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Conformally flat submanifolds

JEAN-MARIE MORVAN(1) et GEORGES ZAFINDRATAFA(1)

Annales Faculte des Sciences de Toulouse Vol. VIII, n°3, 1986-1987

RÉSUMÉ. 2014 Nous etudions les propriétés locales et globales des sous-
variétés conformément plates d’un espace euclidien. Nous étudions en par-
ticulier les relations entre la platitude conforme et la quasiombilicalité.

ABSTRACT. - We study local and global properties of conformally flat
submanifolds in Euclidean space, and the relations between conform flatness
and quasiumbilicity.

1. Introduction

A submanifold Mn of an Euclidean space is conformally flat if,
when it is endowed with the induced metric, each point belongs to a

neighborhood which possesses coordinates (~i,’’’, , xn) such that the metric
tensor g satisfies

g = 0 dzi +’"-!- dxn 0 

where À is a C°° function. These submanifolds have been extensively stu-
died these last 20 years, (cf Bibliography). The local structure of confor-
mally flat hypersurfaces has been discovered by E.CARTAN in 1919.

These hypersurfaces are generically foliated by codimension one spheres.
In 1972, B.Y.CHEN and K.YANO gave a more precise description of these
submanifolds [Ch-Yal]. Finally in 1984, M.Do CARMO, h’i. DAJCZER and

F.MERCURI, [Do-Da-Me] classified the compact conformally flat hypersur-
faces. In particular, under some regularity conditions on the foliation, they
proved that such an hypersurface is a topological product x S~ of a
sphere by a cercle. When the codimension is larger, B.Y.CHEN and K.YANO

~1~ Faculte des Sciences d’Avignon, Département de Mathematiques 33, rue Louis Pasteur
84000 Avignon



defined in 1972 the notion of quasiumbilicity [Ch-Ya2]. This extrinsec pro-
perty of the second fundamental form of an immersion is sufficient to obtain
a conformally flat submanifold. In 1979, J.D.MooRE and the first author
proved that this condition was also necessary for n > 7 and p  4 [Mo-
Mo]. Moreover, B.Y.CHEN and L.VERSTRALEN proved in 1978 [Ch-Ve] that
a conformally flat submanifold Mn of En+p, with flat normal connexion,
is quasiumbilical. Finally, in 1976, using Morse theory, J.D.MOORE gave
topological restrictions of a compact conformally flat submanifold Mn of
En+p, when p  n - 3. He proved that, in this case, Mn possesses a CW
decomposition with no cells of dimension k, where p  1~  n - p, [Moo3].
In view of these results, many problems remained open :

i) What is the shape of the second fundamental form of a conformally
flat submanifold of large codimension ?

ii) What is the extrinsec geometric structure of a conformally flat

submanifold of low codimension ? (Generalisation of [Do-Da-Me]).

iii) What is the geometric meaning of quasiumbilicity ?

iv) What is the global structure of a "regular" compact conformally flat
submanifold ?

In this work, we give complete or partial answers to these questions :

In §3, we study the Gauss equation of flat or conformally flat submani-
folds of the Euclidean space. This leads us to give an example of submanifold
Mn of codimension 6 (in E’~+s ) which is flat at some point but not quasium-
bilical. However, we don’t have the general solution of the Gauss equation
in this case. This gives a partial answer to i).

In §4, 5, we study the local structure of a conformally flat submanifold
of low codimension, and obtain a generalisation of [Do-Da-Me].

In §6, we study the notion of quasiumbilicity in terms of focal points. In
particular, we obtain a new definition of quasiumbilicity which does not use
a particular frame of the normal bundle.

In §7, we give the classification of compact conformally flat submanifolds
of low codimension, with parallel second fundamental form.

In §8, we prove that compact regular conformally flat submanifolds are
sphere-bundles.

Finally, in §9, we extend a result of [Do-Da-Me] which gives a necessary
and sufficient condition for a manifold foliated by spheres to be conformally
flat.



2. Notations

Let i : Mn  En+p be an isometric immersion of a manifold Mn of
dimension n in the Euclidean space En-p. We shall denote by , > the
scalar product in and use the same notation for i * ( , > ), the metric
on If V is the canonical connexion on and V the levi Civita on

Mn, we put, for every vector fields X, Y belonging to TMn, the tangent
space of At",

C

where h is the second fundamental form associated to i. It is well known that
h is a symetric bilinear tensor which takes its values in the normal
bundle of Mn. Let ( a normal vector field and J~ a tangent vector field on

We can decompose in the following way : = + 

where and are the tangential and normal components of 
A is called the Weingarten tensor associated to i, and is related to h by the
formula :

 A03BEX,Y > =  h(X,Y),03BE > VX, Y E E T|Mn (2)

~71 is a metric connexion in with respect to the induced metric. If
h = 0, is said totally geodesic.
The mean curvature vector field of M’~ is defined by H = trace

(h) is locally minimal for the volume if H = 0). Let m E and

E ~,.,.t. is called a quasiumbilical direction if there exists a one
form cv, and two constant ~, u such that

 h(X, >m= + ~.c  X, ~r >m (3)

This is equivalent to the fact that A~ admits an eigenvalue, with order n 2014 1.
If A = 0, 03BE is called an umbilical direction. If  = 0, 03BEm is called a cylindrical
direction. ~ln is totally umbilical or umbilical if there exists a normal vector
field ç such that h(X, Y) _ ~  X, Y > ç, VX, Y E In this case, it is

well known that Mn is an open set of a round sphere (of constant curvature).
M’~ is totally quasiumbilical (or quasiumbilical), if there exists at each point
an orthonormal frame of quasiumbilical directions. Mn is totally cylindrical,
or cylindrical if there exists at each point an orthonormal frame of cylindrical
directions.



Let R be the curvature tensor of We denote by Ricc the Ricci tensor
and r the scalar curvature of The Gauss-Codazzi-Ricci equations are

given by :

where V is defined by

where R1 the curvature of the normal bundle.

In particular, if we assume that Mn is conform ally flat (n > 4), we know
that the curvature tensor of Mn satisfies the following equation

where ~ is the (2,0) tensor defined by

VX, Y, Z, W E Remark that the sectional curvature of plane spanned
by two orthonormal vectors X, Y is given by I~(X, Y) = ~(X, X ~ -~- ~(Y, Y).

In this case, the Gauss equation can be written

3. The Gauss equation of a flat sub manifold

In this paragraph, we will recall well known properties of flat syme-
tric bilinear forms. They where discoverd by E.CARTAN [Ca2]. (See also
J.D.MOORE [Moo2] for an extended study of these forms).



THEOREM : En x En ---~ EP be a flat symmetric bilinear
form. Then

i) dim ker h > p - 1

ii) If ker h = {0}j, then there exists a direction 03BE in EP such that

 h(., .), ~ > is positive definite.

iii) is a cylindrical direction, then the projection of h on ~1 is also
a , f iat symmetric bilinear form.

THEOREM 3.2.- Let h : En X En --~ En be a flat symmetric bilinear

form. If ker h = ~0} then h is cylindrical.

THEOREM 3.3. - Let h : En x En --~ EP, where n  3, be a flat
symmetric bilinear form. Then h is cylindrical.

Different proofs of theorem 3.1 and 3.2 can be found in the litterature
(cf. [Ca2] or [Moo2] for instance). The first author and J.D.MooRE used
theorem 3.3 in [Mo-Mo]. A proof of this last theorem can be found in [Ca2].
However, we will give here an alternative proof of it.

Proof of theorem 3.3 . . - Let I~ = ker h, and factorize h through ker h.

Obviously, we obtain a new flat symmetric bilinear form, without kernel.
Then, without restriction, we can assume that ker h = ~ 0 ~ . Let us examine
the three cases, n = 1, n = 2, and n = 3. We denote by 52(EP) the space
of symetric bilinear forms of EP. .

First case : n = 1. In this case, theorem 3.3 is obvious.

Second cas e : n = 2. Consider (~1, ~ ~ ~ , ~’p ) an orthonormal frame in EP. Let
hi = h(, ), ~i > 1  i  p. Since ~S2 (E2 ) has dimension 3, there are
at most three linearly independant hi, and then, the image of h lies in Ek,
l~  3. If k = 1, the proofs is trivial. If k = 2, the theorem is a direct

application of theorem 3.2.

If k = 3, then we can assume that h2, h3 are linearly independant.
Then it is a frame of s2 (E2 ), and any 2-forms w ~ w (w E E2 * ) is a linear
combination of h2, h3 . Then we can write w 0 W = 03B11h1 -t- 03B12h2 +
a3h3. This implies that  h(.,.), 03B1103BE1 + 03B1203BE2 + 03B1303BE3 >= 03C9 ~ w. Then

+ ~2~2 + cr3 ~3 is a cylindrical direction. Now, let (r~l , r~2, ~T3 ) be a new
orthonormal frame of E3 such that r~3 = + c~2 ~2 + c’3~3. . By theorem
3.1, (iii), h = is flat and the dimension of Im h = 2. Then we can

apply theorem 3.2, to conclude that h is cylindrical, which implies that h is
cylindrical.



Third case n = 3. We can assume without loss of generality that ker h =

~ 0 ~ , (otherwise we are in the case 1 or 2). Since S2(E3) has dimension 6,
dim[Im h) ~ 6. If dim[Im h]  3, we can conclude by applying theorem 3.1
(i), 3.2, and the case 1 and 2. We will assume that dim[Im h] = 4, 5 or 6.

(a) Suppose that dim[Im h] = 4. Let (~’1, ~ ~ ~ , ~4 ) be an orthonormal frame
of [Im hl. We can write

The dimension of the vector subspace V of ~2 (E3 ), spanned by ... , , t~~ ~
is 4. On the other hand, by theorem 3.1 (ii), there exists a positive definite
form k which belongs to V. Let (ei, e2, e3 ) be a frame of E3 which is
orthonormal with respect to k. Let w2 , w3 be the dual frame. We can

remark that

Consider the (Veronese) surface of S2 (E3 ), defined by the immersion j of
the unit sphere ,S’2 in E3*

(j = j - 1/3 Id is the standard immersion of the Veronese surface V in the
Euclidean 5-space E5, as a minimal submanifold of the hypersphere of E5).
As a consequence of the fact that two quadric of E3 with a null trace, have
a non trivial intersection, it is easy to prove that every 3-vector subspace P
of ES satisfies

This is equivalent to the fact that every 4-vector subspace of 
containing I d, has a non trivial intersection with ~(~). .

This means that there exists a form of rank one, w 0 w in V. We can

write

which implies that

is a cylindrical direction.

By theorem 3-1 (iii), h is flat. Since



we conclude, using theorem 3.2, that h and then h is cylindrical.

(b) Suppose that dim[Im h] = 5. We can apply exactly the same proof as
in (a). This shows that there exists in [Im h] a section v which is cylindrical.
Then pr is also a flat, with dim[Im pr y1 h] = 4. We apply (a) to
conclude that pr y~ h is cylindrical, which implies that h is cylindrical.

(c) Suppose that dim[Im h] = 6. In this case, we can write h = E~ hi ® ~_,
where ~ ~~ , - - - , ~s ~ is an orthonormal frame of [Im h~ . Then ~ tc 1, - - - , hs ~ is
a frame of s2 (E3 ). Consequently, any form of rank 1, w ® w, can be written
as a linear combinaison of h1, - - - , h6. Let w0w = ~6 ~ Then  h(-, -),

> is cylindrical, and is cylindrical. Since dim(Im h n ~1) is
five, we conclude by using (b).

Remark 3.4. - In (b), we prove that any 5-vector subspace V of s2 (E3 )
which contains a positive definite form k contains also a form of rank one.
Another simple proof of this can be given as follows. Let (el, e2, e3) be a
frame of E3, orthonormal with respect to k. In this frame, the matrix of k
is the Identity. Let the scalar product of S2 (E3 ) defined by :

where the trace is taken with respect to k. Let 03C8 = V 1. We have  >=

Trace ~ = 0 which implies that 1/; is not positive definite. Then there exists
a non null vector ~, isotropic with respect to 1/;. Let X* be the one form
dual to X with respect to k. We have X ) _ ~, X* ~ X * >= 0, which
implies that X * g) X* lies in V.

If n > 3, E.CARTAN announces, without proof, in [Cal] that theorem 3.3
is wrong. For n = 4, dim S2 (E4) = 10. In this case, using the same technics
than in the proof of theorem 3.3, it is easy to see that if dim[Im h] E

~7, 8, 9, 10~, there exists at least in (Im h] a cylindrical direction. On the
other hand, if dim[Im h] E ~0, 1, 2, 3, 4~, t~ is cylindrical by theorem 3.2 and
3.3. Then, the unknown cases are the cases where dim[Im h] = 5 or 6. We
don’t have a general method to study these two cases. However, we give here
an example of a flat symmetric bilinear form from E4 x E4 into E6 which does
not have any cylindrical direction. Moreover, this form is not quasiumbilical.
In fact, consider in ~2 ~E4 ) the space spanned by the six following symmetric
matrices, which can be considered as bilinear symmetric forms, written in
the canonical orthonormal frame of E4



Suppose that ~l= representents hi ~ 1  i  6), and consider

defined ~ 03BEi o {03BE1,...,03BE6} is an orthonormal frame of E6.
A long computation shows that h is flat, and that there does not exist
any cylindrical direction with respect to h in Moreover, h is not

quasiumbilical (cf. [Za] for details).

Application 3.5. As an obvious application of this example, it is possible
to construct an immersion of an open set of E4 in E1°, such that, for the
induced metric, 0 E E4 is a flat point an such that the second fundamental
form at 0 is not quasiumbilical (and without any cylindrical direction). For
instance, let f = (/i,’’’, , f 1 ° ) : E4 -~ E1° be given by :



It is easy to show that f is an immersion. Its second fundamental form h

at 0 satisfies (h;j)o = ~2f ~xi~x which is equal to h. Then the

Gauss equation, 0 is a flat point. On the other hand ho does not have any
cylindrical direction and is not quasi-umbilical.

4. The Gauss equation of a conformally flat
submanifold of low codimension

Let us consider z : : Mn ~ En+p an isometric immersion of a conformally
flat manifold Mn of codimension p. Using (7), J.D.MooRE proved the
following theorem, which gives a necessary condition for a submanifold of
low codimension to be conformally flat.

THEOREM [Moo3] 4.1. Let Mn be a conformally flat submanifold of
with 1 .  p  n - 3. Then, for every m E Mn, there exists an

orthonormal frame in which the matrix of A03BE has the following expression,
for ever~ ~ E TJ.. Mn

where M03BE is a k x k matrix with k  p, and 03BB03BE E R.

This condition is not sufficient. The simpliest example is the standard
immersion of Sn in X En+1. In this case, for every £ E x Sn)



where E R. However S" X is not conformally flat if n > 1. On the
other hand, if the immersion is quasiumbilical, B.Y.CHEN and K.YANO [Ch-
Ya.2] proved that Mn is conformally flat. When the codimension is lower
that 4, J.D.MOORE and the first author proved in ~Mo-Mo~, as a consequence
of theorem 3.1 and 3.3, that this condition is also necessary.

THEOREM 4.2. Let i ~ En+P be an isometric immersion of Mn
into with n > 7, p  4. Then the immersion is quasiumbilical if and

._ only if conformally flat.

On the other hand, B.Y.CHEN and L.VERSTRAELEN obtained a similar
result when the immersion has flat normal connexion [Ch-Ve]. .

THEOREM 4.3. Let i : En+p be an isometric immer3ion of a
conformally flat manifold, with 1  p  n - 3. If the normal bundle of Mn
is flat, then the immersion is quasiumbilical.

The example that we gave in § 3 shows that it is possible in large
codimension to construct submanifolds which are conformally flat at some
point but not quasiumbilical at this point. However, this notion is natural,
although its definition depends on the choice of a particular normal frame.

5. Local study of conformally flat submanifold
of low codimension

In this paragraph, we shall study the local shape of a conformally flat
submanifold of low codimension.

(a) : The class of submanifold3 generically foliated b y spheres
Let M" be a submanifold of En+p, (p  n). We shall say that Mn is

generically foliated by spheres if there exists a dense open set U of Mn such
that [T = Ur, where, for every r, Ur is an open set of Mn, which is
foliated by(n - p + r) umbilical submanifolds of En+p. We shall denote by

this class of submanifolds. The points of U are called generical points.

Remark 5.1. This definition implies in particular that the leaves of Ur
are open set of standard spheres On the other hand, it is clear that
the second fundamental form of satisfies, in each normal direction 
m E Mn, with respect to a suitable frame of Mn,



where is a squared matrix of ( p - r) order, is a ( p - r) x ( n - p - r)-
matrix. Id is the identity matrix, and am is the projection on of

the mean curvature vector of. the leaf..The vector field a will be called the

canonical vector field of Mn. (See [Mor], [Za] for interesting geometrical and
topological properties of a).

(b) : The class of submanifolds strongly generically foliated by
spheres.

Let Mn be a submanifold of En+p, (p  n). We shall say that Mn is
strongly generically foliated by spheres if the two following conditions are
satisfied :

i) Mn E 

ii) The restriction of TJ.. M to each leaf S of U is parallel in 

We shall denote by this class of submanifolds. We have obviously
C .~’vn. Moreover, it is clear that a submanifold Mn satisfies in each

direction with respect to a suitable frame of M",

(using the notation of (a)).

(c) Local structure of conformally flat submanifolds
Let be the class of conformally flat submanifold Mn of En+p. We

shall prove the following.

THEOREM 5.2. - If 1  p  ~ - 3, c .

Proof of theorem 5.2. Theorem 4.1 shows that if 1  p  n - 3, the
second fundamental form h of a conformally flat submanifold M’~ of En+p
satisfies, at each point m E Mn, the following property : There exists a
subspace Em of T Mn of dimension > n-p such that, VX E Em, Y) =C
X, Y > am for every Y E TMn. Using a result of H.RECKZIEGEL [Re I],
we can conclude that, when m. varies on E’’’~ is almost every where a
differentiable involutive distribution. On each open set where the dimension
of E is constant, E defines a foliation, the leaves of which are umbilical in

This implies that Mn belongs to lflow, it is clear, by looking at
the shape of the second fundamental form given by theorem 4.1, that Mn
belongs to .



6. An alternative caracterisation

of quasiumbilicity

In this paragraph, we shall give a new caracterisation of quasiumbilicity,
in terms of focal set, which doesn’t use particular forms on the tangent
bundle of the submanifold. First of all, consider a submanifold Mn of En+P,
which belongs to the class Using the notations of §5, the focal set
F,n at the point m E Mn is defined by :

Fm = where is an unit normal vector such that 

I) = I). (am > -1)n p - 0}. We deduce that
Fm = PmUVm, where is the affine subspace defined by = 

and  >= 1 } , and Vm is the algebric variety defined by
Vm = ~ m -~- ~/~ E and - I ) = d. In particular the direction ~
is quasiumbilical if Pm n V,n has an intersection point of multiplicity (n -1 )
in the direction g. (It is easy to see that the distance from this intersection

point to m is where Cm E is the point which is the

projection of the center of the sphere which contains the leaf through m, of
the canonical foliation ; Cm is a focal point which lies in the line m + am).

Suppose, for simplicity, that the codimension is 2, and consider the

generic case where 0. We have, generically, three possibilities :

case (I) : vm n Fm = 0
Case (II) : Vm n Pm has two points Im and Jm.
Case (III) : Vm is reduced to two lines, one of which is the line Fm.
Vm n Fm # Fm .

It is clear that Im and Jm determines two quasiumbilical directions. More
generally, any point of 03BDm ~ Pm determines a quasiumbilical direction. Then,



the case (I) corresponds to the fact that no direction is quasiumbilical.
The case (II) corresponds to the fact that exactly two directions are
quasiumbilical. The case (III) corresponds to the fact that every direction
is quasiumbilical. Consequently, using theorem, we obtain that :

i) If Mn is locally of type (I), then Mn is not conformally flat.

ii) If M’~ is locally of type (III), then Mn is conformally flat.

iii) If Mn is locally of type (II), then Mn is conformally flat if and only
if the angle m Jm = 2 .

It is easy to find examples of these three types of immersion :

The standard immersion of S2(1) x Sn(2) in En+4, (n > 2) is of type (I).
Consider a conformally flat hypersurface Mn of a canal hypersurface 
of En+2. Then Mn is a codimension 2 conformally flat submanifold of type
(II). Consider the standard immersion i of the sphere S’n into En+I and a
cylindrical immersion of into En+2. Then j oi is of type (III). For a
detailed study of this view point, see [Za].

7. Conformally fiat submanifolds with
parallel second fundamental form

In the previous paragraph, we gave a local description of the class of
conformally flat submanifold of Euclidean space, by using only the Gauss
equation. In this paragraph, we shall assume that the submanifold has
parallel second fundamental form. Using Codazzi equation, we shall deduce
important restrictions to the submanifold. Precisely, we shall prove the
following.

THEOREM 7.1.-Let i : Mn ~--~ be an isometric immersion of a
conformally flat manifold Mn into En+p, 1  p  n - 3, with parallel
fundamental form. Then

i) Either Mn is totally geodesic (and then, is an open set of an-plane.

ii) Or, Mn is properly umbilical (and then, is an open set of a round
sphere Sn~

iii) Or, Mn is locally a Rieamannian product x R, where En-I
is an open set of a (n - 1)-sphere and i locally a product ii x i2 :

x R -+ En x EP, where ii is an umbilical immersion and 

is a curve in EP.

iv) Or, Mn is locally a Riemannian product x Hk (2  k  p),
where is an open set of a (n - k)-sphere of constant curvature



p > 0, and Hk is an open set of an hyperbolic space of constant
curvature (-p).

Moreover, i is locally a product i1 X i2 . X Hk -~ x

where i1 is an umbilical immersion of into 
,

and 22 is an immersion of ~k into 

As a consequence, we obtain the following :

COROLLARY 7.2.-Let i : Mn -~ be an isometric immersion
of a compact simply connected conformally flat manifold Mn into 
(1  p  n - 3), with parallel second fundamental form. Then M~n is a
standard sphere (of constant curvature).

Proof of the theorem. We need the following lemmas.

LEMMA 7.3. - Under the assumptions of the theorem, the integral distri-
bution which defines the foliation by spheres, is parallel. In particular, ~In
is locally a product of X Mp k, where 03A3n-p+k is an open set of a

(n - p -~- k)-sphere and is a (p - k) dimensional manifold.

Proof of Lemma 7.3.-Since the second fundamental form t~ is parallel,
the dimension of the integrable distribution E defined by E = { X E

TMn / ( h(X, Y ) _ X, Y > a } has a constant dimension. This dimension is
> n -p, by theorem 4.I. Then, this distribution is everywhere differentiable.

On the other hand, the Weingarten tensor A satisfies = 0

bX, YET Mn, d~ E 

This implies : - - = 

= 0, where 03BB(03BE) = 03B1,03BE >. From this
equation, we deduce that VX E TMn, VY E E, _ 03B1,03BE >

Consequently, E is parallel. From De-Rham decomposition theorem
[Ko-No], we obtain that ~n is locally the product of an integral subma-
nifold of E and an integral submanifold of ~-L. From §4 we know that an
integral submanifold of E is an open set of a sphere.

The following lemma is an easy consequence of (7) (see also ~La~ ).

LEMMA 7.4.-Let Mn be a Riemannian conformally flat manifold,
endowed with a non trivial parallel distribution (i. e. ~ ~4~ and Then,
for every point m E there exists a neighborhood U of Mn which has
one of the following expression .

i~ U is an open set of E’~



ii) U = r x is a product of a curve of Mn by c~n open set of a
(n - 1 )-sphere.

iii) U = r x is a product of a curve of M’~ by an open set of a

(n - I)-hyperbolic space.

iv) U = En-k x Hk(2  I~  n - 2), is a product of an open set of
a (n - k)-sphere of constant curvature p ~ 0 by an open set of a
k-hyperbolic space of constant curvature -p.

Using lemma 7.3 and lemma 7.4, we conclude that Mn has locally one
of the previous expression i), ii), iii), iv), or is an open set of a sphere, in
the case where the dimension of the integral distribution is n. We shall use,
now, the fact that is a submanifold of Let us recall the following
result, due to J.D.MooRE [Moo 1].

LEMMA ?.5. Let M~ and be two Riemannian manifolds and f :

Mi x M2 --; EN be an isometric immersion of the Riemannian product
Mi x M2. If the second fundamental form h of f satisfies h(X1,X2) =
0 VXi E TM1, VX2 E TM2, then there exists a decomposition EN =

X EN2, , 1V1 + N2 = N and two isometric immersions f1 : M1 ~ ENl, ,
f2 - EN2, such that f = f1 X f2.

From theorem 4.1 and lemma 7.4, the condition of lemma 7.5 are satisfied.
Since, by theorem 5.2 one of the two components of U is an open set of a
sphere, then U is an open set of sn or satisfies i), ii), iii), iv) of lemma
7.4. Case iv) can occurs. In fact there exists local isometric immersions of
hyperbolic space ~f~ in (cf. [K.N.] for instance). Then x HP

can be locally isometrically immersed in x = En+p, and the
theorem is proved.

Proof of the corollary. We shall apply the global version of De Rham
theorem. Since M’~ is compact, the leaves of the foliation are complete [Rec
2], then they are spheres. Since Mn is simply connected, we obtain from
lemma 7.4 that the only possibility for Mn is to be a sphere 

8. Global structure of regular conformally
fiat submanifolds

We have seen in §5 that a conformally flat submanifold Mn of 
(p _ n - 3) is "locally and generically" foliated by open sets of umbilical
spheres of dimension k > n -p. Such a submanifold will be called "k-regular"



if this foliation is regular (and has dimension k everywhere). We shall prove
the following theorem, which is a direct generalisation of [Do.Da.Me]. .

THEOREM 8.1. Let Mn be an oriented compact conformally ftat sub-
manifold of En+p, (p  n - 3). If Mn is k-regular, then Mn is a sphere
bundle over an (n - k)-compact manifold.

Proof of theorem $.l. Since Mn is compact, the leaves of the foliation
are complete spheres [Rec 2]. Since p  n - 3, and k > n - p, we have k > 3.
Then the spheres are simply connected. Consequently, Mn is foliated by
simply connected compact submanifolds. In particular, this foliation has no
holonomy. It follows directly from [Rec] or [Ep], that Mn is a fiber-bundle
over the space of leaves. The fibers of this foliation are spheres.

Remark . i) It follows immediatly from the exact sequence of homotopy
of a fiber bundle that II1 (Mn ) = II1 (Bn-k), where Bn-k is the base of this
fibration. 

’

ii) Let ,5‘w2(1) be the k-sphere of curvature 1, and H (-1) be a compact
surface of constant curvature -1. Consider the standard immersion of

Sn-2(1) in and any isometric immersion of .~2(-1) into E17 (by Nash
theorem). The product S’’~-2 1 x HZ(-1) is then isometrically immersed in

19, we obtain an example of the situation studied in theorem
8.1. However, the codimension is not the best. In particular, we don’t know
examples of 2-regular compact conformally flat submanifolds Mn of En+2.

9. Remark : Conformally flat manifolds
foliated by spheres

In the previous parts of this work, we have seen that a conformally flat
submanifold Mn of an Euclidean space is, at least locally, foliated by open
sets of spheres of constant curvature. It is easy to see that the leaves are

umbilical in Mn . In this paragraph, we shall deal with the converse problem.
Precisely shall give a necessary and sufficient condition on a manifold,
which is foliated by umbilical spheres, to be conformally flat. This is a direct
generalisation of [Do.Da.Me]. We obtain the following.

THEOREM . 2014 Let Mn be a Riemannian manifold of dimension n > 4,
foliated by k-umbilical submanifolds of positive constant curvature, 3  k 

(n -1). Then is conformally flat if and only if the sectionnal curvatures
of satisf y :



i~ r~~ - rl~ for every X, Y tangent to the foliation, and for
every x~ normal to the foliation.

ii) Y) + ~) = ~) + 
for every orthonormal vectors (X, ~, ~, r~~ such that (X, Y) are tangent
to the foliation, and (~, r~~ are normal to the foliation.

Proof of the theorem. - Suppose that Mn is conformally flat. Let m
be a point of Mn and denote by S the leaf through the point m.
Let ~e~, - - - , ek, , e~~.~, - - - , be an orthonormal frame at m, such that

- - - , ek~- is tangent to the leaf S, and such that ~ek+1, - - - , en~ is normal
to ~’. Let a2 be the curvature of S, and H be the mean curvature vector of
S. Since S is umbilical, we deduce from the Gauss equation (4) that :

This implies that = E ~1, ~ ~ ~ , ~~, i ~ j, i’ ~ j’.
Let p = ~2 - . Using the notations of §2, we obtain that ~~~~ -

+ = p Vi, j E ~1, ~ ~ - ,1~~. Since l~ > 3, this implies that
= ej) Vi,j E ~1, ... ~ ~~ and = 1/2 p Vi E ~1~ ... ~ ~~.

On the other hand, = 2!J(e$, + 2~J(e«, = ~./2 p + 
~i E {1, " ’, ,k}, Va E {k + 1,...,n) . Then does not depend on i. Then
(i) is proved. We also have ~~«a + = + e~~ + +

e j) = + I~~~. (ii) is proved.

Conversely, assume that = and + = + K~~
Vi,j E ~ 1, ~ ~ ~ ,1~ ~, Va, ~3 E ~ k + 1, ... , , n } . Then, by an easy computation
we obtain ’ljJ(ei, ei) = 1/2 p Vi  k, = -1/2 p + ~03B1 ~ k + 1.
This implies :

This implies immediately that Mn is conformally flat.
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