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Resume : Dans ce travail on étudie le cas de I’identification du domaine dans les problèmes, l’état
dont lesquel est decrit par les inéquations variationnelles elliptiques du type de Signorini-Fichera.
En utilisant la méthode de penaHsatton, I’inequation d’état est remplacée par une famille des
equations elliptiques non-lineaires. On démontre que les solutions des problèmes de I’identifica-
tion gouvernés par des equations d’etat pénalisées sont dans une certaine liaison au problème
original de I’identification.

Summary : A method of penalization is used to transform an optimal design problem governed
by variational inequalities to the optimal design problem governed by equations. It is shown
that the corresponding optimal designs (associated with penalized problems) are in an appropriate
sense close to the optimal design of the original problem.

1. - INTRODUCTION

Many practical problems lead to finding an optimal design of a mechanical system,
the behaviour of which is described,by equations, corresponding to some law of physics. In recent
years much attention has ben given to this type of the design optimization - from the computatio-
nal point of view as well as from the theoretical point of view ([1 ], [5], [6], [13], [14], [15] and
bibliography therein).
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On the other hand, there are many physical situations described by variational inequa-

lities (unilateral of free boundary value problems, see for example [2], [8], [9]). A relatively small

amount of papers is devoted to optimal control problems governed by inequalities. Moreover,

most of them analyse the case when the control variables appear on the right hand side of inequa-

lities ([10] , [11] , [12] ). Recently, in [7] the mathematical analysis of design optimization of

systems governed by a unilateral boundary value problem is given.

In the present paper the same type of problem of optimal design as in [7] is conside-

red. Hlaváek and Necas give in [7] a proof of existence of a solution for different cost functio-

nals and for one common state problem, which is formulated in terms of variational inequality

on a variable domain. In this paper a different approach is used. The variational inequality is

replaced by a family of the penalized problems, each of them is given by the classical elliptic

boundary value problem. We show that the corresponding optimal designs (associated with the

penalized problems) are close (in an appropriate sense) to an optimal design of the original pro-
blem.

The main advantage of the approach of this paper consists in the fact that only a

small modification of existing algorithms enables us to apply them for solving numerically the

problem in question. In [4] numerical realization of methods presented here is given.

2. - SETTING OF THE PROBLEM

Let S2 C IR2 be a domain with Lipschitz boundary By (k > 0, integer)
we denote the classical Sobolev space of functions, the generalized derivates of which up to order

k are square integrable in S2 (L2(~) : = The norm on will be denoted by II . ~.

(k > 0, integer, i.e. k E IN) is the dual space to Furthermore, Hk(r) (r non-empty
open set of denotes the Sobolev space of functions, whose domain is r ; is the

corresponding norm in Hk(r). By we mean the set of all infinite times continuous differen-
tiable functions, which can be continuously extended with all their derivatives, up to the bounda-

ry. The set of all functions from E(S~), vanishing in some neighbourhood of an will be denoted

In this paper we shall study the problem :

Here Uad is the set of admissible functions (controls), defined by



The cost functional j is given by

where zd is an element of 

and y = y(v) is the solution of the unilateral boundary value problem (the state inequality) :

Here f E and (see Figure 2.1 )

Figure 2.1



Remark 2.1. By applying the Green’s formula to (2.1) one can easily prove that y E K(v) satis-

fies in the Poisson equation with the boundary conditions of Signorini’s type. On a given

part of the boundary the homogeneous Dirichlet condition is prescribed and the remaining part
- with unilateral conditions - has to be determined :

As the solution y of ( .1) depends on S2(v), among others, i.e. v E Uad , we shall
write y = y(v) to emphasize this dependence. Thus, (P) is the problem on optimal shape of S2,

minimizing the cost functional j. The existence of a solution for Problem (P) is proved in [7] .
It is well-known that the penalty method enables us to replace the unilateral boundary

value problem (2.1) by a family of classical elliptic boundary value problems. Let

be a penalty operator, that is

Instead of (2.1 ) we shall consider a family of problems :

The symbol (. , .)~ denotes the duality pairing between H (S2(v)) and H (S2(v)). It is known

(see [3] and [9] ) that yE(v) -> y(v), e - 0+ in the H~ (2(v))-norm.
The above given penalty approach suggests us the following idea : Let us study the

optimal design problem, in which the state inequality (2.1) is replaced by a family of state equa-
tions (2.1 )E. More precisely :



where

and yE(v) is the solution of (2.1 )E.
A natural question arises : What is the relation between solutions for Problem (P) and

Problem (P)E if e -> 0+ ? Before going closer to this question we prove that Problem (P) has a
solution for any e > 0.

3. - ANALYSIS OF PROBLEM (P)E

Henceforth, we shall assume that the penalty operator P : H~ (S2(v)) ~ H ~ (S2(v)) is

of the form

where ~ denotes the negative part of cj (a : = ( a! - a)/2). It is easily seen that operator P,
defined by (3.1), has the properties (2.2). The main result of this section is

THEOREM 3.1. For any e > 0 there exists a solution w e of Problem (P)~.

To simplify notations we set 6 = 1 and we shall write y instead of y . Let { v L 
be a minimizing sequence for the cost functional /, i.e.

where = y(vn) E V~ : = S2n : = is the unique solution of the equation

We first prove that { II y~ } is bounded. By setting $ = yn in (3.2) we obtain



According to the Poincaré-Friedrichs inequality

Thus, by (3.3) there exists a positive constant C such that

Taking into account the definition of Uad we see that there exists a subsequence

{ and an element w E Uad such that

To simplify the notations, we shall write } instead of { vn~~. Let m E IN be fixed. Then there
exists nQ 

= nO(m) such that for any n ~ nO(m)

where (Figure 3.1 )

Figure 3.1



As

one may extract a subsequence y~~ } C such that

where y(m) G H~ (Gm) and y(m) = 0 on 8G~ B rm , rm = w(x2) -1 /m.
Similarly, as Gm+1 ~ Gm’ there exists a subsequence y~2 ~ } C and an ele-

ment E H 1 (Gm+1 ), Y~m+1 ) = 0 on such that 

Evidently,

Proceeding in this way for any m, m ~ ~ , we can construct a subsequence

~ yn I C {y n } such that
k k-1

where E H~ 0 on and

Let y~~~ ~ J be a diagonal sequence, constructed by means of k = 1,2,....
From (3.5) and (3.4) it follows that for any m, 

~

where y I G . = y~m~. Clearly,m

(1 ) In what follows, C will denote a generic strict positive constant with different values on different places.
Moreover, C will be independent on n and m.



We shall show that y = y(w), i.e. y solves the equation

Next, we shall write shortly yn and v instead of y~ and v~ . Let ~ E be

an arbitrary element. From the definition of it follows that

Passing to the limit on the right hand side of (3.9) we have

Let m be fixed and n ~ n0(m) (that is, let n be such that Gm ). Then

Now, by virtue of (3.7), it holds that

Furthermore, we have that

for n ~ ~ and by (3.4) that

By applying in turn (3.12), (3.13) and (3.14) to decomposition (3.11) we obtain that the conver-

gence

holds for m -~ 00 (and, consequently, for n ~ oo).



For a moment, let us suppose that

This will be proved in Lemma 3.2. Then, by (3.10), (3.15) and (3.16) y satisfies the equation

Let $ E V(S2(w)), and let  G be its continuous prolongation. Then there

exists a sequence {n} C such that 

Replacing in (3.17) 03BE by n and passing to the limit for we obtain

or equivalently, (3.8) holds for any $ E In other words, we have y = y(w). Consequently,
it remains to verify that w E Uad is a minimizer of j on Uad’

Let vn E Uad , be a minimizing sequence of f, Le.

Then

holds for any m and n ~ n0(m) (the meaning of nO(m) and Gm is the same as before).

If we restrict to diagonal sequences {y~} and { v~} , denote them again by ~ y~ ~ and
by and take into account the convergence (3.7), we finally obtain

for any m. By taking the limit m -~ ~ in (3.20), we get the assertation of Theorem 3.1.

To complet the proof of the previous Theorem, it remains to verify (3.16). .

LEMMA 3.2. It holds that



Proof, To simplify the notations we shall write instead of

Let m E IN be fixed. Then

We shall estimate each term on the right hand side of (3.21 ). Firstly,

Secondly,

if n -" °o . Indeed, by virtue of (3.7) and by the compactness of the trace mapping
7 : H~ (Gm) -~ L2(rm), it holds that



if n -~ 00. Furthermore,

for n -~ ~. Thus, (3.23) holds.

Finally,

Let r~ > 0 be an arbitrary number. By (3.22) there exists m0 with
r_

for all m > mQ. Choosing n > m0 sufficiently large we find by (3.23) that



and by (3.24) that

By (3.21 ) the assertion of Lemma 3.2 follows from (3.25) - 3.27). 0

4. - THE RELATION BETWEEN PROBLEM (P)E AND PROBLEM (P)

For a given sequence } of positive numbers with 0, k -~ oo, we consider a

family of problems :

where

and yk(v) E V(S2(v)) is the solution of the penalized problem

According to Theorem 3.1 there exists for any Ek at least one optimal solution for

Problem (P)E which will be denoted by wk and the corresponding state by k

In the next theorem we show that some solutions of Problem (P)E k 
are close to a

solution of Problem (P). Indeed, it holds : 

THEOREM 4.1. There exist a subsequence ~ ) of ~ ) and elements

w E y(w) E K(w) such that 
1 1 l

(uniformly) in [0,1 ], for j - ~

yk. y(w) (weakly) in H1 (Gm), for j - ~, and for any m,
l l



where

w is a solution of Problem (P) and y(w) is the corresponding state, solving the unilateral boundary
value problem (2.1 ) in S2(w).

Proof. The proof will be given in several steps.

1 ) If we take $ = in (4.1 ), we especially have by the Poincaré-Friedrichs ine-
quality that

where the abbreviation = S2(wk) is used. This implies the existence of C > 0 such that

Having in mind the definition of Uad , we can extract a subsequence from wk } (and denoted
again by such that

Exactly the same procedure as was used in Section 3 leads to the existence of a subsequence
{ ykj(wkj)} ~ {yk(wk)} and of an element y ~ H1 (03A9(w)), y e H1 (03A9(w)), y = 0 on
aS2(w) B r(w) such that

and for any m E IN.

2) Let us show that y E K(w). For $ E H~(SZ~,), (4.1) and (4.2) imply that

On the other hand, (4.3), (4.4) and Lemma 3.1 yield



By comparing (4.5) with (4.6) we find that y E K(w).

3) We now prove that y = y(w) (defined by (4.4)) solves the unilateral boundary

value problem (2.1) in S2(w). Let $ E Km, where

Then ~ E for sufficiently large j. By abbreviating yk ~ - we can write the

monotonicity of P that 
J J J

i.e.

The next considerations proceed in the same way as the proof of Lemma 1.2 in [7] :

From this, (4.2) and from (4.4) we have



In a similar way as above we find that

Making use of (4.2) and (4.4) this implies that

A combination of (4.8) and (4.9) gives

for any 03BE G Km.

Let a $ G K(w) be given. Then we can construct a function gl G H1 (Q_ ) such that
fl

Clearly, r~ : _ ~ - ~ E and there exists a sequence E D(n(w)) such that

Let us define function ~Q as follows

From (4.11) it is readily seen that

Moreover, Q are non-negative in a neighbourhood of r(w), Le.



provided that Q is sufficiently large. Thus, writing ~Q instead of $ in (4.10) (this is justified accor-
ding to (4.13) and letting £ - - we obtain that

holds for any 03BE ~ K(w). Finally, taking the limit m ~ 00, we find that y = y(w) is the solution of
the unilateral boundary value problem (2.1) in 

4) It remains to show that w is a solution of Problem (P) and that y(w) is the corres-

ponding state. Let f w*,y*(w*) X K(w*) be a solution of Problem (P) and let

As is proved in [7], Problem (P) has at least one solution. Since y*(w*) is a solution of the unilate-
ral boundary value problem, we can write

Here yk(w*) denotes the solution of (4.1) on From the definition of wk it follows that

On the other hand, as a consequence of (4.4) we have

for j -~ oo. This implies that

Since w E Uad and since y = y(w) E K(w) is a solution of (2.1) in it follows from (4.16) that

This together with (4.15) gives the assertation of Theorem 4.1 .
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