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Resume : : Nous etudions une certaine classe d’equations de Hamilton-Jacobi du premier ordre.

Tout d’abord, en utilisant des techniques de symétrisation, nous comparons une solution du pro-
blème considéré avec la solution a symétrie spherique décroissante d’un problème symetrise.
Enfin nous demontrons un theoreme d’existence des solutions de viscosite.

Summary : We study a certain class of first order Hamilton-Jacobi equations. First, by means of

symmetrization technique, we compare a solution of the considered problem with the decreasing
spherically symmetric solution of a symmetrized problem. Next we prove an existence theorem
of viscosity solution.
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1. - INTRODUCTION AND RESULTS

From the same point of view as in [9], making use of symmetrization techniques, we

study the Dirichlet problem :

where x = (xl,...,xn) is a point of Rn, Du = grad u, and f(x) is a measurable real-valued function

defined in Q.

We assume that :

a) Q is an open subset of Rn with finite measure M ;

c) X is a positive real number ;

d) there exists a generalized solution u of (1.1), that is there exists a function

u E p > 1, which satisfies the equation I Du I - Xu = f(x) a.e. in S~.

Existence theorems for (1.1) can be found in [11 ] , so that the last assumption makes

sense.

Herein our main goal is to compare a solution u(x) of (1.1) with the unique decreasing

spherically symmetric solution of a problem :

- which is of the same type as (1.1 ) ;

- given in a ball Q* C Rn having measure M ;

- for which the right hand-side has the same distribution function as f(x).

In order to state our results more precisely, let us recall that one denotes by

the distribution function of a measurable real-valued function u defined in Q, that

is the decreasing rearrangement of u and that



where Cn is the measure of the n-dimensional unit-ball of Rn, is the spherically symmetric decrea-
sing rearrangement of u.

Also we consider the increasing rearrangement of u :

and the spherically symmetric increasing rearrangement of u :

The function u and its rearrangements have the same distribution function and, as
well known, the following inequality holds (see [10] , [13] ~ :

Here and below S~* is the ball of Rn centered at the origin with the same measure
M as Q. Denoted by u(x) a generalized solution of (1.1), using auxiliary lemmas of section 2, in
section 3 we prove the following results : :

THEOREM 1.1.lfn > 1, we have : :

where, if M Cn - , is the unigue decreasing spherically symmetric solution of the
problem: :

while, if M > Cn A , w (x ) is the unique decreasing spherically symmetric solution of theproblem :

f(s) being a function with the same distribution function as f(x). (see REMARK 3.1 for an explicit
definition of f ).



THEOREM 1.2. lf n > 1, we have : :

where z~x) is the unique decreasing spherically symmetric solution of the problem : :

f(s) being a fixed function having the same distribution function as f(x). .

THEOREM 1.3./fn~17~X>(n-1)[C~/M]~" we have:

where 03A9*o is a ball of Rn centered at the origin and with radius - , and q (x) is the unique
spherically symmetric decreasing solution of the problem : :

In particular, from Theorem 1.3 we derive the following :

COROLLARY 1.1.lfn = 1, then : .’

q(x) being the unique solution, depending only on I x I , of the problem : :

Now, let us recall that, more generally, for a first order Hamilton-Jacobi equation :
H(x,u(x), Du(x)) = 0 (H being a continuous function in Q X R X Rn), besides the definition of
generalized solutions, M.G. Crandall and P.L. Lions have introduced the notion of viscosity solu-
tion.



We refer to [5J , [6] [11 J for the exact definition and for the properties of viscosity
solutions.

Only let us mention that a viscosity solution u of the equation H =0 need to be conti-
nuous but not necessarily differentiable in anywhere ; however, if u is differentiable at some xo,
then H (xo, Du(xo)) = o.

Furthermore some uniqueness and stability problems can be solved introducing
this new notion of solution (see [5], [6] , [11 ]).

In section 4, under more restrictive assumptions, we prove an existence theorem for

viscosity solutions of (1.1) (see Th. 4.1 for the exact statement).

ACKNOWLEDGEMENT. We are thankful to Prof. P.L. Lions for some useful colloquia and for

suggesting us the way to prove Th. 4.1. .

2. - TWO LEMMAS

Henceforth let u(x) be a solution of (1.1) and its distribution function, for each
s E [0, meas S~J consider a measurable subset D(s) of S~, such that : :

meas D(s) = s ; ;

Then by b) dx is an absolutely continuous function; and so there exists
a function f (t) such that : D(s)

Furthermore the following lemma holds (see [1 ] for the proof ) : :

LEMMA 2.1. . There exists a sequence ~ } of functions which have the same distribution
function as f (x ) and such that, if p > 1 :



while if p =1 :

for each function g(s) belonging to the space BV([O,M]) of the functions of bounded variation.

Now we give a sketch of the proof of the well known : :

LEMMA 2.2. Let and f(s) be two given measurable functions in [O,M] . . Then there exists
f(s), which has the same distribution function as f(s) and which depends on such that : :

(compare for example with [4] or [12]) .

- Denoted by the distribution function of (~(s), for each s E [O,M] we can fix a
measurable subset E(s) C [O,M], such that :

meas E(s) = s ;

Then let

(2.3) s(o) = inf s E jOrM] : Q E E(s) ~ , o E [O,M] ;

the required function is :

Moreover, denoting by vf(t) the distribution function of f(s), we have :



3. - PROOF OF THEOREMS 1.1,1.2,1.3

For the sake of clearness, first of all we prove two lemmas.

LEMMA 3.1. We have :

a.e. in ~.

Proof. By the isoperimetric inequality (see [7] ) :

where P is the perimeter in the sense of De Giorgi, and by the Fleming-Rishel formula ([8]) :

we get :

On the other hand, since u is a solution of (1.1):

hence for h -~ 0 :

Moreover, since

(2.1 ), (3.2) and (3.3) give :

that is :



Now, integrating both sides of last inequality from 0 to t, we have :

which implies, by the definition of decreasing rearrangement :

which gives (3.1 ) replacing s by Cn I x In.

LEMMA 3.2. We have a,e. :

where v(x) is the unique decreasing spherically symmetric solution of the problem :

Proof. Define a sequence 1 Vk (x) of functions in Q in this way :

and

Of course (x) by (3.1 ). Moreover, as we prove converges in

LP (Q*).

In fact first of all we derive from (3.7), changing the variable on the right-hand side,
that :



Now for semplicity set p = I x I and

By the following Hardy inequality ([10]) :

where p > 1 and r > -1, we get from (3.8) :

Then repeating the above k times, finally we have :

in the space of the functions ~(p) such that :

Then if n-1 > r we conclude that the sequence { vk(x) converges in LP(Q*) since :

If on the contrary n-1  r, we can fix a positive number r > r and an integer m > 0



such that r - mp = n-1 ~~~ and so, as above, by inequality (3.9) :

Then the sequence I converges in the space of the functions ~(p) such that :

In this way, after m steps, we obtain the convergence of ~ in the space of

the functions ~(p) for which :

that is the convergence of in LP(Q*).

Say v(x) = lim vk(x) in Then of course also :

Hence we get from (3.6) : :

On the other hand, interchanging integration and limit process on the right-hand

side of (3.7), for v(x) we get : 
’

Then v(x) solves (3.5) and so it is the unique solution of (3.5), which is spherically

symmetric decreasing and by (3.11) we get our claim.

Proof of Theorem 1.7. The decreasing spherically symmetric solution of (3.5) is :

r-~n-1)
~1~ - In fact we can choose m ~ and r = (w1 ) + mp.

p



then for s = Cn I x I n :

The function 03C6(t) = e t decreases in (0,a] , then, if M  a, from

Lemma 2.1 and inequality (1.2) we derive :

and from here, since w(x) =w*(C~ I x I ~), by (3.4) it follows (1.3) in the case M ~ a.
Now assume M > a. As above :

A 

Now, since the functions fh(t) and f(x) are equidistribuited, by (2.2), there exists a
function f (t) having the same distribution function as f(x) such that :

From this inequality and from (3.4) we derive the result, since the function

is the unique decreasing spherically symmetric solution of the problem (1.5).

Remark 3.1. In this case we can define precisely the function f given by (2.4). In fact, if v~ is the
distribution function of



we have

Such a function verifies the following properties :

each level set of f is a level set of § ; ;

f is decreasing in [o,a] and increasing in [a,M] ;

f is equimeasurable with f*. .

Proof of Theorem 1.2. By Lemma 2. and (3.13) we have :

Y

Then by Lemma 2.1 and Lemma 2.2, there exists a function f(t), which has the same
distribution function as f(x), such that :

where

and from there we get the result, since z(x) = z*(Cn I x I n).

Remark 3.2. We could exhibit the function f in the same way we did for f in Remark 3.1. .

Proof of Theorem 1.3. Set



Obviously :

On the other hand if s  Cn(n-1 03BB) n=03B1, then the function xjt)e " ) t1/n-1
is increasing m [0,M] and hence, by Lemma 2.1 and (1.2), :t follows that:

Remark 3.3. As in section 3 of [9] it is possible to extend the previous results to the more general
problem :

where H(p,q) and f(x,p) are given real valued functions, satisfying the hipotheses :

b) 3 K : R -~ R+ strictly increasing such that :

e) analogous to hipothesis d).

In fact we can compare the solution u(x) of such a problem with the unique spheri-
cally symmetric decreasing solution of a spherically symmetric problem in Q* for which the

right-hand side is a function depending only on I x I, equidistribuited with f(x,0).



4. - AN EXISTENCE THEOREM FOR VISCOSITY SOLUTIONS OF (1.1)

In all this paragraph we assume that :

i) ) S~ is a bounded open subset of Rn ; ;

Then, denoting by BR a ball of Rn, centered at the origin, with radius R and contai-
ning S~, the function :

is a viscosity (and generalized) solution of :

with boundary condition g = 0 on ~BR.

Also g(x) is a viscosity (and generalized) supersolution of the equation :

Of course the function u = 0 is a viscosity (and generalized) subsolution of (4.2).

For (4.2) the following theorem holds :

THEOREM 4.1. In the interval [o,g] there exists a minimal and a maximal viscosity solution of

(4.2 ), which are in and which are zero on an.

Proof. Using an iterative process, by Prop. 7.3 and by Prop. 3.4 of [11] , we can construct a

sequence of functions belonging to W1j°°(S~) ~ C(Q), such that : 
.

- 

un satisfies the equation

almost everywhere, and 0 on 

- 

un is a viscosity solution of (4.n) ;



Furthermore, applying Th. 1.11 of [11 ] , we have also :

. 

Then the sequence {un} is equibounded in W1,~(03A9) and so un ~ u~C(03A9) uniformly.
By stability theorem 1.2 of [6] u is a viscosity solution of the equation I Du I + u = in S2,
that is u is a viscosity solution of (4.2). Of course 0  u(x) ~ g(x), and u = 0 on an.

Now we show that u is minimal in the interval [O,g(x)] in the sense that, if u is a vis-
cosity solution of (4.2) such that :

then :

Infact, by Th. 1.11 of [11 ], we get :

which implies (4.3) immediately.

Now set = g(x). As above, by Prop. 7.3 and Prop. 3.4 of [11] , by an iterative
process we can construct a sequence of functions belonging to W~ W(St) f1 C(S2), such that :

- u~ satisfies the equation :

a.e. and an.

- u~ is a viscosity solution of (4.n)’ ;

Furthermore, by Th. 1.11 and by Prop. 3.4 of [10], we have :



Then, anagously as before, we can conclude that u~ converges uniformly to a func-
tion u’, which is a viscosity solution of (4.2), verifying the boundary condition u’ = 0 on 8Q
and for which

for each viscosity solution u’(x) of (4.2) such that :
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