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Volterra integral equations associated
with a class of nonlinear operators

in Hilbert spaces

ENZO MITIDIERI(1) and MARIO TOSQUES(2)

Annales Faculté des Sciences de Toulouse Vol. VIII, n°2, 1986-1987

Soit H un espace de Hilbert Nous étudions l’équation
non linéaire de Volterra

ou b et F sont respectivement une fonction scalaire et une fonction vec-
torielle et A est un opérateur (éventuellement multivoque) qui n’est pas
nécessairement monotone.

Nous demontrons, sous des hypotheses convenables, des résultats d’exis-
tence, d’unicité et de regularity pour la solution u.

Enfin, nous donnons des exemples qui clarifient les résultats abstraits.
ABSTRACT.-Let H be a real Hilbert space. We study the nonlinear
Volterra equation

where b and F are respectively a scalar and a vector valued function and A
is a (possibly multivalued) operator not necessarily monotone.

Under suitable hypotheses we prove various existence, uniqueness and
regularity results for the solution u. Some examples which illustrate the
abstract results are presented.

§ 0. Introduction

In this paper we discuss some existence and regularity properties of the
solution of
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where A denotes a nonlinear (possibly multivalued) operator on a real
Hilbert space H, b : ~0, T ~ --~ R and F : ~0, T ~ --~ H are given func-
tions. Many results concerning the existence, uniqueness and asymptotic
behaviour of the solutions of (0.1), are known if A is a maximal monotone
operator, or more generally, an m-accretive operator in a Banach space X.

See for example, [10], [11], [12], [13], [15], [16], [21], for some results in
this direction.

The aim of this paper is to give some contribution to the existence
and regularity theory in the case that "A is not necessarily monotone". .
A similar problem was discussed also in Kiffe [12], where this author has
considered "non monotone" perturbations of monotone operators. Using
the ideas introduced in [4] - [9], we have been able to prove some existence
results for (0.1), for a large class of nonlinear operators.
We emphasize that our results enable us to treat concrete examples of

operators which are not necessarily perturbations of maximal monotone
operators.

This paper is organized as follows : :

Section 1 contains some definitions and properties needed in the subse-
quent sections.

Section 2 contains some results concerning the existence and uniqueness
of the "local" solution in the "nonvariational case" that is, we consider

operators which are not necessarily of the form A = a- f (the precise
meaning of the operation "a-" is explained in section 1. In the same

section we give also some suflicient conditions for the existence of the global
solution.

In section 3 we analyse further properties enjoyed by the solution of (0.1)
in the "variational case", that is when A = a’ f .

In particular we give some sufficient conditions which ensure the global
existence of solutions, as well as, their regularity.

Finally section 4 contains some concrete examples which illustrate our
abstract results.

§ 1. Preliminaries

In this paper H will denote a real Hilbert space with scalar product ( , )
and norm ~ ~ ( ~ _ ( , ) ~ . .

If u ~ H and r > 0, we set B(u,r) = {v E H:  r}.



Let A : H -. 2Ha (possibly multivalued) operator defined on D(A) =
{u ~ H : Au ~ Ø}, and let 03A9 ~ H be an open set.

DEFINITION (1.1~.- Are operator .

is said (p, f)-monotone if
(i) there exists a lower semicontinuous function

such that

(ii) there exists a continuous function

such that for every u, v E D(A) and a E Au, /~ E Av one has

In what it follows, if A is a (p, /)-monotone operator, we will use the
standard notation

A particular class of (p, f)-monotone operators are the so called "f-
solvable" (p, f)-monotone operators (see [4], [9]).

DEFINITION (1.2).- Let A be a (p, f)-monotone operator on H.
Then A ia said "f-solvable " at u E D(A) if
(e~ for every c > 0, there exist M, ao > 0 : for every a ao~ and

v E B(u, ac), there exists w E D(A) :

Remark ( I.2) . If A is a Lipschitz perturbation of a monotone operator,
then A is a (p, f )-monotone operator with 03C6 ~ suitable constant and f = 0.



Furthermore if A coincides with its maximal extension (see [20]), then A
is also f-solvable at every point u E D(A) (in this case we have f = 0 too). .

For other concrete examples of operators which satisfy the properties of
Def. (1.1) and (1.2), see [4] - [5] - [6] - [7] - [8].

~ - convex functions

A particularly usefull class of (p, f)-monotone operators are obtained as
it follows : :

Let SZ be an open subset of H and g : f~ ~ R U {+oo} a given function.
As usual, we will put D(g~ = {v E H : g(v) E R}. For u E D(g) we can

define

We will put = {u E H ~ ~}.
It is not difficult to see that is a closed, convex subset of H for

every u E .

Therefore we can denote by grad- g(u) the element of minimal norm of
a-g(u).

If is not empty, we say that g is "subdifferentiable" at u, and we
will denote by a-g(u) the set of its subdifferentials and by grad -g(u) the
"subgradient" of g(.~ at u.

DEFINITION (1.3).- A lower semicontinuous function

..is called ‘~-convex’° if :

there exists a continuous function
+ : D( f ) x R3 --~ R+ such that b’v E D( f ), du E f ) and

Va E 8- f (u) we have

It is known that if f is a 03A6-convex function, then A = 8- f is a (cp, f )-
monotone operator (for a suitable 03C6) which is f-solvable at every point of

f ).



For the proof of this fact, as well as for some relevant properties of 03A6-

convex functions, see [8]. .
In what it follows, if T > 0 and H is a Hilbert space, we will denote by

H~ (Lip((0, T~; H) the space of absolutely (Lipschitz) continuous
functions, and by BV(O, T; H~ the space of the functions with essentially
bounded variation on ]0, T[. .

If h E BV(0, T; H), we will use the convenction that

If u : [0, T] --~ H is a continuous function we will put also

In this paper we shall use the following definition of solution for (0.1~.

DEFINITION (1.4).- If T > 0, b E L1(O,T;R), F E Ll(O,T;H), we
say that a function u E L1 (0, T; H) is a strong solution of (0.1) on ~0, T~
if :

there exists a function W E Ll (O, T; H~ such that

§ 2. The nonvariational case

In this section we will prove the main result of this paper, namely "a
local existence" result for the equation (0.1) in the general case of a (p, f )-
monotone operator A which is /-solvable.
We start with a simple uniqueness result :

P ROPOSITION (2.1) . Let A be a (p, f)-monotone operator on H.



Assume that

Let ui (i = 1, 2) be a strong solution of

on ~0, T ~, such that for i = 1, 2

Then ul = u2 and Wl = W2 on ~O,T~. .

Proof - Clearly ui E By (2.1)-(2.2) we know (see Prop.
1 of (10~) that us satisfies

where, b’v E 

(r being the unique solution of r -I- b’ * r = -b’). Since

where = -f- Var(r; ~O,t~), , (2.5) and the f)-monotonicity of A
give :

which, by Gronwall lemma, implies



Using (2.4), (2.6) and (2.8) we conclude easily.

Remark (2.1~.- By proposition (2.1), it follows that if F E Lip((0, T~; H~
and u; (i = 1,2) is a strong solution of (2.3), on ~O, T~ such that

then ul = u2, since, in this case, Wi E L°°(O,T;H~ (i = 1,2~. .

THEOREM ~2.1~.- ~Local existence)
Let A be a (p, f)-monotone operator which is f-solvable at uo E D(A~. .
Assume that

Then there exist T T~ and a unique strong solution u of

on [0, T]. .
Furthermore

For the proof of theorem (2.1) we need the following lemma whose proof
can be obtained using the same techniques of Prop. (1.4) of [9J (see also
Prop. (4.1) of [9]).

LEMMA (2.1).- Let A be a (p, f)-monotone operator which is f-solvable
at Uo E D(A).

Then : :

for every C > there exist M > f(uo) , ao > 0, r > 0 such that
if we set



the following facts hold :

Proof of theorem (2.1) . We shall organize the proof as follows :
I. Solution of an approximating equation and research of a priori bounds

for the approximating solutions.

II. Uniform convergence of the approximating. solutions on a common
interval of existence.

III. The limit of the approximating solutions is a strong solution of (2.11). .



and let M, ao, r, N and 03A903BB be as in the statement of the preceding lemma.

By the lower semicontinuity of f, and the continuity of Sp, we can suppose
(unless of decreasing r) that : for every

and (unless of decreasing Ào) that for every A we have C

B(uo, 2r).
Let À e]0, ao~ and

be the unique strong solution of

defined on its maximal interval of existence ~0, Ta (.
We know that ua satisfies

a.e. on ~0, Ta [.
Using i) of (2.17), (2.18), we have for every a e]0, ao~ and for every T’, h : :

that



a.e. on ~0, T’ ~, which implies

Using (2.6) we have also

which implies, by (2.19), that

Therefore, by (ii) of (2.17) and the definition of C, there exist T > 0 and
E > 0 such that (unless of decreasing ao), for every À 

Furthermore (unless of decreasing T) by (2.25) we get,

which implies, by (2.19) that for every a ao~

f Here k(~) is a computable function such that A?(T~) = 1



for every t E ~O, T~ n ~O, Ta ~, (unless of decreasing ao and T~. .

Now, by (2.14) (i) and (2.19), we have

which implies, together with (2.28), that

for every t E [0, T] n [0, Ta (.
On the other hand, by (2.27) we have

which implies that, for every A in ]0, Ao]

We conclude that T  Tx for every À ao~ since ~O, was the

maximal interval of existence of ua. .

II. Now we want to show that converges uniformly on ~O, T~ to a
Lipschitz function u such that f (u) is bounded and u(t~ E D(A) for every
t E (O, T~.

By (2.14), (2.19), the definition of w and the (~p, f~ - monotonicity of A,
we have for every ao~ and a.e. on ~0, T~ that



Therefore, for a suitable constant ~fl > 0 and for every t E ~0, T~, we have

which implies, for a suitable KZ > 0,

So, for a suitable K3,

Therefore (ux)x converges, uniformly on (O, T~, to a Lipschitz map
u : (O, T~ ---~ tl, such that

By (2.27) we get that = u(t) uniformly on (O, T~.
Using now the lower semicontinuity of f, (2.29) and (2.15) of lemma

(2.1), we conclude that

and in particular

for every t E ~0, T~. .
III. Finally we want to show that u is a strong solution of (2.11) on [O, T~. .
Since

_ 

for every A there exists W E T; H) such that



in the weak topology of H) Let .~  Ào be such that (1 - Xw) > o.
By (2.36), we know that 

’

Using the definition of Aa, the (p, f)-monotonicity of A, the definition
of 03C9 and (2.14) of lemma (2.1) we have

Taking the limit as p, --> 0 in (2.41), we get

which implies that = u(t~ and W(t) E Au(t) a.e. on (O,T~. .

Furthermore, passing to the limit as a -~ 0 in (2.18), we conclude that u
is a strong solution of (2.11). .

Finally Remark (2.1) implies the uniqueness of u.
We conclude this section with the following :

THEOREM (2.2).- (Global existence). Let A be a (p, f)-monotone
operator on H which is f-solvable at every point of D(A). .

Assume that :

Suppose that uo E (2.9)-(2.10) hold. Let To( T) be the

supremum of T such that u -is a strong solution of and holds.

Then



then To = T, u is a strong solution of on ~O,T~ and

Proof .- We get (2.44) directly from (2.43~. Suppose now that

we found easily that

and by (2.43) u E D(A~, , u is a strong solution of (2.11~ on and

Then, if To  T, using Theor. (2.1~ we can extend u to a right
neighborhood of To. This contradiction proves the claim. 

§ 3. The variational case

The aim of this section is to examine some regularity properties of the
solution obtained via Theor. (2.1), in the special case A = 8- f, f being a
9-convex function, (see def. (1.3~~.

THEOREM (3.1).- Let A = 8- f be the subdifferential of a 03A6-convex
function f n -~ R U {-f-oo}. .

Suppose that

and set

t If a, b E R we set a V b = max(a, b).



Then

(where W is given by def. (1..~)).
Furthermore the following property holds :

Proof .- Let u and T be given by theorem (2.1). .

By the properties of ~-convex functions (see (1.20) of [8]) we know that
fo every a ao~ the function

is in and

Therefore, taking into account that a.e. on [0, T] we have

we get by (2.25)-(2.27), that is a family of equilipschitz maps on

|0,T], and

for every t E ~0, T ~, which clearly implies that f (u) is Lipschitz on ~0, T~ . .



Now, let To be the supremum of T such that u is a strong solution of
(2.11) on (O, T~ and

By the preceding remark we know that To > 0. We want to show that
To = To.
We remark that,

a.e. on (O, To~, (W(t) E 8- f (u(t~)~. Now, if To  To, by the definition of
To, there exists K > 0 such that

which, by (3.12) implies the extendability of f(u) to a Lipschitz map on
~~~ .

Applying theorem (2.1) with initial data uo = u(To) we obtain a
contradiction. To prove property (3.5), we remark, first of all, that u satisfies
the following problem :

where W is given by (1.5).
Using (3.12) we have for every t E (O, To[ that

Therefore, if 0  E  1, by (2.6) we get



where cl = 2E fo 
Now by (3.7), we have

Then, for every t E (o, To and a suitable c2 > 0,

Using Gronwall lemma, we obtain for every t E ~0, To~,

Therefore, u is Holder continuous, and by (3.7)

This implies that we can extend u on ~O, To] by putting u(To) = u. In
particular by (3.14) we have

and by (3.12), (3.20), (3.22),

- Now by (3.6), since A = every E D(A) and a E Au, ~ E Av
the following inequality holds



where

If now 0  T’  T + h  -To, by (3.14~ we have

for a suitable c3, since by (3.23)

Gronwall lemma implies that for every t E ~O,T~~ we have

which implies that for every t E ~0, T ~~ we have,

Therefore  eg a.e. on which implies together to (3.7),
that

Then To =T by theor. (2.2) and (3.8) follows since dt f(u(t)) E L°°(O,T). -

Remark (3.1~.- Suppose that f is a ~-convex function with ~ given by
(3.6), and (2.1), (2.2) hold.



Then, using the same proof of Theor. (2.1), it is easy to show that if

u i , u2 are two strong solutions of (2.11) on ~O, T~ such that (see (3.25~~

then ul = u2 and Wl = W2 on ~O, T~.
In the particular situation where ~ has the form (3.6) we get the local

existence of the solution also in the case that uo E D( f ). .

THEOREM (3.2).- (Local existence~
Suppose that f is a ~-convex function, with ~-given by (8.6~ and A =

a- f.

Suppose that

Then, there exist T > 0 and a unique strong solution u of (2.11~ on [0, T]
such that

for every t : 
’

Proof.-Let uo E D(f). .

By [8] Prop. (1.2) we know that, there exists a sequence C D(A)
such that

For every n, set

and let Ton be such that Ton is the supremum of T’ 
such that un is the strong solution of



on [0, T~~ and

I - First of all we want to show that there exists T > 0 such that Ton> T
for every n E N.

Without loss of generality we can suppose that there exists r > 0 such
that

and, by the lower semicontinuity of f, that

As in the proof of (3.5) of Theor. (3.1), we can find a constant ci > 0,
independent of n, such that for every t E (0, Ton (, we have

Let 0  T  T be sucht that

Since,

we get, by (3.36) and (3:37) that for every t E ~O, T~ n [0, Ton (, and for every
n E N that

Using (3.37), (3.36) and Theor. (3.1), we have that T  Ton for every
nEN.

Furthermore by (3.32), (3.37), (3.36), there exists a constant c2 > 0 such
that for every t E ~0, T and n E N, we have m  f (un (t))  c2.

II - Now we show that (un)n converges uniformly on ~0, T~ to a continuous
function u : ~0, T l --~ B (uo, r) sucht that u (t) E D(A) a.e. on ~0, T~ .



We recall that un satisfies

where Gn(v)(t) = + (s * Fn)(t) - s(0)v(t) + s(t)v(0) - (v * s~~(t), (s
being the unique solution of s + b’ * s = -b~). .

By decreasing r, we can suppose that

Using (3.24) and (3.41) we get, for every n, mEN and a.e, on (0, T~ that,

which implies that for every t E (O, T~, ,

By (3.36), (3.37), (3.40) we have

which implies by (3.41) that

Therefore there exists a constant c4 > 0, such that for every n E N we
have, for every t in E0, T 



Using again Gronwall lemma we get, for every n, m E N

which implies that the sequence (un)n converges uniformly on [0,r], to a
continuous function u such that for every t E ~0, ~’~, we have

Now, Fatou lemma and (3.46) imply that

which gives (since (2.43) holds (see (1.17) of [8]))

Using Remark (1.14) of [8] together to (3.50) we conclude that

III - Now for a.e. t E [O,T] such that u(t~ E D(A) and limn f(un(t)) =
f (u(t~~ we can apply theor. (2.1) and (3.5) of theor. (3.1~ to show that
there exists a strong solution u on [0, T - t] of (2.11) such that

Further, by a technique similar to the one used in step II, we can show
that for every r E - t~, u (t + r) = u (T) .

Therefore (3.31) holds; u E and W E 



Finally f (u) E , since f(u) E Lip((t, T~; R~ for every

t and E and limt~o+ f (u(t~~ = 

COROLLARY (3.I).- Suppose that

is a lower semicontinuous function such that there exists a continuous

function X : x R2 --~ R+ such that for every v E D(f),u E
f ~, , a E 8- f (u) we have

then there exists a unique strong solution u of

on ~O,T~, such that

If in addiction uo E f ~, then (3.58) holds also for t = o.

§ 4. Some applications of the abstract results

The aim of this section is to illustrate, by some examples the abstract
results obtained in the preceding sections.

The first example is a direct application of Corollary (3.1).



Example.-1 Let A C R~’ be a smooth, bounded open subset and
E n C(A) such that

Set H = equipped with the usual norm = 

and consider,

Furthermore suppose that :

The sets {~c :  0}, {x > 0} are connected

Under the above hypotheses the following facts hold (see [18]).
Let

be defined by

then,

(a) f(.) is lower semicontinuous on H

(c) for every u E D(a- f) there exists À E R such that :

t For example this happens if A is connected and spl  0  p2 on A.



(d) there exists a continuous function X such that for every v E D( f ), u E
f ), a E 8- f (u) we have;

Using (a~-(d~ we get by Corollary (3.1) the following proposition.

PROPOSITION (4.1).- Let f be defined by (,~.6) and let T > 0 be fixed.
Assume that

Then there exists a unique strong solution of

We emphasize the fact that in the above example f is not a perturbation
with Lipschitz gradient of a convex function (observe that the domain of f
is not convex). .

As application of theor. (3.2) we have the following example.

Example.-2 Let A C RN be a smooth open bounded subset. Set
H = L2(A). Let us consider the following problem : t

where

is a given Caratheodory .function.

t In the following, we implicitely assume that b and F satisfy the same hypotheses as in
Example 1.



In order to apply theorem (3.2) we assume that the primitive of g(~, x), ,
i.e. the following function :

satisfies the properties :

(i) there exists bo E R, ao E Ll(A) such that for every s E R we have

, 

(ii) there exists a Caratheodory function

such that for Vr, s E R and a.e. on A we have

It is not difficult to see tt that f is a lower semicontinuous functional
and that for every uo E Ho’2 (~) , there exists an L2(A)-neighborhood U of
uo such that for every u, v E U n D( f ) and a E a- f (u), we have (for some
suitable c, E > 0) : : .

t If N = 2, we may permit any p > 2
tt For a complete proof of this fact see [19].



A direct application of theor. (3.2) gives :

PROPOSITION (4.2).- For every uo E there exist T > 0 and a

unique strong solution u of (,~.9~ on (O, T~, such that 
’
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