s}^{*} + b'_{s}^{*} \right) a'_{s} \\ \mathbf{H}_{s} &= - \mathrm{M} \left(2a_{s} a_{s} a'_{s} + a_{s}^{*} a'_{s} \right) - \frac{\mathrm{S}}{2} \left\{ 2a'_{s} \left(a'_{s} a'_{s} + b'_{s} b'_{s} \right) + \left(a'_{s}^{*} + b'_{s}^{*} \right) a'_{s} \right\} \\ \mathbf{I}_{s} &= - \mathrm{M} \left(2a_{s} a_{s} a'_{s} + a_{s}^{*} a'_{s} \right) - \frac{\mathrm{S}}{2} \left\{ 2a'_{s} \left(a'_{s} a'_{s} + b'_{s} b'_{s} \right) + \left(a'_{s}^{*} + b'_{s}^{*} \right) a'_{s} \right\} \\ \mathbf{J}_{s} &= - \mathrm{M} a_{s}^{*} a'_{s} - \frac{\mathrm{S}}{2} a'_{s}^{*} + b'_{s}^{*} \right) a'_{s} \end{split}$$

On a enfin

(58)
$$\frac{\partial \mathbf{F}_{\bullet}}{\partial z'} = \mathbf{A}_{\bullet} y_{\bullet}^{\bullet} + \mathbf{B}_{\bullet} y_{\bullet}^{\bullet} y_{\mathrm{D}} + \mathbf{C}_{\bullet} y_{\bullet}^{\bullet} z_{\mathrm{D}} + \mathbf{D}_{\bullet} y_{\bullet} y_{\mathrm{D}}^{\bullet} + 2 \mathbf{E}_{\bullet} y_{\bullet} y_{\mathrm{D}} z_{\mathrm{D}} + \mathbf{F}_{\bullet} y_{\bullet} z_{\mathrm{D}}^{\bullet} + \mathbf{G}_{\bullet} y_{\mathrm{D}}^{\bullet} + \mathbf{H}_{\bullet} y_{\mathrm{D}}^{\bullet} z_{\mathrm{D}} + \mathbf{I}_{\bullet} y_{\mathrm{D}} z_{\mathrm{D}}^{\bullet} + \mathbf{J}_{\bullet} z_{\mathrm{D}}^{\bullet}$$

Avec

$$\begin{split} A_{s} &= -Ma_{*}^{*}b'_{*} - \frac{S}{2}\left(a'_{*}^{*} + b'_{*}^{*}\right)b'_{*} - (\pm)\frac{\gamma B'}{6}a_{*}^{*} \\ B_{s} &= -M\left(2a_{*}a_{*}b'_{*} + a_{*}^{*}b'_{*}\right) - \frac{S}{2}\left\{2b'_{*}\left(a'_{*}a'_{*} + b'_{*}b'_{*}\right) + \left(a'_{*}^{*} + b'_{*}^{*}\right)b'_{*}\right\} \\ &- (\pm)\frac{\gamma B'}{2}a_{*}^{*}a_{*} \\ C_{s} &= -M\left(2a_{*}a_{*}b'_{*} + a_{*}^{*}b'_{*}\right) - \frac{S}{2}\left\{2b'_{*}\left(a'_{*}a'_{*} + b'_{*}b'_{*}\right) + \left(a'_{*}^{*} + b'_{*}^{*}\right)b'_{*}\right\} \\ &- (\pm)\frac{\gamma B'}{2}a_{*}^{*}a_{*} \\ D_{s} &= -M\left(2a_{*}a_{*}b'_{*} + a_{*}^{*}b_{*}\right) - \frac{S}{2}\left\{2b'_{*}\left(a'_{*}a'_{*} + b'_{*}b'_{*}\right) + \left(a'_{*}^{*} + b'_{*}^{*}\right)b'_{*}\right\} \\ &- (\pm)\frac{\gamma B'}{2}a_{*}a_{*} \\ E_{s} &= -M\left(a_{*}a_{*}b'_{*} + a_{*}a_{*}b'_{*}\right) + b'_{s}\left(a'_{*}a'_{*} + b'_{*}b'_{*}\right)\left\{-\left(\pm\right)\frac{\gamma B'}{2}a_{*}a_{*}a_{*} \\ F_{s} &= -M\left(2a_{*}a_{*}b'_{*} + a_{*}^{*}b'_{*}\right) - \frac{S}{2}\left\{2b'_{*}\left(a'_{*}a'_{*} + b'_{*}b'_{*}\right) + \left(a'_{*}^{*} + b'_{*}^{*}\right)b'_{*}\right\} \\ &- \left(\pm\right)\frac{\gamma B'}{2}a_{*}^{*}a_{*} \\ F_{s} &= -M\left(2a_{*}a_{*}b'_{*} + a_{*}^{*}b'_{*}\right) - \frac{S}{2}\left\{2b'_{*}\left(a'_{*}a'_{*} + b'_{*}b'_{*}\right) + \left(a'_{*}^{*} + b'_{*}^{*}\right)b'_{*}\right\} \\ &- \left(\pm\right)\frac{\gamma B'}{2}a_{*}^{*}a_{*} \\ G_{s} &= -Ma_{*}^{*}b'_{*} - \frac{S}{2}\left(a'_{*}^{*} + b'_{*}\right)b'^{*} - \left(\pm\right)\frac{\gamma B'}{6}a_{*}^{*} \end{split}$$

193

M. LAUDET

$$\begin{split} H_{s} &= -M\left(2a_{2} a_{3} b'_{2} + a_{2}^{*} b'_{3}\right) - \frac{S}{2} \left\{2b'_{2} \left(a'_{2} a'_{3} + b'_{2} b'_{3}\right) + \left(a'_{2}^{*} + b'_{2}^{*}\right) b'_{3}\right\} \\ &- (\pm) \frac{\gamma B''}{2} a_{2}^{*} a_{3} \\ I_{s} &= -M\left(2a_{2} a_{3} b'_{3} + a_{3}^{*} b'_{2}\right) - \frac{S}{2} \left\{2b'_{3} \left(a'_{2} a'_{3} + b'_{2} b'_{3}\right) + \left(a'_{3}^{*} + b'_{3}^{*}\right) b'_{2}\right\} \\ &- (\pm) \frac{\gamma B''}{2} a_{2} a_{3}^{*} \\ J_{s} &= -Ma_{3}^{*} b'_{s} - \frac{S}{2} \left(a'_{3}^{*} + b'_{3}^{*}\right) b'_{s} - (\pm) \frac{\gamma B''}{6} a_{3}^{*} \end{split}$$

En portant (56), (57) et (58) dans (54), on obtient (59) $\Delta y = Ay \ y_0^{\ *} + By \ y_0^{\ *} \ y_D + Cy \ y_0^{\ *} \ z_D + D_y \ y_0 \ y_D^{\ *} + 2 \ E_y \ y_0 \ y_D \ z_D + F_y \ y_0 \ z_D^{\ *} + G_y \ y_D^{\ *} + H_y \ y_D^{\ *} \ z_D + I_y \ y_D \ z_D^{\ *} + J_y \ z_D^{\ *}$

avec

$$K_{y} = l \int_{x_{0}}^{x} \frac{1}{Sl^{2}} \left\{ (l K_{2})_{0} - l K_{2} \right\} d\xi$$
$$- l \int_{x_{0}}^{x} \frac{d \xi_{2}}{S l^{2}} \int_{x_{0}}^{\xi_{2}} \left\{ l \left[\pm \frac{\gamma B}{S} K_{3} - K_{4} \right] - l' K_{2} \right\} d\xi$$

avec $K = A, B, \ldots, J$.

(60) $\Delta z = Az y_{0}^{3} + B_{z} y_{0}^{*} y_{D} + C_{z} y_{0}^{*} z_{D} + D_{z} y_{0} y_{D}^{*} + 2E_{z} y_{0} y_{D} z_{D}$ $+ F_{z} y_{0} z_{D}^{*} + G_{z} y_{D}^{*} + H_{z} y_{D}^{*} z_{D} + I_{z} y_{D} z_{D}^{*} + J_{z} z_{D}^{*}$

avec

$$\mathbf{K}_{z} = -\int_{x_{o}}^{x} \left\langle \pm \gamma \operatorname{B} \mathbf{K}_{y} + \mathbf{K}_{s} \right\rangle \frac{dx}{\mathrm{S}} \operatorname{avec} \mathbf{K} = \mathrm{A}, \mathrm{B}, \dots \mathrm{J}.$$

4. --- CLASSIFICATION DES ABERRATIONS.

Nous déterminerons les aberrations correspondant aux différents termes de Δy et Δz en considérant les rayons émis par un point objet $(y_0, 0)$ et en venant percer le plan du diaphragme le long d'une droite d'équation $y = y_{\rm p}$.

1° Aberration sphérique.

Elle est exprimée par les termes indépendants de y_0

$$\Delta_y = \mathbf{G}_y \, \mathbf{y}_{\mathrm{D}^3} + \mathbf{H}_y \, \mathbf{y}_{\mathrm{D}^2} \, z_{\mathrm{D}} + \mathbf{I}_y \, \mathbf{y}_{\mathrm{D}} \, z_{\mathrm{D}^2} + \mathbf{J}_y \, z_{\mathrm{D}^3}$$
$$\Delta_z = \mathbf{G}_z \, \mathbf{y}_{\mathrm{D}^3} + \mathbf{H}_z \, \mathbf{y}_{\mathrm{D}^2} \, z_{\mathrm{D}} + \mathbf{I}_z \, \mathbf{y}_{\mathrm{D}} \, z_{\mathrm{D}^2} + \mathbf{J}_z \, z_{\mathrm{D}^3}$$

Ce sont les seuls qui subsistent quand le point objet est dans le plan de symétrie du système.

2° La coma.

Elle correspond à l'ensemble des termes proportionnels à y_0

$$\{ \Delta \boldsymbol{y} = \boldsymbol{y}_{\circ} \{ \mathbf{D}_{\boldsymbol{y}} \ \boldsymbol{y}_{\mathsf{D}}^{*} + 2 \mathbf{E}_{\boldsymbol{y}} \ \boldsymbol{y}_{\mathsf{D}} \ \boldsymbol{z}_{\mathsf{D}} + \mathbf{F}_{\boldsymbol{y}} \ \boldsymbol{z}_{\mathsf{D}}^{*} \}$$

$$\{ \Delta \boldsymbol{z} = \boldsymbol{y}_{\circ} \{ \mathbf{D}_{\circ} \ \boldsymbol{y}_{\mathsf{D}}^{*} + 2 \mathbf{E}_{\circ} \ \boldsymbol{y}_{\mathsf{D}} \ \boldsymbol{z}_{\mathsf{D}} + \mathbf{F}_{\circ} \ \boldsymbol{z}_{\mathsf{D}}^{*} \}$$

3° L'astigmatisme et la courbure de champ.

Elle est relative aux termes proportionnels à y_0^2

$$\Delta y = y_0^2 \left\{ B_y y_D + C_y z_D \right\}$$
$$\Delta z = y_0^2 \left\{ B_z y_D + C_z z_D \right\}$$

Elle devient prépondérante pour des points éloignés du plan de symétrie.

4° La distorsion.

Elle est caractérisée par les termes

$$\Delta y = \mathbf{A}_{\mathbf{y}} \, \mathbf{y}_0^{\mathbf{a}}$$
$$\Delta z = \mathbf{A}_{\mathbf{z}} \, \mathbf{y}_0^{\mathbf{a}}.$$

Elle existerait même si la droite était dans le plan de symétrie de la lentille.

5. — ÉTUDE DE QUELQUES COURBES D'ABERRATION.

Soient y et z les coordonnées du point P où un rayon couperait le plan d'observation si les conditions de l'approximation du second ordre étaient satisfaites.

En réalité, les coordonnées du point d'intersection sont

$$y_1 = y + \Delta y$$
 $z_1 = z + \Delta z$.

Nous nous proposons d'étudier le lieu des points $P_1(y_1, z_1)$ correspondant aux rayons issus d'un point lumineux $P_0(y_0, 0)$ et s'appuyant sur une fente d'équation $y = y_p$.

Nous savons que le lieu du point P (y, z) est une droite (δ) d'équation

$$(\delta) \begin{cases} y = y_0 a_1 + y_D a_2 + z_D a_3 \\ z = y_0 b_1 + y_D b_2 + z_D b_3. \end{cases}$$

Pour étudier plus commodément les déformations de cette courbe lorsqu'on s'écarte des conditions de l'approximation du premier ordre, nous prendrons pour axe Z' Z la droite (δ) elle-même, et pour axe Y' Y l'axe issu de 0 et normal à (δ) (fig. 14).

Ce changement d'axe est défini par

(61)
$$\operatorname{tg} \theta_{\iota} = -\frac{a_{s}}{b_{\iota}}$$

Dans ce nouveau système la droite (δ) a pour équation

$$Y = 0 \qquad Z = z_D \sqrt{a_* + b_*}$$

et les coordonnées du point P_1 $(y + \Delta y, z + \Delta z)$ deviennent $y_1 = \Delta y \cos \theta_1 + \Delta z \sin \theta_1$

$$z_1 = z_{D} \sqrt{a_3^2 + b_3^2} - \Delta y \sin \theta_1 + \Delta z \cos \theta_1.$$

Soit, en tenant compte de (61)

(62)
$$\begin{cases} Y_{s} = \frac{1}{\sqrt{a_{s}^{s} + b_{s}^{s}}} \left\{ b_{s} \Delta y - a_{s} \Delta_{z} \right\} \\ Z_{s} = \frac{1}{\sqrt{a_{s}^{s} + b_{s}^{s}}} \left\{ z_{D} \left(a_{s}^{s} + b_{s}^{s} \right) + a_{s} \Delta_{y} + b_{s} \Delta_{z} \right\} \end{cases}$$

Nous étudierons tout d'abord le cas où le point objet est dans le plan de symétrie du système $(y_0 = 0)$ et nous suivrons les déformations de la courbe lorsqu'on déplace la fente du diaphragme parallèlement à elle-même et nor-

196 et

malement au plan de symétrie. Ce sont les aberrations relatives à l'ouverture du faisceau.

Nous supposerons ensuite que la fente du diaphragme est dans le plan de symétrie $(y_p = 0)$ et nous déplacerons l'objet normalement à ce plan.

Ce sont les aberrations dues aux dimensions de l'objet.

1° Aberrations dues à l'ouverture du faisceau.

En faisant $y_0 = 0$ dans les équations (59) et (60) nous obtenons

(63)
$$\begin{cases} \Delta y = G_y \ y_D^{*} + H_y \ y_D^{*} z_D + I_y \ y_D \ z_D^{*} + J_y \ z_D^{*} \\ \Delta z = G_z \ y_D^{*} + H_z \ y_D^{*} z_D + I_z \ y_D \ z_D^{*} + J_z \ z_D^{*} \end{cases}$$
Soit, en portant dans (62)

$$Y_{a} = \frac{1}{\sqrt{a_{s}^{a} + b_{s}^{a}}} \left\{ (b_{s} G_{y} - a_{s} G_{z}) y_{D}^{a} + (b_{s} H_{y} - a_{s} H_{z}) y_{D}^{a} z_{D} + (b_{s} I_{y} - a_{s} I_{z}) y_{D} z_{D}^{a} + (b_{s} J_{y} - J_{z}) z_{D}^{a} \right\}$$

$$Z_{s} = \frac{1}{\sqrt{a_{s}^{2} + b_{s}^{3}}} \left\{ z_{D} \left(a_{s}^{3} + b_{s}^{3} \right) + \left(a_{s} G_{y} + b_{s} G_{z} \right) y_{D}^{3} + \left(a_{s} H_{y} + b_{s} H_{z} \right) y_{D}^{3} z_{D} \right. \\ \left. + \left(a_{s} I_{y} + b_{s} I_{z} \right) y_{D} z_{D}^{3} + \left(a_{s} J_{y} + b_{s} J_{s} \right) z_{D}^{3} \right\}$$

ou encore avec des notations différentes

(64)
$$\begin{cases} Y_{4} = \alpha_{0} \ y_{D}^{s} + \alpha_{1} \ y_{D}^{s} \ z_{D} + \alpha_{2} \ y_{D} \ z_{D}^{s} + \alpha_{3} \ z_{D}^{s} \\ Z_{4} = \lambda^{s} \ z_{D} + \beta_{0} \ y_{D}^{s} + \beta_{4} \ y_{D}^{s} \ z_{D} + \beta_{3} \ y_{D} \ z_{D}^{s} + \beta_{3} \ z_{D}^{s} \end{cases}$$

Faisons le changement d'axe défini par

(65)
$$\begin{cases} Y_{s} = (Y_{4} - \alpha_{0} y_{D}^{s}) \cos \theta_{s} + (Z_{4} - \beta_{0} y_{D}^{s}) \sin \theta_{s} \\ Z_{s} = -(Y_{4} - \alpha_{0} y_{D}^{s}) \sin \theta_{s} + (Z_{4} - \beta_{0} y_{D}^{s}) \cos \theta_{s} \end{cases}$$

avec

$$\operatorname{tg} \theta_{s} = \frac{\alpha_{4} y_{D}^{s}}{\lambda^{s} + \beta_{4} y_{D}^{s}}$$

et posons

$$\begin{array}{rcl} \gamma_2 = & \alpha_2 \cos \theta_2 + \beta_2 \sin \theta_2 & \gamma_3 = & \alpha_3 \cos \theta_2 + \beta_3 \sin \theta_2 \\ & \mu = - - \alpha_1 y_{\mathrm{D}}^2 \sin \theta_2 + (\lambda^2 + \beta_1 y_{\mathrm{D}}^2) \cos \theta_2 \\ \delta_2 = - - \alpha_2 \sin \theta_2 + \beta_2 \cos \theta_2 & \delta_3 = - - \alpha_3 \sin \theta_2 + \beta_3 \cos \theta_2. \end{array}$$

Les équations (65) s'écrivent

(66)
$$\begin{cases} Y_{s} = \gamma_{s} y_{D} z_{D}^{s} + \gamma_{s} z_{D}^{s} \\ Z_{s} = \mu z_{D} + \delta_{s} y_{D} z_{D}^{s} + \delta_{s} z_{D}^{s} \end{cases}$$

Les courbes représentatives sont tangentes à l'origine à l'axe $Z'_2 Z_2$. Elles ont, en ce point, une courbure $\frac{1}{\rho}$ dont le développement en fonction

M. LAUDET

de $y_{\rm D}$ limité au terme du troisième ordre a pour expression :

(67)
$$\frac{1}{\rho} = 2 \frac{\alpha_{e}}{\lambda^{*}} y_{\mathrm{D}} - 2 \frac{\alpha_{i} \beta_{e} + 2 \alpha_{e} \beta_{i}}{\lambda^{*}} y_{\mathrm{D}}^{*}$$

a) Le diaphragme est dans le plan de symétrie de la lentille.

Dans le cas où le diaphragme est dans le plan de symétrie de la lentille. c'est-à-dire pour $y_{\rm D} = 0$, les équations (64) et (67) se réduisent à

$$\begin{cases} Y_{i} = \alpha_{a} z_{D}^{a} \\ Z_{i} = \lambda^{a} z_{D} + \beta_{a} z_{D}^{a} \end{cases} \qquad \frac{1}{\varphi} = 0$$

et la courbe représentative a l'allure indiquée sur la figure 15.

Lorsque $z_{\rm D}$ est suffisamment petit pour que l'on puisse négliger les termes en $z^{3}_{\rm D}$, c'est-à-dire dans le cas de l'approximation du premier ordre, nous retrouvons la droite (δ) d'équation

$$y_1 = 0 \qquad \qquad z_1 = \lambda^2 z_D.$$

b) Le diaphragme est situé près du plan de symétrie de la lentille.

Dans le cas où le diaphragme est siué très près du plan de symétrie de la lentille, nous pouvons négliger les termes en y_{p}^{2} et y_{p}^{3} . Les équations (64) s'écrivent alors

$$\begin{aligned} \mathbf{Y}_{4} &= \alpha_{8} \ \boldsymbol{y}_{\mathrm{D}} \ \boldsymbol{z}_{\mathrm{D}}^{*} + \alpha_{3} \ \boldsymbol{z}_{\mathrm{D}}^{*} \\ \mathbf{Z}_{4} &= \lambda^{2} \ \boldsymbol{z}_{\mathrm{D}} + \beta_{8} \ \boldsymbol{y}_{\mathrm{D}} \ \boldsymbol{z}_{\mathrm{D}}^{*} + \beta_{3} \ \boldsymbol{z}_{\mathrm{I}} \end{aligned}$$

et la courbe représentative (fig. 16) au voisinage de l'origine est un arc dont la courbure a pour expression

c) Le diaphragme n'est plus au voisinage immédiat du plan de symétrie de la lentille.

Si le diaphragme n'est plus situé au voisinage immédiat du plan de symétrie de la lentille, il faut tenir compte des termes en y^2 et y^3 .

Nous avons alors un arc de courbe (*fig.* 17) dont la courbure est donnée par (67) mais n'admettant plus pour tangente la droite (δ) .

M. LAUDET

2° Aberrations dues aux dimensions de l'objet.

En faisant $y_{\rm D} = 0$ dans les équations (59) et (60) nous obtenons

 $\Delta y = A y y_{o}^{*} + C_{y} y_{o}^{*} z_{D} + F_{y} y_{o} z_{D}^{*} + J_{y} z_{D}^{*}$ $\Delta z = A_{z} y_{o}^{*} + C_{z} y_{o}^{*} z_{D} + F_{z} y_{o} z_{D}^{*} + J_{z} z_{o}^{*}$

Ce sont des équations analogues aux relations (63). On aura donc des phénomènes semblables en déplaçant le point objet ou la fente diaphragme.

CHAPITRE IV.

CAS PARTICULIER D'UN SYSTÈME ÉLECTROSTATIQUE PUR

I. - L'APPROXIMATION DU PREMIER ORDRE.

1° Équation différentielle des trajectoires gaussiennes.

Dans le cas particulier des systèmes électrostatiques purs, les termes F_0 , F_2 et F_4 du lagrangien se réduisent à

F_o = S
F_s = - M_y^s +
$$\frac{S}{2}$$
 ($y'' + z''$)
F_s = N_y^s - $\frac{M}{2}$ $y'' (y'' + z'') - \frac{S}{8}$ ($y'' + z''$)

et les équations différentielles des trajectoires gaussiennes se simplifient et s'écrivent :

$$z' = \frac{C}{S}$$

(69)
$$\frac{d}{dx}(\mathbf{S} \mathbf{y}') + 2 \mathbf{M} \mathbf{y} = 0$$

2° Correspondance « objet-image ».

L'équation (68) s'intègre immédiatement et donne

(70)
$$z = z_{\rm D} - \frac{\int_{x_0}^x \frac{dx}{s}}{\int_{x_0}^{x_{\rm D}} \frac{dx}{{\rm S}}} = z_{\rm D} b(x)$$

Soient h(x) et k(x) deux solutions particulières de (69) satisfaisant aux conditions aux limites :

$$\begin{cases} h(x_0) = 0 \\ h(x_D) = 1 \end{cases} \begin{cases} k(x_0) = 1 \\ k(x_D) = 0. \end{cases}$$

L'intégrale de (69) pour laquelle on a

 $y(x_0) = y_0$ et $y(x_D) = y_D$ s'écrit

(71) $y = y_0 k(x) + y_D h(x)$

et la condition de conjugaison entre le plan « objet » $x = x_0$ et le plan « image » x = x, se réduit à

$$h(x_i) = 0.$$

M. LAUDET

Dans le plan x_i conjugué du plan x_0 (fig. 18), la droite « image » a donc pour équation $y = y_0 k(x_i).$

$$f_{0}$$
 f_{0} f_{0

3° Plan focal image.

Les conditions initiales relatives à la trajectoire d'une particule issue d'un point de coordonnées x_0 y_0 z_0 et dont la vitesse initiale est normale au plan de front x_0 s'écrivent

(72)

$$y(x_0) = y_0$$

 $y'(x_0) = 0$
(73)
 $z(x_0) = z_0$
 $z'(x_0) = 0.$

L'équation (68) donne, compte tenu de (73)

$$z=z_0.$$

Soit $k_1(x)$ une solution particulière de (69) satisfaisant à

$$k_1(x_0) = 1$$
 $k'_1(x_0) = 0.$

L'intégrale de (69) vérifiant (72) s'écrit (fig. 19)

$$y = y_0 k_1(x).$$

Si le plan x_0 est supposé situé dans une région où le champ est négligeable, le « plan focal image » sera défini par

et la « droite focale image » aura pour équation y = 0.

2. --- LES ABERRATIONS CHROMATIQUES.

Quelle que soit la tension d'accélération ɛ des électrons, les droites « images » demeurent parallèles au plan de symétrie du système. Il n'y a pas d'aberration chromatique de rotation

 $\sigma_{\mathbf{q}}=0.$

L'aberration chromatique de translation δ se réduit à (fig. 20)

$$\delta = \left\{ \begin{array}{cc} k'_{_{arepsilon}} \, y_{_{0}} + h'_{_{arepsilon}} \, y_{_{
m D}} \end{array}
ight\} \Delta arepsilon$$

d'où

$$\sigma_{\delta 0} = k'_{\varepsilon} \qquad \sigma_{\delta D} = h'_{\varepsilon}$$

On en déduit l'expression de l'aberration chromatique d'ouverture $\Delta = 2 \ d \ h'_{\epsilon} \ \Delta \epsilon.$

Enfin, l'aberration chromatique longitudinale a pour expression

$$\Delta x_i = - \frac{h'_{\iota}}{h'_{x}} \Delta \epsilon$$

3. - LES ABERRATIONS DU TROISIÈME ORDRE.

1° Équation différentielle des aberrations.

Les équations différentielles relatives aux aberrations du troisième ordre se simplifient notablement. Elles s'écrivent en effet :

(74)
$$\frac{d}{dx}\left\{S \Delta y'\right\} + 2 M\Delta y = -\left\{\frac{d}{dx}\left(\frac{\partial F_{\star}}{\partial y'}\right) - \frac{\partial F_{\star}}{\partial y}\right\}$$

(75)
$$\frac{d}{dx} \left| S \Delta z' \right| = -\frac{d}{dx} \left(\frac{dF_{\bullet}}{dz'} \right)$$

L'intégration de (75) donne

(76)
$$(\Delta z)_{i} = -\int_{x_{o}}^{x_{i}} \frac{1}{S} \frac{\partial F_{i}}{\partial z'} dx$$

Par combinaison linéaire de (74) et de

$$\frac{d}{dx}\left\{ \mathbf{S}h' \right\} + 2\mathbf{M}h = 0$$

nous obtenons

$$\frac{d}{dx}\left\{ \mathbf{S}\left[h\Delta \mathbf{y}'-h'\Delta \mathbf{y}\right]\right\} = -h\left\{\frac{d}{dx}\left(\frac{\partial \mathbf{F}_{\star}}{\partial \mathbf{y}'}\right)-\frac{\partial \mathbf{F}_{\star}}{\partial \mathbf{y}}\right\}$$

En intégrant du plan « objet » $x = x_0$ pour lequel nous avons

$$h(x_0) = 0$$
 $(\Delta y)_0 = 0$ $(\Delta y)'_0 = 0$

au plan image défini par

$$h(x_i) = 0$$

nous obtenons

$$\left\{ S\left[h\Delta y'-h'\Delta y\right] \right\}_{x=x_{o}}^{x=x_{o}} = \int_{x_{o}}^{x_{i}} \left\{ \frac{d}{dx} \left(h \frac{\partial F_{\bullet}}{\partial y'}\right) - \left(h \frac{\partial F_{\bullet}}{\partial y} + h' \frac{\partial F_{\bullet}}{\partial y'}\right) \right\} dx$$

soit

(77)
$$(\Delta y)_i = \frac{1}{\mathbf{S}_i h'_i} \int_{x_0}^x \left[h \frac{\partial \mathbf{F}_i}{\partial y} + h' \frac{\partial \mathbf{F}_i}{\partial y'} \right] dx$$

2° Expression des cœfficients d'aberration.

En tenant compte des expressions (70) et (71) de z et de y nous trouvons successivement

(78)
$$\frac{\partial F_{4}}{\partial y} = A_{4} y_{0}^{*} + B_{4} y_{0}^{*} y_{D} + D_{4} y_{0} y_{D}^{*} + F_{4} y_{0} z_{D}^{*} + G_{4} y_{D}^{*} + I_{4} y_{D} z_{D}^{*}$$

avec

$$A_{1} = 4 Nk^{3} - Mkk'^{2}$$

$$B_{1} = 12 Nhk^{2} - Mk' (2 kh' + hk')$$

$$D_{1} = 12 Nkh^{2} - Mh' (2 hk' + kh')$$

$$F_{1} = - Mkb'^{2}$$

$$G_{1} = 4 Nh^{3} - Mhh'^{2}$$

$$I_{1} = - Mhb'^{2}$$

(79)
$$\frac{\partial \mathbf{F}_{\bullet}}{\partial y'} = \mathbf{A}_{\bullet} y_{\bullet}^{\bullet} + \mathbf{B}_{\bullet} y_{\bullet}^{\bullet} y_{\mathsf{D}} + \mathbf{D}_{\bullet} y_{\bullet} y_{\mathsf{D}}^{\bullet} + \mathbf{F}_{\bullet} y_{\bullet} z_{\mathsf{D}}^{\bullet} + \mathbf{G}_{\bullet} y_{\mathsf{D}}^{\bullet} + \mathbf{I}_{\bullet} y_{\mathsf{D}} z_{\mathsf{D}}^{\bullet}$$

avec

$$A_{s} = -M k^{s} k' - \frac{S}{2} k'^{s}$$

$$B_{s} = -M k (2 h k' + k h') - \frac{3}{2} S k'^{s} h'$$

$$D_{s} = -Mh (2 k h' + h k') - \frac{3}{2} S k' h'^{s}$$

$$F_{s} = -\frac{S}{2} k' b'^{s}$$

$$G_{s} = -M h^{s} h' - \frac{S}{2} h'^{s}$$

$$I_{s} = -\frac{S}{2} h' b'^{s}$$

(80) $\frac{\partial \mathbf{F}_{\star}}{\partial z'} = \mathbf{C}_{\star} \mathbf{y}_{\bullet}^{\star} \mathbf{z}_{\mathrm{D}} + 2 \mathbf{E}_{\star} \mathbf{y}_{\bullet} \mathbf{y}_{\mathrm{D}} \mathbf{z}_{\mathrm{D}} + \mathbf{H}_{\star} \mathbf{y}_{\mathrm{D}}^{\star} \mathbf{z}_{\mathrm{D}} + \mathbf{J}_{\star} \mathbf{z}_{\mathrm{D}}^{\star}$

avec

$$C_{s} = -M k^{s} b' - \frac{S}{2} k'^{s} b'$$

$$E_{s} = -M h k b' - \frac{S}{2} h' k' b'$$

$$H_{s} = -M h^{s} b' - \frac{S}{2} h'^{s} b'$$

$$J_{s} = -\frac{S}{2} b'^{s}$$

En portant (78) et (79) dans (77) et (80) dans (76) nous obtenons

(81)
$$(\Delta y)_i = A_y y_0^* + B_y y_0^* y_D + D_y y_0^* y_D^* + F_y y_0^* z_D^* + G_y y_D^* + I_y y_D z_D^*$$

(82) $(\Delta z)_i = Cz y_0^* z_D + 2 Ez y_0^* y_D z_D + H_z y_D^* z_D + J_z z_0^*$

M. LAUDET

en posant

(83)
$$\begin{cases} K_y = \frac{1}{S_i h'_i} \int_{x_0}^{x_i} [h K_i + h' K_*] dx & \text{avec } K = A, B, D, F_i G, I \\ K_z = -\int_{x_0}^{x_i} \frac{K_z}{S} dx & \text{avec } K = C, E, H, J \end{cases}$$

3° Courbes d'aberrations.

Une étude analogue à celle faite dans le cas général nous conduit en définitive à distinguer les aberrations dues à l'ouverture du faisceau et celles dues aux dimensions de l'objet.

a) Aberrations dues à l'ouverture du faisceau.

Elles correspondent au cas où le point objet est dans le plan de symétrie $(y_0 = 0)$. Les relations (81) et (82) se réduisent à

$$\begin{array}{l} (\Delta \boldsymbol{y})_i = \mathbf{G}_y \ \boldsymbol{y}_{\mathrm{D}}{}^{\mathrm{s}} + \mathbf{I}_y \ \boldsymbol{y}_{\mathrm{D}} \ \boldsymbol{z}_{\mathrm{D}}{}^{\mathrm{s}} \\ (\Delta \boldsymbol{z})_i = \mathbf{H}_z \ \boldsymbol{y}_{\mathrm{D}}{}^{\mathrm{s}} + \mathbf{J}_z \ \boldsymbol{z}_{\mathrm{D}}{}^{\mathrm{s}} \end{array}$$

Les rayons s'appuyant sur la fente diaphragme d'équation y_{D} coupent le plan image x_i suivant une courbe d'équation (*fig.* 21)

dont la courbure pour $z_{\text{D}} = 0$ a pour expression, en supposant que le diaphragme est voisin du plan de symétrie

$$rac{1}{arphi}=2rac{\mathrm{I}_y}{b_i^*}\,y_\mathrm{D}$$

Soit, en tenant compte de (83)

207

b) Aberrations dues aux dimensions de l'objet.

Elles correspondent au cas où le diaphragme est dans le plan de symétrie $(y_{D} = 0)$. On a dans ces conditions :

$$(\Delta y)_{\iota} = \mathbf{A}_{v} y_{0}^{*} + \mathbf{F}_{v} y_{0} z_{D}^{2}$$

$$(\Delta z)_{\iota} = \mathbf{C}_{z} y_{0}^{*} z_{D} + \mathbf{J}_{z} z_{D}^{3}.$$

On obtient alors, dans le plan image, une courbe d'équation (fig. 22)

$$\begin{cases} y_i = k_i y_0 + A_y y_0^3 + F_y y_0 z_D^2 \\ z_i = b_i z_D + C_z y_0^2 z_D + J_z z_D^3 \end{cases}$$

dont la courbure pour $z_{D} = 0$ a pour valeur, dans le cas où le point objet est voisin du plan de symétrie

$$\frac{1}{\varphi} = 2 \frac{F_y}{b_i^{a}} y_{o}$$

soit, en tenant compte de (83)

CHAPITRE V.

DÉTERMINATION ANALYTIQUE DU POTENTIEL ET DU CHAMP DANS LE PLAN DE SYMÉTRIE D'UNE LENTILLE ÉLECTROSTATIQUE A TROIS FENTES

Nous appellerons lentille cylindrique à trois fentes une lentille à électrodes planes, parallèles et infiniment minces, formées de six demi-plans, apposés deux à deux.

Nous admettons, de plus, que la lentille possède un plan de symétrie (*fig.* 23) et que les quatre demi-plans extérieurs sont au potentiel zéro tandis que les deux demi-plans intérieurs sont portés au potentiel V.

I. — ÉTUDE DU CAS GÉNÉRAL.

Pour déterminer analytiquement la distribution du potentiel et du champ d'un tel système, nous ferons appel à la transformation de Schwarz⁽¹⁾

(84)
$$z = A \int \prod_{i} (\zeta - \zeta_{i}) \left(\frac{\alpha_{i}}{\pi} - 1\right) d\zeta + B$$

où A et B sont des constantes, les angles intérieurs du polygone 1, 2, ... 12 (fig. 24).

1. E. DURAND, Électrostatique et Magnétostatique, chapitre X, Masson, Paris, 1953.

La relation (84) associe les plans complexes xy et $\xi\eta$ et fait correspondre en particulier le contour du polygone à l'axe des ξ .

F1G, 24.

Les valeurs de (α/π) — 1 étant respectivement 1, — 1, 1, — 1, 1, — 2, 1, — 1, 1, — 1, 1 pour les points 2, 3, ... 12, la transformation (84) s'écrit

(85)
$$z = A \int \frac{(\zeta^{4} - n^{2}) (\zeta^{4} - 1) (\zeta^{3} - p^{2})}{\zeta^{4} (\zeta^{4} - m^{3}) (\zeta^{4} - q^{4})} d\zeta + B$$

L'intégration de (85) nécessite la décomposition de la fraction rationnelle en éléments simples.

Posons

(86)
$$\frac{(\zeta^{*} - n^{*})(\zeta^{*} - 1)(\zeta^{*} - p^{*})}{\zeta^{*}(\zeta^{*} - m^{*})(\zeta^{*} - q^{*})} = 1 - \frac{C_{i}}{\zeta^{*}} + \frac{2 m C_{s}}{\zeta^{*} - m^{*}} + \frac{2 q C_{s}}{\zeta^{*} - q^{*}}$$

nous obtenons

(87)
$$C_{s} = \frac{n^{s} p^{s}}{m^{s} q^{s}}$$
$$C_{s} = \frac{(m_{s} - n^{s}) (m^{s} - 1) (m^{s} - p^{s})}{2 m^{s} (m^{s} - q^{s})}$$
$$C_{s} = \frac{(q^{s} - n^{s}) (q^{s} - 1) (q^{s} - p^{s})}{2 q^{s} (q^{s} - m^{s})}$$

En tenant compte de (86), l'équation (85) s'écrit

$$z = \mathbf{A} \int \left\{ d\zeta - \left| \mathbf{C}_{s} \frac{d\zeta}{\zeta^{s}} + \mathbf{C}_{s} \frac{2 m d\zeta}{\zeta^{s} - m^{s}} + \mathbf{C}_{s} \frac{2 q d\zeta}{\zeta^{s} - q^{s}} \right\} + \mathbf{B} \right\}$$

soit en intégrant

(88)
$$z = A\left\{\zeta + \frac{C_{\star}}{\zeta} + C_{s} \log \frac{\zeta - m}{\zeta + m} + C_{s} \log \frac{\zeta - q}{\zeta + q}\right\} + B$$

Pour déterminer les cinq coefficients m, n, p, q, A nous écrirons que

$$\overline{3'\,3''} = --id, \qquad \overline{5'\,5''} = --ie$$

$$\begin{cases} z_n - z_{-n} = 2 \ c \\ z_1 - z_{-1} = 2 \ a \\ z_p - z_{-p} = 2 \ b \end{cases}$$

Nous obtenons ainsi les cinq relations :

(89)
$$AC_s = -\frac{d}{\pi}$$
 , (90) $AC_s = -\frac{e}{\pi}$

(91)
$$C = A\left(n + \frac{C_{\star}}{n}\right) - \frac{d}{\pi}\log\frac{n-m}{n+m} - \frac{e}{\pi}\log\frac{n-q}{n+q}$$

(92)
$$a = A (1 + C_i) - \frac{d}{\pi} \log \frac{1 - m}{1 + m} - \frac{e}{\pi} \log \frac{1 - q}{1 + q}$$

(93)
$$b = A\left(\left(p + \frac{C_i}{p}\right) - \frac{d}{\pi} \log \frac{p-m}{p+m} - \frac{e}{\pi} \log \frac{p-q}{p+q}\right)$$

Enfin la constante B sera déterminée en plaçant l'origine en un point choisi arbitrairement. Nous écrirons par exemple que pour $\zeta = 1$, z = a, soit en tenant compte de (92)

$$\mathbf{B} = \mathbf{0}$$

L'équation (88) s'écrit donc en définitive

(94)
$$z = A\left(\zeta + \frac{C_i}{\zeta}\right) - \frac{d}{\pi} \log \frac{\zeta - m}{\zeta + m} - \frac{e}{\pi} \log \frac{\zeta - q}{\zeta + q}$$

Si l'on désire que les deux demi-plans intérieurs soient au potentiel V et que les quatre demi-plans extérieurs soient au potentiel zéro, il faut prendre sur l'axe ξ les valeurs 0, V, 0, V, 0 comme il est indiqué sur la figure 24. Pour qu'il en soit ainsi , il suffit de poser

(95)
$$w = -\frac{V}{\pi} \log \left\{ \frac{\zeta + m}{\zeta - m} \cdot \frac{\zeta - q}{\xi + q} \right\}$$

Les équations (94) et (95) ont été choisies de telle sorte que les lignes équipotentielles soient données par $\eta = C^{te}$ pour la transformation $z = z(\zeta)$ et par v = const. pour la transformation $w = w(\zeta)$ (avec w = u + iv). En faisant v = const., ou u = const. dans la transformation

$$z = z \left\{ \zeta(w) \right\} = z(w),$$

on a l'équation des lignes équipotentielles ou des lignes de forces.

De la symétrie du système et de la définition des fonctions flux $\xi = \xi(x, y)$ et $u = u(\xi, \eta)$ nous pouvons conclure à la correspondance des axes imaginaires des trois plans z, ζ et w. Nous établirons analytiquement cette propriété.

La séparation des parties réelles et imaginaires des équations (94) et (95) quoique assez laborieuse n'offre pas de difficultés particulières. On trouve

(96)
$$x = A\xi \left(1 + \frac{C_i}{\xi^2 + \gamma_i^2}\right) + \frac{d}{2\pi} \log \frac{(\xi + m)^2 + \gamma_i^2}{(\xi - m)^2 + \gamma_i^3} + \frac{e}{2\pi} \log \frac{(\xi + q)^2 + \gamma_i^2}{(\xi - q)^2 + \gamma_i^2}$$

(97)
$$y = A_{\eta} \left(1 - \frac{C_{i}}{\xi^{2} + \eta^{2}} \right) - \frac{a}{\pi} \left\{ \arctan tg \frac{2mr_{\eta}}{\xi^{2} + \eta^{2} - m^{2}} + k_{i} \pi \left\{ -\frac{e}{\pi} \right\} \arctan tg \frac{2q\eta}{\xi^{2} + \eta^{2} - q^{2}} + k_{i} \pi \left\{ -\frac{e}{\pi} \right\} \right\}$$

(98)
$$u = -\frac{1}{2\pi} \left\{ \log \frac{(\zeta + m) + \eta}{(\zeta - m)^{2} + \eta^{2}} - \log \frac{(\zeta + q) + \eta}{(\zeta - q)^{2} + \eta^{2}} \right\}$$

(99)
$$v = \frac{v}{\pi} \left\{ \operatorname{arc} \operatorname{tg} \frac{2 m \eta_1}{\xi^* + \eta^* - m^*} - \operatorname{arc} \operatorname{tg} \frac{2 q \eta_1}{\xi^* + \eta^* - q^*} + k \pi \right\}$$

 k_1 , k_2 et k étant des nombres entiers que nous déterminerons ultérieurement de telle sorte que la continuité de la fonction potentiel soit assurée.

Faisons $\xi = 0$ dans les équations (96) et (98). Nous obtenons quel que soit η :

$$x = 0$$
 et $u = 0$

ce qui établit la correspondance des axes imaginaires des trois plans z, ζ et w.

La connaissance du potentiel dans le plan de symétrie x = 0 est seule utile en optique électronique.

Les formules (97) et (99) donnent pour $\xi = 0$

(100)
$$y = A\eta \left(1 - \frac{C_{\star}}{\eta^{*}}\right) - \frac{d}{\pi} \left\{ \arctan tg \frac{2m\eta}{\eta^{*} - m^{*}} + k_{\star} \pi \right\} - \frac{e}{\pi} \left\{ \arctan tg \frac{2q\eta}{\eta^{*} - q^{*}} + K_{\star} \pi \right\}$$
(101)
$$v = \frac{V}{\pi} \left\{ \arctan tg \frac{2m\eta}{\eta^{*} - m^{*}} - \arctan tg \frac{2q\eta}{\eta^{*} - q^{*}} + K \pi \right\}$$

Le champ complexe E a pour expression

(102)
$$\mathbf{E} = -\left(\frac{dw}{dz}\right)^* = -\left(\frac{dw}{d\zeta}\right)^* \left(\frac{d\zeta}{dz}\right)^*$$

Des équations (85) et (95) on tire

$$\frac{dz}{d\zeta} = \mathbf{A} \frac{\left(\zeta^{\mathfrak{s}} - \gamma_{i}^{\mathfrak{s}}\right)\left(\zeta^{\mathfrak{s}} - 1\right)\left(\zeta^{\mathfrak{s}} - p^{\mathfrak{s}}\right)}{\zeta^{\mathfrak{s}}\left(\zeta^{\mathfrak{s}} - m^{\mathfrak{s}}\right)\left(\zeta^{\mathfrak{s}} - q^{\mathfrak{s}}\right)}$$

et

$$\frac{dw}{d\zeta} = \frac{2(m-q)}{\pi} \operatorname{V} \frac{\zeta^* + mq}{(\zeta^* - m^*)(\zeta^* - q^*)}$$

D'autre part, dans le plan de symétrie de la lentille, nous avons $\zeta^{\star} = -\zeta = -i \eta$ d'où l'expression du champ :

(103)
$$\mathbf{E} = \frac{2}{\pi} \mathbf{V} \frac{m - q}{\mathbf{A}} \frac{\gamma_{i}^{*} (\gamma_{i}^{*} - mq)}{(\gamma_{i}^{*} + \gamma_{i}^{*}) (\gamma_{i}^{*} + 1) (\gamma_{i}^{*} + p^{*})}$$

2. — CAS PARTICULIER DE LA LENTILLE SYMÉTRIQUE

Parmi les lentilles du type précédent, c'est la lentille symétrique (*fig.* 25) qui est le plus couramment utilisée. Nous lui consacrerons un paragraphe spécial.

FIG. 25.

Si l'on fait simultanément mq = 1 et np = 1 dans les équations (87), (89), (90) et (93) on trouve d = e et c = b.

C'est le cas que nous proposons d'étudier. En tenant compte des relations précédentes, nous obtenons

(104)
$$d = A \pi \frac{(1 - p^{*} q^{*}) (q^{*} - p^{*})}{2 p^{*} q (1 + q^{*})}$$

(105)
$$a = 2 \text{ A} - \frac{2 d}{\pi} \text{Log} \frac{1-q}{1+q}$$

(106)
$$b = A\left(p + \frac{1}{p}\right) - \frac{d}{\pi} \operatorname{Log} \left\{\frac{1-pq}{1+pq}, \frac{q-p}{q+p}\right\}.$$

Les trois dernières équations permettent de déterminer les trois constantes p, q et A.

Les équations (100) et (101) deviennent :

(107)
$$y = A \frac{\eta^{*} - 1}{\eta} - \frac{d}{\pi} \left\{ \operatorname{arc} \operatorname{tg} \frac{2 q \eta}{q^{*} \eta^{*} - 1} + \operatorname{arc} \operatorname{tg} \frac{2 q \eta}{\eta^{*} - q^{*}} + K' \pi \right\}$$

(108) $v = \frac{V}{\pi} \left\{ \operatorname{arc} \operatorname{tg} \frac{2 q \eta}{q^{*} \eta^{*} - 1} - \operatorname{arc} \operatorname{tg} \frac{2 q \eta}{\eta^{*} - q^{*}} + K \pi \right\}$

avec

$$K' = 1$$
 $k = 0$ pour $0 < \eta < q$ $K' = 0$ $k = 1$ pour $q < \eta < 1$

L'équation (103) donne pour le champ

(109)
$$\mathbf{E} = -\frac{2}{\pi} \, \mathbf{V} \, \frac{p^{*} \, (1-q^{*})}{\mathbf{A} \, q} \, \frac{\eta^{*} \, (1-\eta^{*})}{(p^{*} \, \eta^{*} + 1) \, (\eta^{*} + 1) \, (\eta^{*} + p^{*})}$$

Si l'on fait $\eta = 1$ dans la formule (107) on trouve y = 0.

F1G. 26.

On en déduit les expressions v_0 et E_0 du potentiel et du champ au centre de la lentille

(110)
$$v_{o} = V \frac{2}{\pi} \left\{ \frac{\pi}{2} - \arctan tg \frac{2q}{1-q^{*}} \right\},$$

 $E_{o} = 0.$

La détermination des constantes p, q et A en fonction des paramètres géométriques a, b et d définissant la lentille donne lieu à des calculs compliqués. Nous avons préféré déterminer les rapports b' = b/a et d' = d/aen fonction des constantes p et q.

Les résultats de ces calculs ainsi que les variations v' = v/V du potentiel au centre de la lentille, sont représentés sur la figure 26.

3. - CAS DE L'OBJECTIF A IMMERSION.

Un autre cas particulièrement important dans la pratique et dont l'étude peut être rattachée au cas général envisagé au début de ce chapitre, est celui de l'objectif à immersion qui s'obtient (*fig.* 27) en remplaçant par une cathode plane l'électrode 6-8 de la figure 24.

On peut étudier directement ce dispositif à partir de la transformation de Schwarz qui s'écrit ici :

(111)
$$z = A \int \frac{(\zeta^{2} - n^{2}) \zeta^{2} - 1}{(\zeta^{2} - m^{2}) (\zeta^{2} - q^{2})} d\zeta + B$$

On peut également remarquer que les résultats précédents demeurent

valables à la condition de faire p = 0 dans les équations (85) et (87). On obtient dans ces conditions

$$C_{i} = 0$$

$$C_{2} = \frac{(m^{2} - n^{2})(m^{2} - 1)}{2 m (m^{2} - q^{2})}$$

$$C_{3} = \frac{(q^{2} - n^{2})(q^{2} - 1)}{2 q (q^{2} - m^{2})}$$

et la transformation (111) s'écrit alors

$$z = \Lambda \zeta - \frac{d}{\pi} \log \frac{\zeta - m}{\zeta + m} - \frac{e}{\pi} \log \frac{\zeta - q}{\zeta + q}$$

Les constantes n, m, q et A seront déterminées à partir des quatre équations

$$\frac{d}{A} = -\pi \frac{(m^{2} - n^{2})(m^{2} - 1)}{2 m (m^{2} - q^{2})}$$

$$\frac{e}{A} = -\pi \frac{(q^{2} - \tau_{i}^{2})(1 - q^{2})}{2 q (q^{2} - m^{2})}$$

$$\frac{a}{A} = 1 - \frac{d}{\pi A} \log \frac{1 - m}{1 + m} - \frac{e}{\pi A} \log \frac{1 - q}{1 + q}$$

$$\frac{e}{A} = n - \frac{d}{\pi A} \log \frac{n - m}{n + m} - \frac{e}{\pi A} \log \frac{n - q}{n + q}$$

obtenues en écrivant que

$$3' 3'' = -- id$$

$$5' 5'' = -- ie$$

$$z_{1} - - z_{-1} = 2 c$$

$$z_{n} - - z_{-n} = 2 a$$

On peut envisager une étude analogue de la lentille symétrique en se donnant m, p et q et en calculant les valeurs correspondantes des rapports

$$b' = \frac{b}{a}$$
 $d' = \frac{d}{a}$ $c' = \frac{c}{a}$

permettant de définir géométriquement l'objectif. Mais la présence de trois variables rend le calcul beaucoup plus compliqué et ne permet pas de construire un abaque.

On pourrait, toutefois, pour trois valeurs correspondantes p, q, m donner aisément les variations du champ et du potentiel d'un objectif.

CHAPITRE VI.

CALCUL NUMÉRIQUE D'UNE LENTILLE ÉLECTROSTATIQUE SYMÉTRIQUE A TROIS FENTES

Nous étudierons une lentille caractérisée par (fig. 28) a = b = c. Nous déterminerons d'abord la répartition du potentiel par la méthode de relaxation. Nous calculerons ensuite les trajectoires gaussiennes et les

aberrations à partir des formules précédemment établies.

I. --- CALCUL DU POTENTIEL.

Nous avons déterminé le potentiel par la méthode de relaxation, en admettant que l'électrode centrale était portée au potentiel V = 10.000, et que les diaphragmes extérieurs étaient au potentiel V = 0.

Comme pour les lentilles électrostatiques de révolution, nous avons limité le domaine étudié en supposant qu'à grande distance des diaphragmes, le potentiel variait linéairement entre les électrodes, et qu'il était nul à l'extérieur.

L'étude des aberrations nécessitant une détermination précise du potentiel, nous avons utilisé des réseaux non homogènes nous permettant d'explorer un domaine très étendu, sur la frontière duquel les conditions aux limites sont remplies.

De plus, au voisinage des diaphragmes, nous avons extrapolé les valeurs relatives à deux quadrillages. Les résultats définitifs ont été rassemblés sur les figures 29, 30, 31, 32, 33. 4

0	0	0	0	0		0		0 0		0			
0	0	0	0	0		0		0		0		0	
0	0	0	0	*		~		~		~			
0	0	0	0	~		٢		1		*		 	
0	0	0	0	1	٢	1		,	2	1	1		29.
				,	1	1	`	1	1	~	~	~	1G.
0	0	0	0	~	1	1	/	1	1	2	2	0	<u>,</u>
				1	1	1	1	1	2	2	N	N	
0	0	0	0	~	1	~	1	~	2	2	2	3	
				0	~	1	~	1	2	2	8	3	
0	0	0	0	0	0	~	1	2	2	M	4	5	
				0	0	0	0	1	1	2		∰	
0	0	0	0	0	0	0	0	0	0	0		Ħ	

5	M		1 4	4		4		<u></u>	1	5		Ś	
0	M	m	4	4		رج رح		ۍ ري		e		6	
0	<u> </u>	(M	4	5		S		6		9		<u> </u>	
8	m	m	4	2		0		~		8		ו ו נס <u>ס</u>	
8	~	m	4	S	9	9	×	G	6	6	01	<i>6</i> '	30
				5	9	6	2	80	9	10	11	\geq	E10
2	2	M	4	Ś	9	N	8	6	01	12	12	13	
				. 4	S	9	8	6	"	13	15	5	
~	N	N	m	ŝ	Ś	9	8	9	12	15	/8	6/	
				δ	4	5	2	б	/3	17	22	25	
~	~	~	Q	~	m	4	5	9	12	/9	29	5	
				~	2	2	Μ	1	N	15		冊	
0	0	0	0	0	0	0	0	0	0	0		瞤	

Fig. 30.
M. LAUDET

2	6	8	22	23	24	56	51	29		30	No. 1986.	31		32	-	34		34		35		36		37	
<i>(</i> 8	50	51	22	57	25	27	62	30		32		34		35		36		38		38		39		40	
<u>8</u>	50	51	23	54	26	28	30	32		34		36		38		30		41		42		43		43	
<i>(</i> 8	, 6/	12	53	52	27	29	3/	34		36		39		4		43		44		46		47		* 	•
/8	6/	51	23	25	27	30	32	35		38		41		44		46		48		50		5/		ر جر	
~	6/	51	23	25	28	30	33	37		40		44		47		50		53		55		56		56	
/6	8/	50	52	25: 25:	28	3/	34	88		42		46		51		55		58		60		60			
<i>\</i> 9	21	6/	22	54	27	3/	35	39		44		49		54		59		63		66		66		200	
15	16	8/		54	27	30	35	40	42	45	48	51	55	58	61	64	66	69	71	74	74	74	74	2	31.
5	15	21	6/	22	25	29	34	39 39	42 42	45 45	49 49	52 52	56 56	60 59	64 62	68 66	72 69	75 72	79 75	82 78	83 78	84 78	85 79	85 29	FIG.
12	/3	15	8/	50	24	28	32	38 3 <i>9</i>	41 42	44 45	48 49	52 52	57 57	61 61	66. 65	71 70	77 74	82 79	87 83	92 86	96 88	98 90	101 92	202 93	
0	12	ΰ	15	8	21	25	29	35 37	38 40	42 43	46 47	50 52	56 56	61 62	67 67	74 73	8/ 79	89 85	97 92	104 97	110 102	116 106	601 611	101/021	
~	0	2	r)	15	8/	22	26	3/ 33	34 36	37 40	41 44	46 49	51 54	58 60	65 67	74 74	83 83	94 92	106 101	111 811	13/ 1/9	140 127	147 132	150 133	
5	r	0	0	ć	4		51	25 28	28 31	3/ 34	<i>35 38</i>	39 43	44 48	50 55	60 63	70 73	83 84	<i>98</i> 96.	111 911	137 128				E E	
	S	6		00	Q	ę	5	8 22	20 24	23 27	25 30	28 34	33 39	38 46	47 54	58 65	73 80	92 97	8/1 8/	147					
4		m	*	4		0	0	2	1/ 15	12 17	13 20	15 22	18 26	21 31	27 38	34 48	45 61	60 80	86 /07 /	127 150				=	
CV								5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	5 1	6 /	~	8	6	1	14	6/ 0	54 1	32 4	48	76 /					
0	0						0		2	0	0		0		2		0	0	0				\ddagger	Ŧ	

.

						·								
														•
811	125	131	/36	071	144	147	150	150						
(23	130	/37	143	64/	/53	157	159	160						
.58	136	44	<i>'51</i>	157	<i>6</i> 3	67	02.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
33	¢ 7	, S/	60	89	2	29	5	14						
2		60	0	6	~ ~ ~	23 /	 	6					·	
5/2			0) 2	2 /8	, ,	5							
14.	15	/0	. /8	6	20	0 2%	Š	2						
147	, 162		192	206	2/9	525	236	- 236						
151	/68	186	205	223	239	253	26/	264					2	
/53	173	/95	2/8	241	252	272	288	296						
/53	176	202	231	260 251	276 263 290 276	315 297	326 305 333 3/2	338 3/5	. 32.			•		
150	175	206	242	282 271	302 289 323 306	342 322 359 336	574 348 585 357	393 363 392 365	FIG					
41	80	05	50	02 292	31 317 60 341	<u>89 364 3</u> 15 386 3	38 404	71 430						
	× •	10 10 10	5	7 3/1-3	7 345 3.	14 415 3 36 449 4	5 278 4	1 521 4						
12	/S	6	5	3/9 3/	366 35	474 44	57952	655 58						
, 105	/ /33	//3	23/	303-3/6	366 370 442 434	531.504	798 699	849 735						
76	86	/32	187	37 279	07 2347	- 549	924	1023		-				
40	53	73	108	176/2	237 4						r			
0	0	0	0	0 94	0 /30						,			
5000	5000	6667	4994	4969 2475	4933 245: 4851 2417									
0000,	0000	0000	0000	0000 7478	0000 7450									

·

M. LAUDET

Précision :

Nous avons comparé dans le tableau (I) les valeurs obtenues pour le potentiel dans le plan de symétrie de la lentille, aux valeurs calculées à partir des expressions (107) et (108) de y et de V.

Les paramètres q, p et A ont été déterminés en faisant a = b = c dans les équations (104), (105) et (106).

Nous avons obtenu :

q = 0.515 875 p = 0.254 907

 $\frac{A}{a} = 0,136$ 685

Si l'on désigne par V la différence de potentiel entre les électrodes, on voit que l'erreur relative V/V est partout inférieure à 1/1000.

Interpolation des résultats.

La détermination précise des trajectoires nécessite la connaissance du potentiel dans le plan de symétrie de la lentille, en des points plus rapprochés que ceux correspondant aux nœuds des réseaux que nous avons utilisés. Il est possible d'interpoler aisément à partir des résultats précédemment calculés.

Nous obtenons, en effet, par combinaison des formules normales et diagonales (fig. 34)

$$8 V_{0} = 3 V_{I} + V_{II} + V_{III} + 3 V_{IV}$$

x/a	η	V exact	V relax	
$\begin{array}{c} 0,00\\ 0,25\\ 0,50\\ 0,75\\ 1,00\\ 1,50\\ 2,00\\ 3,00\\ 4,00\\ 5,00\\ 9,00\\ 17,00\end{array}$	$\begin{array}{c} 1,000\ 000\\ 0,729\ 833\\ 0,534\ 564\\ 0.394\ 083\\ 0,293\ 710\\ 0,173\ 618\\ 0,114\ 625\\ 0,064\ 147\\ 0,043\ 991\\ 0,033\ 342\\ 0,017\ 024\\ 0,008\ 535\\ \end{array}$	393,6 379,0 340,0 287,6 233,8 149,8 101,6 57,7 39,7 30,1 15,4 7,7	394,3 379,8 340,9 288,5 234,7 150,5 102,3 58,1 39,5 29,7 15,0 7,4	$\begin{array}{c} 0,7\\0,8\\0,9\\0,9\\0,9\\0,7\\0,7\\0,7\\0,7\\0,4\\-0,2\\-0,4\\-0,4\\-0,3\end{array}$
17,00 33,00 65,00 129,0 257,0 513,0 1025 2049	0,008 535 0,004 271 0.002 136 0,001 067 0,000 534 0,000 267 0,000 133 0,000 068	7,7 3,9 1,9 1,0 0,5 0,2 0,1 0,0	7,4 3,7 1,9 1,0 0,5 0,2 0,1 0,0	

TABLEAU I.

F1G. 34.

2. — CALCUL DES TRAJECTOIRES.

Nous supposerons que l'électrode centrale est au potentiel V = 0 Volt tandis que les diaphragmes extérieurs sont portés au même potentiel $V = 10\ 000$ Volt; nous admettrons que les électrons sont émis sous la tension d'accélération $\varepsilon = 10\ 000$ Volt.

1° L'approximation du premier ordre.

a) Intégration numérique des équations des trajectoires.

En négligeant l'apport de la relativité, les coefficients S et M ont pour

expression

S =
$$f^{1/2}$$
 2 M = $\frac{1}{2}f''f^{-1/2}$

et les équations différentielles des trajectoires gaussiennes s'écrivent :

(112)
$$z' = Cf^{-1/2}$$
 (C = const.)

(113)
$$\frac{d}{dx}\left\{f^{\frac{1}{2}}y'\right\} + \frac{1}{2}f''f^{-\frac{1}{2}}y = 0$$

Posons

(114)
$$y = f^{-1/4} U$$

$$Q = -1/4 \{ f'' f^{-1} + 3/4 (f' f^{-1})^2 \}$$

l'équation (113) devient : (115)

$$\mathbf{U}'' = \mathbf{Q} \mathbf{U}$$

Le système étant symétrique, nous déterminerons tout d'abord les deux solutions de (115) définies par

$$(\mathbf{U}_{I}, \mathbf{U'}_{I})_{0} = (1,0) \ (\mathbf{U}_{II}, \mathbf{U'}_{II})_{0} = (0,1)$$

ou encore (1)

$$(\mathbf{U}_{\mathrm{I}})_{_{0}} = 1 \qquad (\mathbf{U}_{\mathrm{I}})_{_{1}} = \mathbf{1} + \mathbf{Q}_{_{0}} \frac{h^{_{2}}}{2!} + (\mathbf{Q}_{_{0}}^{_{2}} + \mathbf{Q}''_{_{0}}) \frac{h^{_{1}}}{4!} + \dots (\mathbf{U}_{\mathrm{II}})_{_{0}} = \mathbf{0} \qquad (\mathbf{U}_{\mathrm{II}})_{_{1}} = h + \mathbf{Q}_{_{0}} \frac{h^{_{3}}}{3!} + (\mathbf{Q}_{_{0}}^{^{2}} + \mathbf{3} \mathbf{Q}''_{_{0}}) \frac{h^{_{3}}}{5!} + \dots$$

. .

avec

$$h = x_{i^+1} - x_i = x_i - x_{i^-1}$$

L'équation (115) transformée en équation aux différences finies s'écrit, à l'approximation du quatrième ordre :

$$\mathbf{U}_{i^+1} = \mathbf{B}_i \mathbf{U}_i - \mathbf{A}_{i^-1} \mathbf{U}_{i^-1}$$

avec

$$a_{i} = \frac{h^{*}}{12} Q_{i}$$

$$A_{i} - 1 = \frac{1 - a_{i} - 1}{1 + a_{i} + 1}$$

$$B_{i} = \frac{2 + 10 a_{i}}{1 - a_{i+1}}$$

a_i, Q_i, U_i, sont les valeurs numériques que prennent les fonctions a, Q, U pour $x = x_i$.

Nous avons opéré avec deux séries d'intervalles et extrapolé avec l'indice 3 les résultats relatifs aux points communs (2).

^{1.} E. DURAND, Le calcul numérique des trajectoires électroniques. 78^{me} Congrès des Sociétés Savantes, 1953.

^{2.} Pour la disposition des calculs, voir M. LAUDET, Calcul numérique d'une lentille électronique à trois électrodes. 78^{me} Congrès des Sociétés Savantes, 1953.

CALCUL NUMÉRIQUE DES CHAMPS ET DES TRAJECTOIRES

Les valeurs intermédiaires ont été calculées à partir de la formule

$$\mathbf{U}_i = \frac{\mathbf{U}_{i+1} + \mathbf{A}_{i-1} \mathbf{U}_{i-1}}{\mathbf{B}_i}$$

x/a	f	β		<u>y</u> 2	<u> </u>
$\begin{array}{c} x/a \\ \hline 0,00 \\ 0,25 \\ 0,50 \\ 0,75 \\ 1,00 \\ 1,25 \\ 1,50 \\ 1,75 \\ 2,0 \\ 2,5 \\ 3,0 \\ 3,5 \\ 4,0 \\ 4,5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ \end{array}$	f 6 057 6 202 6 591 7 115 7 653 8 124 8 495 8 774 8 977 9 252 9 419 9 529 9 605 9 661 9 703 9 762 9 801 9 829 9 850 9 867 9 890 9 906 9 917 9 927	$\begin{array}{c} \beta \\ \hline \\ 0,0000 \\ 0,0032 \\ 0,0063 \\ 0,0093 \\ 0,0123 \\ 0,0151 \\ 0,0178 \\ 0,0205 \\ 0,0232 \\ 0,0284 \\ 0,0336 \\ 0,0387 \\ 0,0438 \\ 0,0489 \\ 0,0540 \\ 0,0641 \\ 0,0742 \\ 0,0843 \\ 0,0944 \\ 0,1045 \\ 0,1246 \\ 0,1447 \\ 0,1648 \\ 0,1668 \end{array}$	$egin{array}{c} & y_1 \\ \hline & 0,1134 \\ 0,1120 \\ 0,1085 \\ 0,1041 \\ 0,0996 \\ 0,0958 \\ 0,0926 \\ 0,0900 \\ 0,0878 \\ 0,0841 \\ 0,0810 \\ 0,0754 \\ 0,0754 \\ 0,0728 \\ 0,0703 \\ 0,0754 \\ 0,0728 \\ 0,0703 \\ 0,0677 \\ 0,0652 \\ 0,0661 \\ 0,0576 \\ 0,0527 \\ 0,0477 \\ 0,0428 \\ 0,0378 \\ \hline \end{array}$	y_2 0 0,0281 0,0550 0,0805 0,1050 0,1291 0,1535 0,1781 0,2032 0,2544 0,3064 0,3589 0,4118 0,4650 0,5183 0,5712 0,6243 0,6775 0,7307 0,7840 0,8907 0,9975 1,1042 1,2110	$\begin{array}{r} y_2 / y_1 \\ \hline \\ 0 \\ 0,251 \\ 0,507 \\ 0,774 \\ 1,054 \\ 1,349 \\ 1,658 \\ 1,980 \\ 2,316 \\ 3,024 \\ 3,783 \\ 4,593 \\ 5,459 \\ 6,385 \\ 7,375 \\ 8,439 \\ 9,583 \\ 10,817 \\ 12,153 \\ 13,603 \\ 16,911 \\ 20,903 \\ 25,815 \\ 32,008 \\ \end{array}$
$\begin{array}{c} 20\\ 22\\ 24\\ 26\\ 28\\ 30\\ 32\\ 41\\ 57\\ 73\\ 89\\ 105\\ 121\\ 145\\ 177\\ 209\\ 241\\ \end{array}$	$\begin{array}{c} 9 & 93.5 \\ 9 & 94.1 \\ 9 & 94.6 \\ 9 & 95.1 \\ 9 & 95.5 \\ 9 & 95.5 \\ 9 & 96.2 \\ 9 & 97.1 \\ 9 & 97.9 \\ 9 & 98.8 \\ 9 & 98.8 \\ 9 & 98.8 \\ 9 & 98.8 \\ 9 & 98.8 \\ 9 & 98.8 \\ 9 & 98.8 \\ 9 & 99.0 \\ 10 & 000 \\ 10 & 000 \\ 10 & 000 \\ 10 & 000 \\ 10 & 000 \\ 10 & 000 \\ \end{array}$	0,1688 0,1708 0,1728 0,1728 0,1748 0,1768 0,1788 0,1808 0,2059 0,2219 0,2239 0,2239 0,2239 0,2539 0,2699 0,2259 0,2539 0,3579 0,3899	$\begin{array}{c} 0,0329\\ 0,0280\\ 0,0230\\ 0,0181\\ 0,0132\\ 0,0082\\ 0,0033\\0,0189\\0,0582\\0,0976\\0,1370\\0,1764\\0,2157\\0,2747\\0,2747\\0,3535\\0,4322\\0,5109\end{array}$	$\begin{array}{c} 1,3176\\ 1,4244\\ 1,5312\\ 1,6380\\ 1,7448\\ 1,8516\\ 1,9583\\ 2,4389\\ 3,2934\\ 4,1479\\ 5,0023\\ 5,8565\\ 6,7113\\ 7,5637\\ 8,4182\\ 9,2726\\ 10,1271\\ \end{array}$	$\begin{array}{r} 32,005\\ 40,057\\ 50,943\\ 66,489\\ 90,494\\ 132,463\\ 224,593\\ 590,197\\ -129,419\\ -56,555\\ -42,493\\ -36,516\\ -33,209\\ -31,109\\ -27,532\\ -23,817\\ -21,455\\ -19,821\\ \end{array}$

TABLEAU II.

dans laquelle nous avons pris pour U_{i-1} et U_{i+1} les valeurs extrapolées. Les deux trajectoires réelles ont été déterminées ensuite à partir de la relation (114) (³).

3. M. LAUDET, Intégration numérique de l'équation des trajectoires électroniques. Journal de Physique et le Radium, tome 14, pp. 604 à 610, novembre 1953.

M. LAUDET

L'équation (112) donne

$$z = z_{\rm D} \frac{\beta - \beta_{\rm o}}{\beta_{\rm D} - \beta_{\rm o}}$$

avec

$$\beta = \int_0^x f^{-1/2} dx$$

Cette intégrale a été calculée à partir de la formule de Simpson. Les résultats numériques ont été rassemblés dans le tableau II.

b) Correspondance objet image.

Une solution quelconque de l'équation (113) est une combinaison linéaire de deux solutions particulières indépendantes. Les trajectoires h et k

peuvent donc s'écrire

(116)	h(x) =	• C ₁ ,	$y_1(x)$	+	$C_{2^{\lambda}}$	y_2	(x)
(117)	k(x) =	- C ₁	$y_1(x)$	+	C23	Y2	(x)

- X/ _{ðo}	<i>Y</i> ₂ / <i>Y</i> ₁	$\chi_{ a_i^{\cdot} }$
14	_ 20,90	219
18	_ 32,01	113
21	_ 45,06	69
28	_132,46	41
33	òò	33
41	129,42	28
57	5 <u>6</u> ,56	23
73	42,49	20,5
// 3	32,05	18
161	25,44	16
257	19,18	13,5

TABLEAU III

 $C_{1^{\lambda}}, C_{2^{\lambda}}, C_{1^{k}}, C_{2^{k}}$ étant quatre constantes déterminées à partir des conditions

 $\begin{cases} h(x_0) = 0 & (k(x_0) = 1) \\ h(x_0) = 1 & k(x_0) = 0 \end{cases}$

Nous obtenons :

$$C_{sh} = \frac{-y_{s}(x_{o})}{y_{i}(x_{o}) y_{s}(x_{D}) - y_{i}(x_{D}) y_{s}(x_{o})} \quad C_{sh} = \frac{y_{i}(x_{o})}{y_{i}(x_{o}) y_{s}(x_{D}) - y_{i}(x_{D}) y_{s}(x_{o})}$$
$$C_{sh} = \frac{y_{s}(x_{D})}{y_{i}(x_{o}) y_{s}(x_{D}) - y_{i}(x_{D}) y_{s}(x_{o})} \quad C_{sh} = \frac{-y_{i}(x_{D})}{y_{i}(x_{o}) y_{s}(x_{D}) - y_{i}(x_{D}) y_{s}(x_{o})}$$

La condition de conjugaison

$$h(x_0) = 0 \qquad h(x_2) = 0$$

entre le plan objet et le plan image peut s'écrire, en fonction de y et y :

$$\frac{y_{\mathfrak{z}}(x_{\mathfrak{o}})}{y_{\mathfrak{z}}(x_{\mathfrak{o}})} = \frac{y_{\mathfrak{z}}(x_{\mathfrak{o}})}{y_{\mathfrak{z}}(x_{\mathfrak{o}})}$$

Deux plans conjugués x_0 et x_i correspondent donc à la même valeur du rapport y_2/y_1 . Nous avons déterminé ainsi différents couples de valeurs conjuguées (tableau III) et nous avons représenté sur la figure 35 la courbe donnant x_i en fonction de x_0 .

Le plan focal image est déterminé par la valeur x_1 de x qui annule la solution k_1 de (113) définie, pour un point très éloigné de la lentille, par les conditions initiales

$$k_1(x_0) = 1$$
 $k'_1 = x_0$

 x_{t} satisfait donc à la relation

$$\frac{y'_{2}(x_{o})}{y'_{4}(x_{o})} = \frac{y_{2}(x_{f})}{y_{4}(x_{f})}$$

Nous avons obtenu ici :

$$x_t/a = 0.65$$

2° L'aberration chromatique.

Nous nous limiterons au calcul de l'aberration chromatique dans le plan image.

Pour la tension d'accélération ε nous avons la relation :

(118)
$$\frac{d}{dx}\left\{ S h' \right\} + 2 M h = 0$$

Pour une tension $\varepsilon + \Delta \varepsilon$ nous aurons :

$$\frac{d}{dx}\left\{\left(\mathbf{S}+\Delta\mathbf{S}\right)\left(h+\Delta h\right)\right\}+2\left(\mathbf{M}+\Delta\mathbf{M}\right)\left(h+\Delta h\right)=0$$

d'où en développant et en nous limitant au second ordre :

$$(\Delta h)_i = \frac{-1}{\mathbf{S}_i h'_i} \int_{x_0}^{x_i} h\left[\frac{d}{dx}\right] \Delta \mathbf{S} h' \left\{ +2 \Delta \mathbf{M} h\right] dx$$

avec

$$\Delta S = 1/2 S^{-1} \Delta \varepsilon \qquad \Delta M = - 1/2 S^{-2} M \Delta \varepsilon$$
Soit, en tenant compte de (118)

(119)
$$(\Delta h)_i = -\frac{\Delta \varepsilon}{\mathbf{S}_i h'_i} \int_{x_0}^{x_i} \frac{h h''}{\mathbf{S}} dx$$

Un calcul analogue donne :

 ΔS

(120)
$$(\Delta k)_i = \frac{-\Delta \varepsilon}{\mathbf{S}_i \mathbf{h'}_i} \int_{x_0}^{x_i} \frac{\mathbf{h} \mathbf{k''}}{\mathbf{S}} dx$$

En portant (116) et (117) dans (119) et (120), et en posant

$$Y_{11'} = \int_{0}^{x} \frac{y_{1} y_{1}''}{S} dx \qquad Y_{11''} = \int_{0}^{x} \frac{y_{1} y_{1}''}{S} dx$$
$$Y_{12''} = \int_{0}^{x} \frac{y_{1} y_{2}''}{S} dx \qquad Y_{22''} = \int_{0}^{x} \frac{y_{1} y_{2}''}{S} dx$$

nous obtenons

$$\left(\frac{\Delta h}{\Delta \varepsilon}\right)_{i} = \frac{-1}{S_{i}\left(C_{1h}y'_{1} + C_{2h}y'_{2}\right)_{i}} \left\{C_{1h}^{2}Y_{1i}^{"} + C_{1h}C_{2h}\left(Y_{12}^{"} + Y_{2i}^{"}\right) + C_{2h}^{2}Y_{22}^{"}\right\}_{x_{o}}^{x_{i}}$$

$$\left(\frac{\Delta k}{\Delta \varepsilon}\right)_{i} = \frac{-1}{S_{i}\left(C_{1h}y'_{1} + C_{2h}y'_{2}\right)_{i}} \left\{C_{1h}C_{1k}Y_{11}^{"} + C_{2h}C_{1k}Y_{21}^{"} + C_{1h}C_{2k}Y_{12}^{"} + C_{2h}C_{2k}Y_{22}^{"}\right\}_{x_{o}}^{x_{i}}$$

Nous donnons sur la figure 36 les variations de $(\Delta h/\Delta \varepsilon)$, en fonction de x_0 pour les valeurs $x_D = 2$ et $x_D = 12$.

3° Les aberrations du troisième ordre.

Nous avons obtenu pour l'aberration relative à l'ouverture du faisceau :

$$\frac{1}{\varphi y_{\rm D}} = \frac{-2}{{\rm S}_i \, h'_i \, b'_{\,\,i}} \, \int_{x_0}^x \, \left[\,{\rm M} h^2 + \frac{{\rm S}}{2} \, h'^2 \, \right] b'^2 \, dx$$

En tenant compte de (116) et (117), et en posant

nous obtenons

$$\left(\frac{1}{\rho y_{\rm D}}\right)_{i} = \frac{-2}{{\rm S}_{i}\left(\beta_{i}-\beta_{0}\right)^{\rm s}\left({\rm C}_{ih}\,y'_{\,i}+{\rm C}_{{\rm s}h}\,y'_{\,2}\right)i} \left[{\rm C}_{ih}^{2}\,{\rm Y}_{{\rm s}i}\,+\,2\,{\rm C}_{{\rm s}h}\,{\rm C}_{{\rm s}h}\,{\rm Y}_{{\rm s}2}\,+\,{\rm C}_{{\rm s}h}^{2}\,{\rm Y}_{{\rm s}2}\,\right]_{x_{0}}^{x_{i}}$$

Nous aurions de même

$$\left(\frac{1}{\circ y_{\mathrm{D}}}\right)_{i} = \frac{2}{\mathrm{S}_{i}(\beta_{i}-\beta_{\bullet})^{*}\left(\mathrm{C}_{ih}\;y'_{i}+\mathrm{C}_{\mathfrak{s}h}\;y'_{\mathfrak{s}}\right)} \; \left[\mathrm{C}_{ih}\mathrm{C}_{ik}\mathrm{Y}_{ii} + (\mathrm{C}_{ik}\mathrm{C}_{\mathfrak{s}k}+\mathrm{C}_{\mathfrak{s}h}\mathrm{C}_{\mathfrak{s}k})\mathrm{Y}_{\mathfrak{s}\mathfrak{s}} + \mathrm{C}_{\mathfrak{s}h}\mathrm{C}_{\mathfrak{s}k}\mathrm{Y}_{\mathfrak{s}\mathfrak{s}}\right]_{x_{o}}^{x_{i}}$$

Nous avons donné sur la figure 37 les variations de $\left(\frac{1}{\rho y_D}\right)_i$ en fonction de x_0 pour $x_D = 2$ et $x_D = 12$.

BIBLIOGRAPHIE

- G. DUPOUY. Éléments d'Optique Électronique. Collection, Armand Colin, Paris, 1952.
- [2] Louis DE BROGLIE. Optique Électronique et Corpusculaire. Hermann et C^{te}, Paris, 1950.
- [3] R. MOCH, E. ROTH, I. SALMON. Étude à la cuve Rhéographique de Sources d'ions utilisés en Spectrométrie de Masse. Détermination des trajectoires. Journal de Physique et le Radium, tome II, août-septembre 1950, pp. 524 à 528.
- [4] R. VAUTHIER. Thèse, 2 avril 1954. Applications de l'optique des charges électriques à la spectrométrie de Masse.
- [5] BERTEIN. Thèse, 28 novembre 1947. Quelques défauts des instruments d'optique électronique et leur correction.
- [6] SCHERZER. Sphärische und chromatische Korrektur von Elektronen . Linsen. (*Optik*, tome II, juillet 1947, cahier II, pp. 114-132.)
- [7] G. MÖLLENSTEDT. Sur les Pertes chromatiques des Électrons au passage à travers la matière. (Congrès International de Microscopie électronique, Paris, 14-22 septembre 1950.)
- [8] A. SEPTIER. Étude d'une Lentille électronique à fentes pour analyseur de vitesse. (C. R. Acad. Sc., 239, 402, 1954.)