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Hidden Regularity for Semilinear Hyperbolic
Partial Differential Equations

M. MILLA MIRANDA (1)and L.A. MEDEIROS (2)

Annales Faculte des Sciences de Toulouse Vol. IX, n01, 1988

"Hidden regularity" est un concept introduit par J.L. LIONS
dans [6] pour l’équation d’onde nonlineaire utt - Au + = 0. Dans ce
travail, les auteurs obtiennent le meme type de regularite pour I’equation
utt - Au + F(u) = 0 ou F: R - R satisfait les conditions de W. A. STRAUSS
[9], c’est-a-dire, F est continue et 0. Dans §3 les auteurs developpent
certaines notions sur la trace de la derivee normale.

ABSTRACT. - " Hidden Regularity" is a concept introduced by J.L. LIONS
in [6], for the nonlinear wave equation utt - Au + = 0. In the
present work, the authors prove the same type of regularity for the equation
utt -Du-f-F(u) = 0 under the hypothesis of W. A. Strauss [9], i.e., F: R - R
is continuous and s F( s) > 0. In §3 The authors develop certain notions about
the trace of the normal derivative.

1. Introduction

Let Q be a bounded open set of Rn with smooth boundary r. By Q we
represent the cylinder T (, T an arbitrary positive real number. Let
F: R ~ R be a function satisfaying:

F is continuous and sF(s ) > for all s in R ( 1.1 )

In the cylinder Q we consider the similinear hyperbolic equation:
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with initial data

Let us represent by G the function

It was proved by STRAUSS [9], that if F satisfies (1.1) and

uo E ~o (~)~ G(uo) E ~1~~)~ ui E LZ(~)~ (1.5)

then the equation (1.2), with initial conditions (1.3), has one solution u such
that

u E L°°(o, T : Ho (~))~ u’ E T; H2(~))~ (1.6)
and we have the energy inequality

E(t)  E(0) = Eo. (1.7)

The energy E(t) is given by:

In this paper we prove the following.

THEOREM 1.1. If we assume (1.1~, (1.5), then the equation (1.,~~ has
one solution u satisfying (1. 6) the initial conditions (1.3), and

such that:

t By v we re present the normal to r, directed towards the exterior of SZ and by
E = T the lateral boundary of the cylindar Q. ) we represent the

norm of v in LZ (E), that is,



the constant C depending only on T and S~.

Remark 1.1. - From the properties ( 1.6) of the solutions u of ( 1.2) given
by Theorem 1.1 we shall prove that:

For the proof, look Proposition 3.4, §3 of this paper, where p = 2 if

n = 1,2,3, p  n 2 if n > 4, and - + 2014 = 1. °
Observe that (1.8) does not follows from (1.10). This phenomenom was

denominated "Hidden Regularity" by LIONS, cf. [6], for the case F(s ) = 
We also can find results of hidden regularity motivated by problems of
optimal control in LIONS [5], for the linear case of (1.2), i.e., F = 

In §2 we give the proof of Theorem 1.1. In §3 we study the trace of the

normal derivative 2014 for functions u that belong to the space

p’ as in the Remark 1.1. We did not find in the literature this direct proof.

2. Proof of Theorem 1.1

We will represent by (, ), ~ ’ ~ and ((, )), ~~ ’ i~ the inner product and norm,
respectively, in and Ho (SZ). By Ho (SZ) we represent the Sobolev space
of order one whose functions have trace zero on the boundary of 11 and by

the space of square integrable numerical functions on 11. All functions
considered in this paper are real valued. The existence proof follows the idea
ofSTRAUSS [9].

Suppose uo, ul given by (1.5). For each natural number j, let us consider
the function R H R defined by:

It follows by KINDERLEHRER-STAMPACCHIA [2], that = Moj belongs
to for all j E N.



Let F and G as in (1.1), (1.4) and represent by Fk the Strauss approxi-
mation of F, that is, Fk, k E N, is a continuous function defined by:

It follows by STRAUSS [9], COOPER-MEIDEROS [I], that Fk is Lipschitz for
each k, > 0 and (Fk ) converges to F uniformly on the compacts
subsets of R. Represent by Gk(s) fo Fk(r) dr and we obtain Gk(0) -
Fk(0), for all k E N.

Since u0j E let and two sequences of elements
of space of C°° functions with compact support in Q, such that

Moj in Ho (SZ), - ul in as ~u --~ oo. (2.2)

It follows by the above hypothesis, that there exists only one function 
which we represent by u such that:

and ~c is a weak solution of the problem

The energy identity is verified by the solution u = i.e.,

. 

__ __ 

(2.5)
This result can be found in LIONS [4], STRAUSS [8].

The next step is to prove that converges to a solution of the initial
value problem (1.2), (1.3) and the conditions (1.8), (1.9) are verified. So, we
divide the proof in two parts. First on the existence of solutions and second
on the estimate (1.9) of the normal derivative.



1 .. - Existence of Solutions

In this step we bounded the second member of .(2.5) by a constant
independent of and k. We obtain: 

’

and

We have:

hence there exists a subsequence (Gk~ ) of (Gk ), which is denoted by (G;),
such that:

We also have G(uo ) a.e. in S2 and G(uo;)  G(uo ). As G(uo ) E
L1(n), we have then

From (2.8) and (2.9) we obtain

Thus, from the convergences (2.2), (2.7), (2.10) and the property (2.6), it
follows that for every 6: > 0, the energy equality (2.5) can be estimated as
follows:

for all t E [0, T] and  > jo, where Eo is defined by (1.7).
It follows from the estimate (2.11) that there exists subsequences 

(u~ ) and a function u such that:



Taking limits in the approximated system (2.4) and using the convergences
(2.12), we obtain:

Remark 2.1. STRAUSS proved in [9], cf. LIONS [4], Lemma 1.3, a
convergence theorem for sequence of measurable functions, which permit
us to pass to the limit in (2.14). This result says that if -~ F(u) a.e.
in Q and

then

Let us apply the result of Remark 2.1 in order to obtain the limit of
(2.14) as j --~ oo. It is sufficient to verify the conditions (2.15). In fact, from
(2.14) we obtain

which by the inequality (2.11 ) is bounded by a constant independent of j,
thus conditions of Remark 2.1 are verified.

Therefore, it is permissible to pass to the limit in (2.14) and obtain a
solution u of (1.2). To verify the initial conditions (1.3) we use the usual
argument, as in LIONS [4], STRAUSS [9].

2.. - Estimates for the Normal Derivative

The method used in this section is one applied by LIONS [6]. First of all we
prove a Lemma. Note that we use in ntis section the summation convention,

i.e., terms like hi ax _ , 

means summation in i from one to n.

We consider functions hi such that



LEMMA 2.1.- Let w E n Ho(S2). Then

8w 
2

From this zt folloz,vs that |~w|2 = (~w av .

Proof . - In fact, let 03BE E D(r) and let 03BE E Hm(03A9), with m > max(n /2, 2),
such that trace yo~ on r is ~’. We know that ~ exists because D(r) C

/2 (r). We have:

for all ~ E D(r). Note that n is regular. We also obtain

It follows that

which implies the proof of Lemma 2.1.

Let M~j = M in the class (2.3) which is the solution of (2.4). We use
~ = F, Gj = G to simplify the notation. Multiply both terms of (2.4) by

and integrate on Q, which is permissible. We obtain:
c~r,

We obtain:

where



consequently, observing that u’(t~ E in ]0, T~, we have:

We also obtain:

and

Applying Lemma 2.1 to the first integral in second member of the above
inequality, we get:

Nothing that G is of class C1 with bounded derivative and ?(0) = 0, i.e.,
G(u) E L2(0, T; we obtain

Substituting (2.16), (2.18), (2.19) in (2.15) we obtain:



Using the inequality (2.11 ) in the second member of the last equality, we
get: 

n

for all  > 0, j ~ j0, ~ > 0, where C > 0 does not depend of , j, Eo, e. .

Thus, we obtain a subsequence, still represented by such that

and as e is arbitrary, we have:

I n t h e next section we will prove that ~ --~ ~r- weak star in
(w ~ 8v

for p > 2 and p > n 2. We note that by W’ we represent the topological

dual of W. It follows from (2.20) that converges to x in the above

space and consequently x = This fact and (2.21) complete the proof of
Theorem 1.1. QED

3. Trace of Normal Derivative

We summarize this section as follows. First of all we prove that -Au =

- F(u) - u" can be written in the form -0394u = then we show that

- - z’; we prove that the traces of ~y ~v, az r 
are defined, conseq uently

the trace of ~u ~v is defined, and to complete the argument we obtain the

convergence of ~ ~vuj = -~ ~vyj - ~ ~vz’j to ~u ~v = -~y ~v - ~z’ ~v in an appropriate
space which contains L2(E), equipped with the weak topology. The main
difficult in this procedure is because the nonlinear term F(u) belongs to
L1 (0, T; L1 (S2)) .

In order to have a better notation we represent by the traces,

respectively, of the function w and of its normal derivative, as is done usually.



By the symbol ( f g) we still represent the integral on 11 of f g and by ( f g)
the duality pairing between W and its topological dual W’. In all this section
the numbers p, p’ satisfy the conditions: .. ~ .... ~ .. ; ~ , .... ,

It follows that is continuously embedded in C(n).
The begin we prove the existence of solutions for the problem:

This will be proved by transposition method, cf. LIONS [3] and LIONS-
MAGENES [7].

PROPOSITION 3.1. ~ ~f f E there exist only one function y ~
such that

The application T f = y from L1 (S2) in LP’ (SZ) is linear and continuous and
- A./=/.

Proo f . Let h E and w be the solution of the problem: .

Then, by the regularity of the solutions of elliptic equations, it follows that
w e n 

Let S be the application

Sh = w from LP(Q) in 

where w is the solution of (3.3). Then S is linear and continuous. Let S* be
the transpose of S, that is:

The function y = S* f satisfies the conditions (3.2). In fact, ~S’* f ,1~~ =
~ f , S’h~, that is:

It It



To prove the uniqueness, let Y1, y2 in Lp~ (H) satisfying (3.2). Then

Let h E LP(n) and w solution of problem (3.3). Then by the last equality
we have: 

..

which implies yi = y2. Therefore, the uniqueness is proved.
Since T = S* on and S* is linear and continuous, it follows that

T has the same properties. QED
Let us represent by E the Banach space

with the norm:

The next step in our argument, is to prove that ,1 v is defined for all v E E.
We follows the usual method, as in LIONS [3]. By we represent the
restrictions of the test functions 5p of D(Rn ) to the bounded open set Q.

LEMMA 3.1. - is dense in E.

Proof.-Let M E E’ be such that Mcp = 0 for all ~p E 
We must prove that M = 0.

We can consider E as a closed subspace of Lp~ X = W. Let M
be the continuous linear extension of M to W. Then there exists f E 
and h E such that

In particular,

Let f and h be the extension of f and h to Rn, zero outside H. Consider
~ E D (Rn) and let Sp = 0 on H. By (3.4) we have:



that is,

We have /6 6 and by (3.5) = /. As p ~ 2 and 03A9
is bounded it follows that

By Fourier transform we obtain h 6 As H is regular, we deduce
from there that

(3.6)

Consider an open ball B of R~ which contains H. Let w be the solution of

the problem:

f -A~ = / in B 
.g ~w = 0 on the boundary of B.

As  e LP(B), / restrict to B, it follows by the regularity theorem, that

By (3.6) and (3.8) it follows that

and by (3.5), (3.7) these both functions are solutions of

By the uniqueness result, we have h = w. It then follows that h belongs to
hence

h E Wo’p(S2). (3.9)

Let v E E. By (3.9) there exists a sequence of elements of such

that converges to h in By the limits in (cp~, = v)
it follows that

= (Oh, v). (3.10)

Substituting (3.10) in (3.4) and observing that f + Oh = 0 in H we prove
that M = 0. QED



PROPOSITION 3.2. - There exists an application 03B3v = from E
to W 2 -1 ~p~ (I‘) X W z -2~p~ ~r), linear and continuous such that : .

Proof . We shall use the notation:

By the trace theorem, LIONS [3], for each ~~’, r~~ E Z, there exists a function
w E such that qow = 03BE and 03B31w = q. The condition (3.1) implies
by Sobolev theorem that is continuously embedded in C( ~ ). For
each v E E we define the functional Tv on Z by

It is easy to show that Tv is well defined. We have:

Thus,

Let ~p E ). By the definition (3.11~ and Green formula, we obtain:

From (3.12) and (3.13) it follows that we have established an application (1
given by:

linear and continuous, where is equipped with the topology induced
by that one of E.

Let T be the application

Since is dense in E, it follows that the extension of q = r ’ r to E
satisfies the conditions of Propsicao 3.2. QED



Let u be the solution obtained in Theorem 1.1. Then

with F(u) E L1 (0, T; and u’ E LZ (0, T; L2(SZ)). By the Propositions
3.1, 3.2 and regularity Theorem for elliptic equations, it follows that there
exists unique functions

such that

Consequently

Remark 3.1. Let v E LPl (0, T; Lqi (SZ)), Ov E LpZ (0, T; Lq2 (SZ)),
1  pi, qi  oo, i = 1, 2. Then

This is a consequence or the fact that (Av, 8~p~ = (v, for all ~p E 

PROPOSITION 3.3. - We have

where y,z are defined by (~.15~.

Proo/.-We observe that u E L°° . Let 8 E D(o, T). By
Remark 3.1 and nothing that -a, is continuous from to H-1 (S2), we
obtains from (3.15):

that is



Let us consider:

We want to show that U and V are solutions of the problem

Therefore, by the uniqueness given by Proposition 3.1, we get U = V and
we have the proof of the Proposition 3.3.

We have U E because p > 2. Let w E Then

As -Au E W-1 ~p~ (SZ), because p > 2, it follows that. ~-au, w~ = (u, 
Also, ~-Oz, w~ = (z, -Ll w). Therefore,

From (3.15) and Remark 3.1, it follows:

It is clear that V is a solution of (3.17). Then U, V are solutions of (3.17)
which proves Proposition 3.3. QED

To know in what space -y1 u is localized we need the following lemma.

LEMMA 3.2. - We have y1 z’ = (y1 z)’ .

Proo f - The set

is total in L2 (0, T; H~2 (SZ)) . Then there exists a sequence (zll) such that



We have then

whence

Also, by (3.18) we have:

therefore,

From (3.19), (3.20), since

It follows the proof of Lemma 3.2. QED

Remark 3.2. As u E L2 by the same argument used in
the proof of Lemma 3.2, we obtain:

for all natural number k.

As a consequence of (3.14), Proposition 3.2, 3.3 and Lemma 3.2, it follows
that

PROPOSITION 3.4. - We have

Let uj be the approximate solution introduced in the proof of Theorem 1.1,
that is, -Du? = - . By the Proposition 9.9 we can write

We have that 03B31uj belongs to the space given in Proposition 3.4.



In this conditions we obtain the following result:

PROPOSITION 3.5. - We have .

weak star.

Proo, f . We note that F(u) in L1 (0, T; consequently
from

it follows that

which, by Proposition 3.2 implies:

Also nothing that uj - u’ in L2 (0, T; weak and by

we obtain that

Let ç E W where W’ is the space in (3.22). One has by Lemma 3.2

Then, by (3.23), (3.24) we obtain

which proves Proposition 3.5 and consequently the proof of Theorem 1.1 is
complete. QED
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