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Resume : Une variété compacte, localement, mais pas globalement, kählérienne M, à forme de

Lee w jamais nulle et à courbure de Ricci positivement semi-définie et s’annulant dans la direc-
tion de B = # w seulement, a la forme de Lee parallèle. Si, de plus, M est régu lière et a la courbu-
re non-négative et la courbure sectionnelle sur w = 0 positive, alors elle ales nombres de Betti

b~ (M) = 1,b~(M) = 0. Si, encore de plus, M est quasi-Einstein et si elle a l’espace des feuilles M/B
simplement connexe, M est une variété de Hopf.

Summary : A compact locally, but not globally, conformal Kaehler manifold M with nowhere

vanishing Lee form w, and with a positive semi-definite Ricci tensor which vanishes in the

direction of B = # w only, has a parallel Lee form. If, moreover M is regular, and has non-

negative curvature and positive sectional curvatures on w = 0, it has the Betti numbers

b~ (M) = 1,b~(M) = 0. And, if we also add the hypotheses that M is quasi-Einstein and has a simply
connected leaf space M/B, then M is a Hopf manifold.

1- INTRODUCTION

A locally conformal Kaehler manifold, henceforth called an 1. c. K. manifold, is an

Hermitian manifold (M, J, g) of complex dimension m > 2, where J2=-I and g(JX,JY) =g(X,Y),
for which an open covering ~ U« ~ exists, and for each a a differentiable function o : U -~ IR,

(*) This paper was written while the author was a Lady Davis Visiting Professor at the Technion-
Israel Institute of Technology, Haifa, during the Spring of 1979.
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such that e a°~(g I U ) is a Kaehler metric on UQ, called a locally conformal Kaehler metric. It
is then easy to see [7] that w I U Q = d Q « defines a global closed 1-form, and that M has the cha-
racteristic property d Q = w A S~ where = g(X, J Y) is the fundamental form of M. If we

can take U« = M, the manifold is globally conformal Kaehler (g. c. K.). The form w is called the

Lee form of M. It is exact if and only if M is g. c. K. An 1. c. K. manifold is said to be regular if

the trajectories of the Lee vector field B, defined by w = g(B; ), provide a regular foliation B

on M , with a Hausdorff quotient manifold M/B.

Denoting by K(s) the sectional curvature of the 2-section s, we say that an 1. c. K.

manifold has positive horizontal sectional curvature if K(s) > 0 whenever s is orthogonal to B. An

1. c. K. manifold is called quasi-Einstein if its Ricci curvature Q is given by Q = ag + b w ® w for

some functions a and b on M.

Pertinent examples are provided by the Hopf manifolds with the metric derived from

the diffeomorphism with x 51 [7,8] . Let us recall that these are defined as quotient

manifolds H = (Cm - {0}) / 0394k ~ S2m-l x S 1 where 0394k is the transformation group gene-
rated by z~ -~ kz’ (i=1,...,m), I k I ~ 0,1 and (z’) E ~m - ~ 0 ~ . For m > 1, the second Betti num-
ber b2(H) = 0, so H is not Kaehlerian. Its natural 1. c. K. metric is [2,p.167 ;7,8]

with the fundamental form

satisfying = 03C9  03A9 for the Lee form

which is closed, not exact and it has no zeroes. Using results of [8], it follows that H is a compact

1. c. K. manifold with non-negative curvature and horizontal positive sectional curvature, whose

metric is quasi-Einstein and whose Ricci curvature vanishes in the direction of B only.

The purpose of this paper is to give the following differential geometric characteri-

zation of the Hopf manifolds.

THEOREM. (i) Let M be a compact connected regular 1. c. K. manifold which is not g. c. K.

and has non-negative curvature and horizontal positive sectional curvature. 1 f its Ricci curvature

vanishes in the direction of B only, then b 1 ( M ) =1 and b 2 ( M ) = 0 ;



(ii) lf, moreover, M is quasi-Einstein and the leaf space M I B is simply connected, M

is a Hopf manifold.

2 - THE LEE FORM

That Q vanishes in the direction of B only is required in order to ensure that the Lee

form is paral lel. I ndeed, we have the following.

PROPOSITION 2.1. Let M be a compact 1. c. K. manifold with Lee form W ~ 0 everywhere,
and which is not g. c. K. Then, if its Ricci tensor is positive semi-definite, and vanishes in the direc-
tion of B only, W is parallel.

Proof. Let

be the Hodge decomposition of ~, where h is its harmonic part. Since Q is positive semi-definite,
h is covariant constant (see [2,p.87] ), and so from (2.1)

where 7. denotes the covariant derivative operator with respect to the Levi Civita connection in
the direction of the natural basis vector 

The integrability condition of (2.2) is

where the are the components of the curvature tensor with respect to the natural basis.

Hence, by contraction P~( ~j - = 0, that is Q(B-F,X) = 0 for every X where df=g(F, .).
In particular, Q(B-F,B-F) = 0, so since Q vanishes in the direction of B only, we must have

Assume 03BB ~ 1. Then, (2.3) yields



for some function p . Since w is closed, d Jl A df = 0, and because W does not vanish any~

where, df ~ 0 everywhere. We therefore have d p = p df. Again, since df =~= 0 everywhere, we
see that p depends only on f, so by (2.4), w is exact. Since M is not g. c. K., this is impossible.
Hence, X = 1 and f = const. Thus, from (2.1), w is harmonic, and therefore covariantly constant.

Remark. The condition w =f=. 0 at every point says that the Euler-Poincaré characteristic of M
vanishes.

Proposition 2.1 has important consequences including the fact that bl (M) is odd [4]. .
Moreover, we can prove

PROPOSITION 2.2. Let M be a compact connected non-Kaehler 1. c. K. manifold with parallel
Lee form. Then, (i) if a is a covariantly constant p-form on M, a = kw (k = const.) for p =1, ,
and a = 0 for 2 ~ p  2m - 2, d i m~ M = m (ii) I f the Ricci curvature is positive semi-definite,
then b1(M)=1. .

Proof. (ii) is a straightforward consequence of (i), and of the well-known fact (already used) that a
harmonic 1-form on a compact Riemannian manifold with positive semi-definite Ricci curvature
is covariant constant.

To get (i), we shall use a resu lt of Kashivada and Sato [4] and adapt a computation of
Blair and one the authors [ 1 ]. Namely, if we set A = - J B, we have, by the proof in [4] and in

analogy with a known result for Sasakian manifolds [6], that i(A)a = 0 for every harmonic p-form
a with p  m. ln particular, this is true for the covariantly constant forms a. (i(X) denotes the in-
terior product by X). .

Furthermore, if we w o J, the following formula is implicit in [4] and [8]

Since for the a we consider i( = 0, (2.5) yields

or equivalently



Here, I w I = const. =1= 0 since M is not Kaehlerian. For p = 1, this yields a = k w (k = const.).
For 2  p  m - 1, if we put X = X’ + XB with w (X’) = 0, we get a(X’,Y1,...,Yp-1 ) = 0, and
if Y., = Vl + Il B with w (Y~ ) = 0, we obtain a(B,Y1,...,Y p -1 ) = a(B,Y~,Y2,...,Yp-1 ). Thus,

Aa(B,Y1,...,Y p -1 ) - Aa(B,Y~,...,Yp_1 ) _ - Aa(Y~,B,...,Yp-1 ) = 0. Since
V a = 0 implies V (*a) = 0, where * is the Hodge star operator, a = 0 for m + 1  p  2m - 2

also. Finally, for p = m, we consider the form w A a which is covariantly constant and of degree
m + 1. Therefore it must be zero. It follows that ! I w 12 c~= w A i(B)a= 0 since i(B)a is cova-

riantly constant and of degree m -1.

This completes the proof of Proposition 2.2.

3 PROOF OF THEOREM

We now prove the theorem formulated in Section 1. We begin by noting that, under

the hypotheses, and in view of Proposition 2.1, the Lee form is parallel. The geometric structure

of such manifolds has been studied by one of the authors in [8] , where the following basic facts

were obtained. First, the equation m = 0 defines a codimension one foliation of M, whose leaves

L are totally geodesic submanifolds and inherit from M a generalized Sasakian structure (see
below). Second, because of the regularity of the foliation B (see Section 1), this gives rise to an

S1-principal fibration p : M -~ S, S = M/B, which is flat (with connection cj ) and is such that

p I L : L -~ S is a covering map for any leaf L defined above. This leads to a generalized Sasakian

structure on S. By a generalized Sasakian structure we understand here a normal contact metric

structure [6] whose contact form 17 and fundamental form 4) are related by d n - I w I ~ ,
where I w I = const. This is a Sasakian structure if I w I =1.

Now, since L is orthogonal to B and it is totally geodesic, it has, in our case, positive
sectional curvature. Thus, the same is true for S, and bl (S) = b2(S) = 0 follow by a known theo-
rem [5,6] if I w I =1. Moreover, in the same case, S is a sphere if it is a simply connected Einstein

manifold [5,6] . The same results are true if I w | ~ 1 since this case can be reduced by a homo-

thetic change to the previous one, while preserving the hypotheses.

Furthermore, since the fibration p is flat, it has vanishing Euler class, and hence a

vanishing Gysin map. It then follows easily form the Gysin sequence that

from which (i) follows.



To prove (ii), it is sufficient to note that since L is totally geodesic and M is quasi-

Einstein, S is Einstein. Therefore, S is a sphere and M can be identified with the product of this

sphere by S1 (see also [8] ).

In connection with the last part of the Theorem, we also prove

PROPOSITION 3.1. A compact connected non-Kaehler 1. c. K. manifold with parallel Lee form

is quasi-Einstein if and only if, the Ricci curvature Q of the locally conformal Kaehler metrics g
vanish. In this case, the Ricci tensor Q is given by

and it is positive semi-definite.

Proof. Since g and g are conformally related and K7 cJ = 0, a well-known formula [2, p.115] gives

This shows that the stated condition is sufficient. Conversely, (3.3) gives

Since g is a Kaehler metric, ~ (X,Y) = Q(X,JY) is skew-symmetric, and this implies b =-(m-1 )/2.
Since ~ is closed, d v A S~ + v d St = o. But d S~ = w A S~

and 12 is non-degenerate, so

If 03BD ~ 0 everywhere, 03C9 would be exact and M would therefore beg. c. K. This is impossible

since by [4] , bl (M) is odd. On the other hand, if u vanishes at a point x~, it is identically zero.

Indeed, cj = d/ about x0, so from (3.4), v 
= c/ T for some constant c. Since v (xo) = 0, c

is zero. Thus, v (x) = 0 for all x E M as one sees by propagating the local result along a chain of

consecutive intersecting neighborhoods joining x 0 to x. But, u 
= 0 means a = (m-1 ) I w 1 2 / 2.

The Ricci tensor is therefore given by (3.2).
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