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A lower bound for P(x4 + 1)

MARINA MUREDDU (1)

Annales Faculté des Sciences de Toulouse Vol.VIII, n°2, 1986-1987

R~SUM~. - On démontre que, pour tout x > 3, le plus grand facteur de
x4 -f-1 est plus grand que 113. On donne aussi un algorithme pour déterminer
toutes les solutions z, ai a2, ..., an de liquation x2 + 1 = prl ...pn", o~
p 1, p Z , ..., pn sont des nombres premiers donnes.

ABSTRACT. 2014 In this paper it is shown that the greatest prime factor of
the integer of the form x4 + 1 is greater than 113 for z > 3. Moreover,
the author describes an algorithm leading to all solution x, ai, a2, ..., an of
equation xa + 1 = pi ...p ;", where the p~ are given primes.

Introduction

The search for prime factors of polynomials such as xn + 1 has a
long history beginning with Gauss and Legendre, cf. Dickson’s "History
of Theory of Numbers". .

In this paper we are concerned with the problem of finding a lower bound
for the greatest prime factor of integers of the form x4 + 1. In the sequel,
we shall denote this factor by ~-1) .

Specifically, we shall prove in detail that P(x4 -f-1) > 73 for every integer
x > 3. By following the same pattern and using a personal computer,
however, it is possible to improve on this result.

Actually we know that -f-1) > 113 for every x > 3 and P(x4 -+-1 ) =
137 for x = 10.

It is to be observed that, as shown in section 3, theorem in section 2
enable us to solve completely equations of the form z2 + 1 = pi p03B122
(where the p~ are given primes), in a way different from those followed by
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mathematicians such as STØRMER [S],WEGER [7], MiGNOTTE [4] and others,
who studied problems of this kind.

§ I. Preliminary

We shall begin by reducing our problem to that of solving a number of
Pell’s equations.

Legendre proved that every prime divisor of x4 + 1 is either 2 or of the
form 8h + 1. Hence

Suppose now P(x4 + 1)  73. In such a case, (1.1) becomes :

that is,

Since 4 does not divide z2 + 1, we rewrite (1.3) in the forme

where a, b, c E ~0,1} and y = 1?’n4ln, m, n E N.
Therefore, we have to study the following Pell equations :

where y = 17’~‘41n, m, n E N.

Without going into detail about Pell’s equations, it is nevertheless usefull
to state the following : :

THEOREM A. - If a positive solution of Pell’s equation



then x/y is a convergent pn/qn = [ao, al, ..., an] of the periodic expansion of
~ as a continued fraction :

Equation (A) has no solution if period r of that expansion is even;

otherwise, if r is odd, all positive solutions of (A) are given by :

or, equivalently, by xn + yn ~ = (zl + y where n is an odd positive.
integer and is the smallest positive solution of (A~. .

We refer to ~6~ for the proof.

§ 2.

In this section we shall present a few theorems in order to study Pell’s
equation by use of linearly recursive sequences (for short I.r.s.). For a survey
of this subject see (2~.

THEOREM 1.- Let u = be the second order I.r.s.

(where a, b, c are integers) and let 0 be the discriminant az + 4b of it~
characteristic polynomial. For any given prime p, numbers un have the
follotving properties :

Proof.- Consider the I.r.s. (2.1) modulo p

and let f (x) be the characteristic polynomial of (2.2) : :



L denotes the extension of Fp, which contains the roots pl, p2 of f (x). .
In particular, in cases i) and ii) we have L = Fp and in case iii) L = F p2. .
It is known that any term of a second order I.r.s. is given by : :

where constants A, B E L depend on the values of vo and vi In this case,
since vo = 0 and vi = 1 a straightforward calculation gives :

Case i) of the theorem is a direct consequence of (2.4)’.
In the hypothesis of case iii), we have L = Fp, and then pt E Fp. Because

of Fermat’s Theorem we have - 1 (mod. p) and the statement
follows from (2.5.)’.

Suppose now (~)= -1, then L = Fp2. Let a be the Froebenius
automorphism :

an easy computation shows that

Since is not Pi (for, if it was, 03C3 would be the identity), then

and from this and (2.5.)’ :

We note that -in cases ii) and iii) the terms and 

respectively, are not necessarily the only ones divisible by p. In particular
U(p-l) ~ (resp. is not always the first one.



The following theorem will state something more about divisibility of
the terms in the second order l.r.s. which have characteristic polynomial
f (x) = x2 - dx - 1, a E Z.

THEOREM 2.- Let (un)n~N be the second order l.r.s. :

then,

where the symbol (n, m~ denotes the greatest common divisor of m and n.

Proof .- We shall begin by proving

i’) n|m ~ un|um.
It is known that the sub-sequence

is a I.r.s. It follows that all the terms (2.7) are divisible by (uo, un) = un.
ii) One can easily prove, by induction on k, that the relation

holds for the I.r.s. (2.6). We shall use (2.8) to prove

which is equivalent to ii) : :

but (um_1, um) = 1 so

We have now to prove the converse of i’). Suppose un|um then after ii) : :



It is easy to prove that k H uk is one to one. So, n = (n, m) and n~m.

COROLLARY .- Let k be the smallest positive integer such that uk - 0
(mod.p ). If ue - 0 (mod.p) then k~B.

THEOREM 3.- Let (zl,yl) be the fundamental solution of

If (U,V) E N x N is a different solution of (2.10), then the following
statements hold : 

.

i y1|V
ii~ there exists a prime q such that q~Y and q X dy.

Proof . - Because of Theorem A, the general solution (U, V ~ is given by

or, equivalently by

Hence

Consider the second order l.r.s (yn), associated with the characteristic
polynomial g (z~ = zZ - 1 = (z - - pZ ~, whose first terms are
yo = 0 and . (2.12) ensures that values Vn are exactly the terms in odd
places of this I.r.s. : :

This proves part i) of the Theorem; in fact all the terms of (yn) are divisible
by (Yo,Yl) = yI = Yo.

ii) S ince yl .  V, we can put V = yl V’, with Y’ . > 1.. If ~. ~ the
Theorem is proved. Otherwise let p > 3 be a divisor of ( yl d, V’) (without
loss of generality we suppose p > 3, in fact 22 and 3 do not divide x2 + 1). .
We shall prove that there exists a prime q which divides V but not yi d.



For that, consider the new l.r.s. yn = :

whose scale . is still g(z) . Obviously, Y ~ = y;,,=. for a .suitable odd m, moreower ...
p divides both ym and yid.

Since the discriminant of g(z) is 0 = 4y2d, applying Theorem 1.i) to the
I.r.s. we obtain m - 0 (mod.p) and so -because of Theorem 2.i- .

It is therefore sufficient to prove that there exists a prime q such that 
but q x yi d.

From (2.11) we obtain

where A and B > 1 are suitable integers. Notice that p x B : in fact p~B
implies and hence z = 0 (mod.p) a contradiction. Let q be any prime
factor of B, then q ~ p cannot divide 0 = : by Theorem l.i) q would
divide p, a contradiction. This completes the proof.

In this section we shall present an algorithm to solve completely the
equation

where p~ are given different primes (the unknows are x, ai a2, ... , an) .
We have to find all solutions (x, y), with

of each equation

Theorems in section 2 imply that we can effectively find all the solutions of
equation (3.3) which satisfy the condition (3.2). In fact, let us consider one
of the equations (3.3) and let us put : :

Y : = {y ~ (y = Pi ... ~ Pn "~ and (there exists x such that (x, y)
is a solution of (3.3))}.



Let (3.3) be solvable and let (xl, yl) be its fundamental solution. If yl is
not of the form (3.2) then -because of Theorem 3.i)- there is no solution of
that form : Y = 0.

Suppose this false, and let us consider the subset of P, say Ei, which
contains all the prime factors of yi :

and let us put

If E~ - ~, then -because of Theorem 3- Y = ~yl ~. If not, let p8 E E2.
Bearing in mind that all solutions of (3.3) are the terms with odd indices of
the l.r.s.

we can find the smallest solution, say y8, divisible by p8. If Y, then no
solution divisible by pe belongs to Y, since -by Corollary- it is a multiple of
y8. Otherwise, if y8 E Y, we consider, together with (3.2) : :

(whose fundamental solution is (a, y = yl)),

and argue as under (3.3) above.
It is plain that such an iteration terminates.

Remark. It is useful, in the search for the smallest solution divisible
by p8, to consider the I.r.s. (3.4) modulo p. In fact, generally, -by Theorem
2.i)- actually it is not necessary to find y8, but only its index in the I.r.s.
Moreover, it is to be noted that the l.r.s. associated to (3.5) is the sequence

An easy computation shows that the bound for the number of odd
solutions of (3.1) is .



We are now in a position to study equations (1.5).

has only the trivial solution (x, y) = (0,1~. .

have no solutions. In fact, the period of expansion in continued fraction of
both B/1394 and B/34 is even (see Theorem A).

The fundamental solutions of

are = (132,5) and = (32,5) respectively. Hence, after
Theorem 3.i) all solutions are multiples of 5 and not of the form y = 17"‘41". .

***

The fundamental solution of

is = ( 1,1~ . Therefore, all solutions y are the terms in odd places of
the l.r.s. : :

After Theorem 1 and Corollary, we obtain :

a) all terms divisible by 17 are with even index and so are not solutions
of (4.1) ;



b) for the terms divisible by 41, since (~)= 1 and we are interested
in terms with odd index, it is suflicient to examine y5. A little calculation
shows that y5 = 29.

Hence, the only solution of (4.1) satisfying the condition y = 1?’’’’’~41n is
(xi, yy = (1,1~.

***

The fundamental solution of

is (zl, = (9,1), so, the solutions y are the terms in odd places of the
l.r.s.: .

After Theorem 3, A = 82 ensures that no solution of (4.2) can be of the
form 41". .

On the other hand, ( ° )_ (87)= -1; let i be such that In such

a case a suitable divisor of 18 = p + 1 divides i (see Theorem 3.iii and
Corollary). Arguing as in (4.2), it is enough to observe that 17 x y3 = 325
to be sure that the only solution is the fundamental one (zl, yl) = (9,1). .

***

The fundamental solution of

is (4,1). The values yn are now the terms in odd places of the
l.r.s. : :

As in (4.2), apply Theorem 1 and Corollary. We need only consider y3 and
!/7. . S ince y3 = 65 = 13 x 5 and y7 = 28009 (prime), the only solution is
(Zl, Yl) _ (4,1) ~

***

In conclusion, we get z E ~0,1, 4, 9} so that + 1)  73 only for
z E ~0,1, 2, 3} and the proof is accomplished.
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