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Resume : Dans cet article sont établies des majorations a priori pour les solutions d’equations

elliptiques avec termes d’ordre inférieur par utilisation de la méthode de rearrangement 
de fonc-

tions. Cette methode se base sur la comparaison avec la solution d’un problème particulier a

symétrie radiale pour lequel I’effet des termes d’ordre inférieur est également pris en compte.

Summary : The technique of radially symmetric rearrangements of functions is used to obtain

an a priori bound for the solutions of a class of linear second-order elliptic equations in divergence

form with lower-order terms. It is based on comparison with the solution of a particular radially

symmetric problem wherein the effect of the lower-order terms is also taken into account.
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1. - INTRODUCTION

Let Q be a bounded open set in IRn, n > 2, and let u E H1 (~) = W1,2~~~ be a weak
solution of the equation

where the coefficients and data satisfy

The aim of this work is to establish an a priori bound on u in terms of the above quan-
tities by comparing it with the solution of a certain simple equation with radial symmetry. In

doing this we use the technique of Schwarz symmetrization or radially symmetric rearrangement
of functions.

Let Q#= be the ball in IRn centered at 0 with same measure as Q. Let

and let k(x) be a measurable function : S~ ~ [o,~~ such that



Given a function u ELl we denote by u# the symmetric decreasing rearrangement
of u, i.e. the unique nonnegative function in L~ (St#~ that is radially symmetric nonincreasing and
has the same distribution function as I u I . If we change nonincreasing into nondecreasing in the

above definition we obtain the symmetric increasing rearrangement of u, denoted by u# .

We now consider the problem

Due to be radial symmetry of the equation the unique solution v of (1.5) is radially symmetric.

In case k# = 0 it is also nonincreasing, v = v~. Let Qo C Q be the set where k vanishes and

Q:= BR o 
We can now state our main result :

THEOREM 1. For every r E (o,R) we have

Moreover

A well-known result of G. Hardy, J. Littlewood and G. Polya, cf. [6] , [7] , allows

to derive from the comparison of integrals in balls (1.6~ the following interesting consequence.

COROLLARY 1. For every convex nondecreasing function : [o,~) -~ [o,~~ we have

In particular we obtain an estimate in every LP space, 1  p  ~ : :

We are interested in choosing k as large as possible so that v be as small as possible.
In particular if k(x) > 0 a.e. in S~ the pointwise estimate reduces to u# (0) = II u II ~  v(0).

The technique of rearragnements of functions has been used to obtain a priori estima-

tes for the solutions of different classes of elliptic and parabolic equations via comparison with



a worst case consisting in a radially symmetric equation that can be explicitly solved or at least
estimated in a convenient way. The first result in this line seems to be due to H. Weinberger [17]
in the case of a second-order elliptic equation without lower-order terms, where a comparison of
the L°°-norms is obtained.

Subsequently G. Talenti [13] proved the following sharp result : let u E H1 0 (S~) be a
weak solution of the Dirichlet problem for the equation

under the above assumptions on and let v be the solution of

in H~ 0 ~S~#). Then the following pointwise comparison holds

It corresponds to (1.7) above for the choice k = 0. In this way a strong result is obtained but the
influence of the lower-order term c(x)u is disregarded. Results that take into account this term
in (1.10) have been obtained by several authors : G. Chiti [7] , P.L. Lions [10] and J.L. Vazquez
[16] . In all of them a comparison like (1.6), and not (1.12), holds. In [7] the model equation is
- Av + k(y)v = f with a nonnegative function k related to c and different from ours, but a result
like (1.6)-(1.7) is obtained ; c has to be bounded (for more details see § 3). In [10] a result is

given for (1.10) with c E L~(S~) : one compares u with the solution v of - Av + c#(y)v = f#(y)
(in our notation). Actually it even includes some c(x) with changing sign, cf. Theorem 2, [10] .
Finally [16] considers the semilinear equation - Au + j3(u) = f in Q = IRn, where ~i is continuous,
nondecreasing with p(0) = 0. The assumptions aij 

= = IRn are made only for simplicity.
If v is the solution of - Av + j8(v) = f# in IRn then (1.6) holds with u, v replaced respectively by
a(u#)~ a(~). .

It is interesting to remark that the comparison of integrals in balls of the form (1.6)
is the result typically obtained for many parabolic equations, cf. the results of [6]. It is shown in

[16] how to reduce the parabolic result for the equation ut 
= with w = {3-1, to the above

semilinear elliptic result.

The influence of the first-order term L (b.u) , I 
is studied by A. Alvino and

G. Trombetti, [2] , [3] , under the conditions (1.2). They obtain pointwise comparison, (1.12),
by setting k = 0, i.e. disregarding the zero-order term. This result has been extended by G. Talenti

[14] to the case bi C LP(Q), p > n. We do not quite recover these results because of condition

(1.2.d).



For other results for elliptic equations related to the above discussion see for instance

[1 ] , [4] , [5] , [8] , [10] .

Finally a word about our assumptions (1.2) : the parts a), b), c) and e) are standard

in related works. We introduce d) to control the two lower-order terms ; in fact d) appears as a

usual condition (together with a), b)) for the maximum principle to hold, cf. [9], § 8.1.

Theorem 1 is proved in Section 2. Several comments and applications are briefly

treated in Section 3. In particular, in Theorem 2, we obtain a result like (1.9) for a dual class of

equations.

2. PROOF OF THEOREM 1

2.1. - We review for the reader’s convenience some notations and results that we shall use. Let u

be a measurable function defined in a bounded open set Q G IRn, n > 1, with measure meas
(Q)=IQI,then

i) the distribution function of u is the function ~ : [o,~) -~ IR+ defined by

ii) the decreasing rearrangement of u u* is defined by

iii) the increasing rearrangement of u u* , is defined by

iv) the symmetric decreasing rearrangement of u, u# (resp. symmetric increasing rear-
rangement of u, u#) are given by the formulas

where Cn = ~n/2 / r(1 +-) is the volume of the unit ball in IRn and I S~ I = 
2 n



A number of well-known formulas relate the functions u, u*, u , ui u.u. , cf. [6 ] ,
[13] for instance. Let us only point out the following fact as a consequence of the Hardy-Little-
wood inequality :

valid if u, we have not only

but also

Before proceeding with the proof let us remark that we can reduce ourselves to case
f > 0, u > 0 a.e. without loss of generality by using the maximum principle. This assumption is
therefore made in the sequel.

2.2. - The proof begins as in [13](see also [2] ) : we consider the function ~(t), t > 0, given by

Using the fact that u E H1 o ~S~) is ( a weak solution of (1.1) one obtains for a.e. t > 0 :

Now let Du = (ux 1 ,...,ux n ). The ellipticity condition (1.2.b) implies that

Arguing also as in [2] we have

There three last inequalities give



We now need the following lemma, where the condition (1.2.d) comes in : :

LEMMA 1. Under the hypotheses (1.2), (1.4) we have for a.e. t > 0

Proof of the lemma. Because of (1.2.b) the quantity

is nonincreasing in t. Therefore, it follows from (2.9) that

On the other hand since (h > 0)

and this expression tends to 0 with h, we obtain

Now let us define the function 03C6 ~ H1o (03A9) as follows :

Then 0 and using (1.4.b) we have

As h -~ 0 this expression tends for a.e. t > 0 to



Therefore

From (2.14) the desidered result follows..

We return now to the proof of the Theorem. Consider the quadratic expression in Y :

It follows from the lemma that P(0)  0. It also follows from (2 12) that P(Y1)  0

for Y1 = 0 d dt ~ I Du | dx since c(x) > k(x) a.e.. It follows that P(Y)  0 for everydt 

Y E [0,Y~ ]. On the other hand we have

as a consequence of de Giorgi’s isoperimetric inequality plus Fleming-Rishel’s formula, cf. [13] .
Hence, putting this value into (2.17) and using (2.7) results in

Using the definition of u* (loosely speaking the inverse function of ,u) we easily obtain from
(2.19)

This is the fundamental inequality satisfied by u*. Let us recall that since u E H1 0 (S~) then
u# E H1 (S~#), cf. [6J , hence u* is absolutely continuous in I S2 I ] V a > 0. On the other hand
it is easy to see that the solution v to (1.5) satisfies for every 0  s  I S2 I

where, obviously, v (Cn I y 1 ) = v(y) for every y E S~#, If we now define



the above formulas imply that y satisfies

therefore, by the maximum principle we conclude that y(s) > 0 for every s E , I and
hence for 0 ~ s  This implies, cf. [6], that

from which G( I no I ) ~ u*( follows by continuity.

In case it follows from (2.20), (2.21 ) that the function w(s) = v*(s) -u*(s)
satisfies

From which it follows that w(s) > 0, i.e. v*(s) > u*(s) in [0, I ] or u#(y)  v(y) for

Remark. Actually in the proof of the Theorem we obtain the estimate y(s) > 0, that can be refor-

mu lated as

(2.25) and (1.7) together imply (1.6). 
_

3. COMMENTS AND APPLICATIONS

3.1. The function k* used in the theorem can be replaced by any nonnegative function

K :[0, |03A9|] ~ IR such that ...



for every 0  s  I n (substitute K for k~ from (2.20) onwards). (3.1) follows from the assump-
tion

by integration by parts. Then Theorem 1 holds, v being the solution of (1.5) with k#(y) replaced
by i y I l ).

Of course we are interested in taking K as large as possible. In case bi = 0 and

the function K(s) = 0 for 0  s  K(s) = 71 for s where So 
= 

7o / 7i satisfies
(3.2) is nondecreasing and has the same L~-norm as c. We obtain thus Chiti’s result, [7].

3.2. Our result is not optimal in the following sense : typically the comparison involves a generic
solution u of a class of problems and the solution v of a certain worst case in this class (see for
instance [13 ] , [ ]). In our case the problem (1.5) does not belong to the class of problems (1.1 ),
(1.2) because bi(x) = - Bx. i I x 1 1 and c(x) = k(x) do not satisfy (1.2.d). Therefore we are compa-
ring with a relaxed problem. ’

3.3. As in [2] we may apply the above result to obtain a comparison result for a dual problem.
In fact, let w E H1 0 (S~) be a weak solution of the problem

where the domain, coefficients and data satisfy the conditions of § 1 and let z E H1 0 (~#) be the
(radially symmetric) weak solution of

Then the following result holds :



THEOREM 2. For every p E [1,~] we have

Proof. This is based on Theorem 1 and the duality between the operators L and L, on the one

hand, and between the first-member operators of equations (1.5) and (3.5), that we shall denote

by A and A, on the other hand.

Let Lw = g as in (3.4) and let f E L~ and g E Co (S~). If u, v, z are the solutions of

(1.1), (1.5), (3.5) we have :

By density argument we have

In the limit we obtain (3.6) for p = oo *

3.4. The above results apply to other related classes of elliptic equations. Let us point out here

the case of degenerate elliptic equations.

Thus, if we take Theorem 1, the result (1.6) holds true even if we replace (1.2.b) by

for a.e. x E S~ and every ) E IRn, where v is a nonnegative measurable function in S~ such that

(Existence and regularity of solutions of (1.1) under the above assumptions is studied for instance

in [11 ], [14] ).



Then we have to replace the term -Av in (1.5) by

where E : : S~# -~ [o,~ ) depends not only on v but also on u. For the construction of _ v cf. [3] ,
where the problem with c = 0 is treated. For the proof we repeat the argument in Section 2

with the necessary changes due to (3.8) that can be taken from [3] .

3.5. Theorem 1 should be a good starting point for the study of second-order parabolic equations
with lower-orden terms along the ideas of [16].
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