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A Cauchy problem for ut - 0394u = up with 0  p  1.

Asymptotic behaviour of solutions.

J. AGUIRRE(1) AND M. ESCOBEDO(2)

Annales Faculty des Sciences de Toulouse Vol. VIII, n°2, 1986-1987

Nous prouvons l’existence, l’unicité et la régularité de solu-
tions globales pour le problème de Cauchy

avec donnee initiale non identiquement nulle dans un ensemble assez large de
fonctions. On démontre que ces solutions sont toutes bornées inférieurement

par ((1 - p)t)1/(1-p). On prouve finalement 1’existence de solutions auto-
similaires décrivant le comportement asymptotique des solutions lorsque t
va ~, l’infini.

ABSTRACT.- We prove existence, uniqueness and regularity of global
solutions for the Cauchy problem

for a large class of non identically null initial data. Solutions are shown to
be uniformly above ((1 - p)t) 1~ ~ 1 p~ . Finally the existence of self-similar
solutions (not necessarely radial) describing the asymptotic behaviour of
solutions as t goes to infinity is shown.

§ 1. Introduction and Main Results

Consider the following Cauchy problem :

(1) Dpto de Matematica Aplicada, Universidad del Pais Vasco, aptdo 644, Bilbao - Spain
(2) Dpto de Matematicas, Universidad del Pais Vasco, aptdo 644, Bilbao - Spain



where 0  p  1.

When looking for existence (local and global), uniqueness and regularity
results, several remarks are in order. The first one is about uniqueness. If the
initial data uo is identicaly zero, there is a continuum of nonnegative space
independent solutions, namely the null solution and the family of solutions.

The second one is about regularity. Let k be the integer part of 1/(1- p)
if it is not an integer, and 1 ~ ( 1 - p)] ~ - 1 if it is. Then u F is of class C~ in
[0, oo), but is not of classe Ci in (f - E, oo) for any I > k and E > 0. That is,
even with a C°° initial value (uo - 0), solutions are only C~.

This lack of uniqueness and regularity is due to the fact that the function
uP is not Lipschitz in any interval of the form [0, E) for 0  p  1 and E > 0.

However, when the initial value is not identically zero, we are able to prove
uniqueness and regularity of solutions of (P). The difficulties coming from
the nonlinear term not being Lipschitz are overcome by a uniform lower
estimate on the growth of the solutions given by the following.

LEMMA .2014 Denote by S(t) the semigroup of the heat equation on Rn. .
Let u be a nonnegative function on (Q, T ) x R n (T > 0 fixed) and uo a
nonnegative function on Rn not identically null such that

makes sense and holds on R n. . Then

Inequality (0.2) seems to mean that diffusion in the sublinear case is

unifom all the way up to infinity, which is not the case for the linear and
superlinear case. On the other hand, it is clear from (0.2) that even for an
initial data with compact support there is no solution u of (P) such that
u(t, .) belongs to Lq(Rn) for t > 0 and 1  q  oo. However if the initial

value uo is such that 03C1uo belongs to L°° (R n) where p is a weight function
of the form :



it is easy to see that for any t > 0, E L°°. Then defining

problem (P) can be solved for uo E Ep, and the solution is such that

u(t,.) E Ep for all t > o.
Let us recall now some known results about problem (P) when p > 1.

If 1  p  1 + 2/n, any solution of (P) blows up in a finite time ([5]) and
the same holds for p = 1 -f- 2/n ([1], [8], ~10~, [12]). When p > 1 -~- 2/n,
positive global solutions of (P) exist (~3~, {’l~, ~11~). For 0  p  1 we prove
in sections 1 and 2 the following.

THEOREM .- For any nonnegative uo E Ep there is a mild global
solution u of (P) such that

Moreover if uo is not identically zero, this solution is unique and is in

By mild solution we understand that u verifies the integral equation

In section 3 we study the asymptotic behaviour of solutions of (P) as
t goes to infinity. Consider the corresponding problem with the nonlinear
term having the so called "good sign" :

If 1  p  1 + 2~n and uo e L2(Rn) the asymptotic behaviour of the
solution is given by the so called self-similar solutions, i.e. solutions invariant
under the transformations :



These solutions are of the form :

where f satisfies :

More precisely, if the initial value uo of problem (P’) is radial and a is
defined by :

where a = +-00 is allowed, then the solution u of (P’) satisfies :

where fa is the unique radial nonnegative solution of (0.4) satisfying :

(see j4~, ~C~).
If 0  p  1 and uo E 1  q  oo, then there is a T > 0 such

that u - 0 on (T, oo) x Rn . If p = 1 then

uniformly on compact subsets of Rn ([6]). In our case where the nonlinear
term has the "bag sign", when l-t-2/n.  p  (n-~- 2) ~ (n - 2) and uo satisfies :

it has been shown ([9]) that there is a sequence (t n ) going to infinity and a
solution f of



such that

i.e., u(tn, z~ is close to a self-similar solution .

In the sublinear case 0  p  1, the results of sections 1 and 2 show the
existence of a family of self-similar solutions

belonging to oo); Ep~ with _~ (1-I- (x~) 2~~1 pl and with initial
value W (o, x) any homogeneous function of degree 2~ (1 - p) lying in Ep.
Inequality (0.2) and (0.3) yield in that case

if is not identically null. If - 0, then

Asuming to be continuous it is proved that :

where for x E Rn we have written x = rq and q = ~ E 
Finally, the asymptotic behaviour of the solutions of (P) for a certain

class of initial values is given in the following.

THEOREM . Let uo E Ep be such that for a given p E 

and let u be the solution of (P) with initial data If W cp is the self-similar
solution of (P) such that :

then for any compact K ~ Rn we have :

where Kt = E K}.



Notations.- All integrals will be with respect to Lebesgue measure,
and all functions wil be asumed to be measurable. When no explicit domain
of integration is indicated, it is to be understood that it is all of . S(t)
will denote the semigroup of the heat equation on that is, if u is a
function on Rn, such that for all E > 0 there is a CE > 0 for which :

then for t > 0 and x E Rn

We denote by p(x) a fixed weight function belonging to one of the families

For this p we define Ep = {u: Rn -+ R I pu e Endowed with
the norm = it becomes a Banach space. It is easily seen that

(where p-l = 1 ~p~ so that

and therefore

is a positive continuous and increasing function on ~0, oo~ such that Sp(0) _
1. If we define for mEN



then is an increasing and continuous function on [0,oo). Finally, p will
be a fixed number, 0  p  1, and we let q = 1/(1 - p).

§ 1. Existence

This section is devoted to the proof of the existence of nonnegative
solutions u(t, x) of the integral equation :

for Uo  0. Functions satisfying (1.1) are called mild solutions of the
semilinear parabolic Cauchy problem :

It will be shown in section 2 that such solutions are in fact classical under
rather weak conditions on the initial value uo .

LEMMA (1.3).- Let g be a non decreasing Lipschitz function with
g(0) = 0. For each uo E Ep there is a unique mild solution u of :

such that u E co) Ep]. .

Moreover, if u and v are two mild solutions of (1.,~) with initial values
uo and vo respectively satisfying uo > vo, then :

In particular, if Uo  0 then u > o.

Proof .- Let uo be any element of EP and T > 0 fixed. For u in

L°° ((0, T); Ep] define :



F maps into itself since for all u E L°°((O,T); Ep] . 

where k is the Lipschitz constant of g. It follows that :

and therefore Fu is defined almost everywhere and belongs to

L°°~(O,T); EP~.
We will prove next that for t small enough, F is a contraction. To see

this let u and v be two elements of L°°~(O,T);Ep). Then for all t E (O,T)

and then :

If we chose T so that  1, F is a contraction, and by Banach’s
fixed point theorem there is a unique u belonging to such

that 

tt() = 5’(t)M, + 0 t S(t - 
Next we prove that u is defined for all t > 0. In fact, the interval of existence
of the solution depends on g and p but not on uo, so that the solution can



be continued as long as it does not blow up. But this can not happen since,
by (1.6), (1.5) and Gronwall’s lemma :

whenever u is defined on (o, T) . This also proves that u belongs to

Now suppose that u and v belong to and
are such that : 

°~

Then :

since g is non decrasing and Lipschitz with constant k. It follows that :

and for all t > 0

and by Gronwall’s lemma ~ ~ (v - u) + (t) I I p is null for any t so that u > v.

Now, we solve problem (1.2) by using an approximation procedure and
the existence and comparison result given in the previous lemma.

THEOREM (1.7~. For every nonnegative function uo E Ep there is at
least a mild nonnegative solution u of (1.,~~ in the space Ep~. .



Proof . Let (gn) be a sequence of nondecreasing Lipschitz functions
such that gn (o) = 0 and gn (r) = rP 1~2n, and consider the problems :

By lemma (1.3) for each n there is a unique nonnegative mild solution
un E oo) E03C1] satisfying

Since un > 0, it follows that un (t) > S (t) (uo -f-1 /n) > 1/n. Now if n > m
we have by construction that gn (u) = gm (u) if u > 1/2m. Since 
it follows that u,n and un are mild solutions of the same equation with initial
data uo + 1/m and uo -f-1 /n respectively. By lemma (1.3), un and for
almost every (t, x) E (o, oo) x is a lower bounded decreasing
sequence of real numbers. Thus we can define :

By (1.9) and the fact that un > :

for almost every (t, x) E (0, oo) x Rn. As n goes to infinity, the left hand side
converges to t) As for the right hand side, we have that the integrand
converges monotonically to - s, y). Since :

it follows from the monotone convergence theorem that :

and since 0  u  ul we have that u belongs to 



We give now a partial regularity result and postpone until section 2 the
proof that mild solutions of (1.4) are in fact classical solutions.

THEOREM (1.11).- Let u E be a mild solution of (1:,~).
Then : 
’ °~ ’

If uo E the convergence is uniform on compact subsets of R". .

Proof . Let u 1 = S (t) uo and u2 = f~ S (t - s)uP(s)ds. By the standard
theory of the linear heat equation, u 1 E x R~] and can be
differentiated under the integral sign. Then for 0  E  t and 1  i  n :

proving iii) for It is also a classical result that as t goes to zero, S(t)uo(x)
converges a.e. to uo if uo E the convergence being uniform on
compact sets when uo E C(Rn). For uo E Ep we write uo = f -f- g where f
is bounded with compact support and g E Ep vanishes on the support of f. .
Then a straighforward argument proves iv) for u 1.

Let’s consider now u2. We prove first that u2 (t, x) converges to zero
uniformly on compact subsets of R" as t ~ 0. In fact



where we have used that p-P  p- 
Z since p  1 and 0  p  1.

We claim next that ~u2/~xi exits and can be obtained by differentiation
under the integral sign. As before, S (t - s) up (s) can be differentiated under
the integral sign. Thus

Since this last expression is integrable on [0, t] uniformly for ac on compact
sets, the claim follows. Finally we have :

proving iii) (in fact u2 verifies iii) on (0, oo), not only on (E, oo)). .

Next we prove that ~u2/~xi is continuous on Rn. In fact, for any
:

As x tends to x, the integrand in the right hand side converges to 0 almost

everywhere. Arguing as before, it is easely seen that for x and x in a

compact subset of R~‘ it is uniformly bounded by an integrable function.
The dominated convergence theorem proves then that the left hand side

converges to zero.

To see i) we will prove something more, namely, that as a function on
(o, oo) with values in C(Rn), u2 is continuous, that is, for any t > 0 and

any compact K of R n :

To see this let x ERn. Then :



and once again by the dominated convergence theorem we have (1.12) for
any compact subset of R n .

Remark (1.13).2014 Using the same method it is easy to see that if Vuo
belongs to E p then ~xu belongs to oo) E03C1].

Remark (1.14).2014 All the results in this section remain true if we consider
a more general class of weight functions p satisfying :

i) 1 > > Vz E Rn and some positive constants A
and C.

ii) is defined on Rn for any t > 0 and  

for some locally bounded p.

iii) the function

is locally bounded.



§ 2. Uniqueness and regularity .

Since uP is not a Lipschitz function for 0  p  1, a uniqueness result
for (1.2) is not obvious. In fact, if uo - 0, there is a continuum of space
independent solutions, namely the trivial solution u - 0 and the family

where, here and in all the following, q = 1 ~ ( 1- p). .

If Uo  c for some constant c > 0, the same is true for the solution u,
which then satisfies :

for some C°° function g, uniqueness being guaranteed in that case. The case
when Uo  0 is not bounded away from zero, for instance if uo is of compact

support, can be treated by means of a uniform lower estimate for the growth
of the solution (lemma (2.2) ) . This inequality and its corollaries will then
be used to prove the uniqueness and regularity results of this section and
the asymptotic behaviour of solutions of (1.2) given in the next one.

LEMMA (2.2). - Let uo be a non identically null, nonnegative function
on R n, T > 0, and u a nonnegative function on (o, T ) x Rn such that, for
any t i n (o, T ) and any ~ i n Rn :

Then :

Proof . We will consider first the case when, for any x E Rn and for
some positive constants c and a, uo(x) is greater of equal than Use

will be made of the identity :



Since u > 0, (2.3) implies :

Substituting this for u in (2.3) and using that Uo  0 we get : :

where we have used that 1+4at  1-f- 4at for 0  s  t

and 0  p  1. Substituting again this estimate in (2.3) we obtain :

since as before 1 + 4ap2t  1 + 4aps + 4ap2 (t - s)  1 + 4apt and
(1-f- 4aps~~(1 + 4as)P > 1 for 0  s  t and 0  p  1.

Iterating this procedure, an easy induction shows that for kEN: :

where

Taking logarithms we obtain :



and thus

Using this estimate in (2.5) and letting k go to infinity we obtain the
desired result. For the general case, take 0  to  T and define for
0  t  T - to v(t) = u(to + t~ . By the semigroup property of S, and
since u > 0, it is easely seen that : :

where :

for certain positive constants c and a (depending on uo and to). It follows
from the previous part that if o  t + to  T then

Then given any t > 0 we have for all E > 0 small enough and all x ERn: :

and thus :

Strict inequality for t > 0 follows now from (2.3) and the fact that if

0 then > 0 for t > 0 and x ERn.

COROLLARY (2.6). All nontrivial nonnegative mild solutions of 
with uo - 0 in oo) Ep~ are given by the family 

Proof . Let w E oo); Ep~ be a mild solution of (1.4) with uo - o.
Then w is continuous on (0, oo) x Rri and :

Then

and therefore :



Suppose that w is not identically null. Then there is a t > 0 and z in R"
such that > o. Define r = inf ~t > 0 ~ w(t,z) > 0 for some x E .

By the diffusion property of the heat equation, w (t, x) > 0 for any x in R"
and any t greater than r. Given any t > r let = w(t+t,x). We have :

By lemma (2.2) we have for t > 0 and x E Rn

and therefore, for all t > 0, t > T and x e Rn

which implies :

Choose now t  T and define w (t, x) = w (t + t, x) for (t, x) E (o, oo) x Rn .
w satisfies : .

and then

so that

Since this holds for all t  T one concludes that :

Finally this and (2.7) give that w - uT.
Uniqueness of the solution of (1.4) when uo is not identically null will be

proved now as a corollory of the next theorem, which is a comparison result
that will be used throughout the rest of the paper.

THEOREM (2.8~. Let u, v E be nonnegative and such
that for all t > 0



where

Then

Proof .-Let g(t) = v(t) - u(t~. We want to prove g+(t~ = 0. We have

- and then

from where

It follows that for 0  t  T

On the other hand, by the mean value theorem

for some 8 between v (s, x) and u (s, x) . If v (s, x)  u (s, x) both sides of
(2.10) are negative. If v (s, x) > u (s, x) then 8 > u (s, x) > ( ( 1 - p)s)q. . It

follows that



Observe that by (2.9) is integrable on (0, T). We finally
obtain

If we define for 0 ~ t ~ T

inequality (2.13) can be rewritten as

Given any E > 0 we have for E  t  T

But by the definition of f and by (2.9)

Carrying this into (2.14) we obtain

where C is a constant independent of e and t. Since 03C6(0) = 1 and 03C6 is

continuous, we can choose T > 0 such that 1 - > 0. It follows then
from (2.15) that f - 0 on (0, T). Thus we have proved



It is clear from the proof that T depends only on p and p and not on u, v
or the initial data uo, vo. Define u’(t) = u(t +T/2) and v’(t) = v(t + r/2).
Then

and by (2.16) V (T~2)  U(T /2). Therefore we can appy the same reasoning
to get that (2.16) holds on (0, 3T~2~ x Repeating the argument we finish
the proof of the theorem.

Remark (2.17).- The conditions of theorem (2.8) are satisfied if for
instance

We deduce now from theorem (2.8) three corollaries. The first one
is about uniqueness of solutions of (1.2), the second about continuous
dependence and the last one is an inequality that will be crucial in the
investigation of the asymptotic behaviour of solutions of (1.2).

C OROLLARY (2.18) . For any nonnegative uo in Ep, uo ~ 0, the
solution of whose ezistence is proved in theorem (1.7) is unique.

Proof . It is an inmediate consequence of the previous theorem.

COROLLARY (2.19). - Let Ep,+ = {u E Ep ( u > 0, 0}. Then

i~ the maping taking uo E Ep,+ to the unique mild solution u E

oo) Ep~ of is concave, i.e., given uo, vo E Ep,+ and 0  ~  1,
let u, v and w be the unique solutions of with initial data uo, vo and

wo = ~uo + (1 - respectively. Then

ii~ for each (t, x~ E x Rn the map taking uo E Ep,+ to is
continuous on Ep,+ with the topology inherited from Ep.



Proof.-Since 0  p  1 we have + (1 -  + (1 - 7)v~p.
Then

and by remark (2.17) to theorem (2.8)

proving i) . .

ii) is now a consequence of classical convex analysis (see ~2~).

COROLLARY (2.20). Let uo, vo, wo E Ep,+ be such that wo  uo + vo
and let u, v w be the unique mild solutions of (1.~~ with initial data uo tJo, wo
respectively. Then

Proof - First of all we show that w  u + v. In fact we have

and w  u + v follows from theorem (2.8).
Next we prove (2.21) when wo, vo  wo and uo + vo - wo fi 0. The

proof is based on lemma (2.2) and the inequality

which holds when



as can be easely seen by reducing it to the case z = 1. We have then

and (2.21) follows now from lemma (2.2).
Consider now the case wo = uo + vo. Since Vo  0 is not identically null,

- there is a set A C Rn of positive measure such that wo - uo > 0 on A.
For 0  f  1 let = uo + E(wo - uo)~A where xA is the characteristic
function of A. Then vo, wo fall into the case treated above. Denoting
by Uf(t) the unique solution in of (1.2) with initial data
uo,e we have

But since Uo E E p,+ and converges to u o in the norm of E p as E
goes to zero, it follows from ii) of corollary (2.19) that Uf(t, x) converges to
u (t, x) . Since (2.22) holds for all E > 0, passing to the limit as E - 0 proves
the result. The remaining cases follow now easely.

We finish this section by proving that solutions of (1.2) are in fact classical
solutions.

THEOREM (2.23).2014 Let u E be a nonnegative mild
solution of with uo ~ 0. Then u E x and is a classical

solution of 

Proof . We already know that for t > 0 and 1  i  n, au/axs (t, .)
exists and is continuous on Rn. We will show that the same is true for

, 1  i, j  n. Let E > 0 be given and let v (t) = u (t + e), vo =

u(e) Then

Since S(t)vo E C°°((0, oo) x Rn] we will just consider the second
summand of the right hand side of (2.24), that will be denoted by v. We know



that ~v/~xi exists, is continuous on R" and can be obtained differentiating
under the integral sign. Thus

and by (2.25)

It follows from theorem (1.11) that E ~loc ~(o, o); Ep].
Arguing as in the mentioned theorem we get that v has continuous second

derivatives with respect to the space variables and that they are also in

L~loc [(0, oo); Ep]. We prove next that v has continuous third derivatives with
respect to the space variables. We start from

and observe that

Arguing again as in theorem (1.11) and taking into account the fact that

is locally bounded, we conclude that v has continuous third derivatives with
respect to the x variables. Using the same method and the fact that for all
positive integers m the function

is locally bounded we obtain that for any positive integer m, v has
derivatives of order m with respect to space variables and they are in

°°~’ .



Finally, a standard argument will show that v has derivatives of all orders
with respect to t and that vt - 0394v = vp.

§ 3. Asymptotic Behaviour

We determine in this section the asymptotic behaviour of solutions of
(1.2) for a large class of initial conditions. As stated in the introduction, the
asymptotic behaviour of global solutions of an evolution equation is given
in many cases by the self- similar solutions of the equation. The equation
we are studying is

It is invariant under the one parameter group of transformations

A solution of (3.1) is called self- similar if it is also invariant under (3.2),
that is, if

or equivalently if

where f(x) = W (1, x) satisfies the elliptic equation

The existence of nonnegative self-similar solutions of (3.1) is usually
shown by proving that (3.5) admits nonnegative solutions. In our case it
is an easy consequence of the results in previous sections.

From now on the weight function p will be taken to be p(~) _ 
We define £ = E ~ 0 0 } . Given p E E the
function belongs to Ep and is homogeneous of degree 2q. We
denote by W~ the unique solution in of (1.2) with initial
data 

THEOREM (3.6). For all p E E, W~ is a self similar solution of (~3.1~.
Conve rsely, if W E is a self-similar solution of (3.1) such

that converges for all x E R’~ to a function wo E Ep as t goes to 0,
then wo is homogeneous of degree 2q.



Proof.-If W is the solution of (3.1) with initial data wo(x) =

then Wa (t, x) _ satisfies

and by uniqueness Wa = W. .

Conversely, if W is as stated in the theorem, then for all À > 0

Letting t --> 0 we finally get z,vo (x) = as desired.

Given Sp E ~ we let = so that = 
.

By the results of the previous sections, is of class C°° on Rn, verifies
equation (3.5) and for any x E Rn the map taking f to is continuous
from E into R. The behaviour at infinity of the functions / cp is described in
the next lemma.

LEMMA (3.’T). Let p E E n . Then

Proof .- = z/ f ) where W tp is the solution of (1.2~ with
initial value Taking t = we get

Therefore for E and for all r > 0

and (3.8) follows by iv) of theorem (1.11).
We can now describe the asymptotic behaviour of solutions of (1.2).

T HEOREM (3.9) . - Let uo be a nonnegative locally bounded function on
Rn such that there ezists p E ~ n for which



Then uo E Ep, and if u is the unique solution of with uo as initial

data, for any compact K ~ Rn we have

where Kt = ~(t, ~) E K}.

Proof.- By (3.10) and the local boundedness of uo it is clear that

uo E Ep. Moreover, uo fl 0 since 03C6 ~ 0, so that u is well defined. Let

6 > 0 be given. By (3.10) there exists R > 0 such that if > R

and by lemma (3.7) there is R’ > 0 such that if ~x~ > R’

Thus if ~x~ > max(R,R’) we have

and then there exists C > 0 (depending on 6) such that

It follows from corollary (2.20) that

 ~+2~ (1 + + ((1 - p)t + C~ - ((1 + (3.12)

since clearly the unique solutions of (1.2) with initial values /~+2~ and C
are ~+2~(1 + t,x) and ((1 - p)t + respectively. 

’

Arguing in a similar way to obtain a lower estimate, we see that for all
~ large enough (3.10) implies

and by lemma (3.7)



Thus, there exists C’ > 0 (depending on 6) such that

and then by corollory (2.20)

Multiplying both sides of (3.12) by t-q and substracting we

obtain °

where g(t) = t-q{((1 - p)t + - ((1 - = 06(l~t~ as t - oo.
Let t = az and = z. Then (3.14) can be rewritten as

with z = z + 0(a-Z)x. By the mean value theorem

for some z between z and z.

, 

If 0  ~  1, the set ( f~+Z~) is bounded in E. It is then easy to see,
using the estimates of theorem (1.11) that the family (~ is uniformly
bounded on compact subsets of R’~, so that ( f~+Z~) is equicontinuous on
compact subsets of Rn . Let K C R" be compact. If z E K and a >_ 1, then
z and ? remain in a fixed compact set. It follows that

Given any e > 0, by the equicontinuity of ( f~+za) on compact subsets of
R" and the continuity of as a function of 6, there is a 6 > 0 such
that

For this 6, there is a A > 1 such that if a > A the second summand in
the right hand side of (3.16) is smaller than e/2. So we have proved that for ..
any e > 0 there is a A > 1 such that



Starting from (3.13) the same reasoning yields a A’ > 1 such that

Letting again t = aZ and z = we get from (3.17~ ~ and (3.18) that
for any E > 0 there is a T > 0 such that

~ proving the theorem.

Note - After completion of the manuscript, the authors learned from
J.L.VAZQUEZ he had obtained similar results for the initial- boundary
problem on a bounded domain. (Work made in colaboration and as yet
unpublished).

Aknowledgements - The second author is grateful to J. HERNANDEZ
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