Manuel De León Paulo R. Rodrigues

Dynamical connections and non-autonomous lagrangian systems

Annales de la faculté des sciences de Toulouse 5^e série, tome 9, nº 2 (1988), p. 171-181

<a>http://www.numdam.org/item?id=AFST_1988_5_9_2_171_0>

© Université Paul Sabatier, 1988, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Dynamical connections and non-autonomous Lagrangian systems⁽¹⁾

MANUEL DE LEON⁽²⁾ and PAULO R. RODRIGUES⁽³⁾

RÉSUMÉ. — On montre que si ξ est une équation différentielle du deuxième ordre (semigerbe) sur le fibré des jets $J^1(\mathbf{R}, M)$ telle que les courbes intégrales sont des solutions de l'équation de Lagrange non-autonome alors il existe une connexion Γ sur $J^1(\mathbf{R}, M)$ dont les courbes intégrales sont aussi des solutions de la même équation. En plus, Γ est une connexion ayant comme semigerbe ξ . L'étude est une extension à la dynamique Lagrangienne non-autonome de quelques résultats de Grifone pour le cas autonome.

ABSTRACT.—We show that if ξ is a second-order differential equation (semispray) on the jet bundle $J^1(\mathbf{R}, M)$ whose paths are solutions of the non-autonomous Lagrange equations then there is a connection Γ on $J^1(\mathbf{R}, M)$ whose paths are also solutions of the same equations. Moreover, Γ is a connection whose associated semispray is precisely ξ . This is an extension to non-autonomous Lagrangian dynamics of a previous result due to Grifone for autonomous Lagrangians.

1. Introduction

The geometrical description of autonomous Lagrangian systems, started with GALLISOT [G], was elucidated by KLEIN [K1], [K2] (see also GODBILLON [GB]). He showed that the differential geometry of Lagrangian dynamics is intrinsically related to a (1.1) tensor field J, called *almost tangent structure*, defined on the tangent bundle of a manifold.

⁽¹⁾ Partially supported by Xunta de Galicia, Spain and CNPq-Brazil, Proc. 301115/79.

 ⁽²⁾ CECIME Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid
 Spain

⁽³⁾ Departamento de Geometria Instituto de Matematica, Universidade Federal Fluminense, 24.000 Niteroi, RJ - Brazil

Since the early works of KLEIN some articles have been published showing that almost tangent geometry provides a natural framework in wich interesting generalizations of autonomous Lagrangian systems may be developed (see for instance, CRAMPIN [C], CRAMPIN et al. [CSC], de LEON and RODRI-GUES [DLR1], [DLA2], GOTAY and NESTER [GN], SARLET et al. [SCC]). In particular, an extensive study about the theory of connections on tangent bundles in terms of the almost tangent geometry, including some aspects of autonomous Lagrangians, was proposed by GRIFONE [GR] around 1972.

As far as we know the non-autonomous case has been practically unknown in the literature (an exception, for example, is the recent paper of CRAMPIN and co-workers [CPT]). It is the purpose of this paper to stablish some intrinsical properties about almost tangent theory of connections and its relation with non-autonomous Lagrangian dynamics. We will see that the theory of connections on the jet manifold $J^1(\mathbf{R}, M)$ is surprisingly more simpler than the theory of connections on TM, where M is a given manifold (the reader is invited to compare our results with GRIFONE).

2. Preliminaries

Throughout the text we shall keep in mind all results, definitions and notations previously introduced in [DLR 1] (see also [DLR 2]). All structures, functions, etc, are assumed to be smooth (C^{∞}) . Let M be a manifold of dimension m (called *configuration* manifold) and Γ a connection on the tangent bundle TM of M. We recall here that a connection Γ on TM generates two projectors $h: T(TM) \to Hor(TM), v: T(TM) \to Ver(TM)$ such that $T(TM) = Hor(TM) \oplus Ver(TM)$, where Hor(TM) (resp. Ver(TM)) is the horizontal (resp. vertical) bundle over TM. If $\overline{\xi}$ is an arbitrary semispray (second-order differential equation) on TM then $\xi = h(\overline{\xi})$ is a semispray on TM which does not depend on the choice of $\overline{\xi}$. We call ξ the associated semispray of Γ . A connection Γ and its associated semispray have same paths.

If ξ is a semispray on TM then it can be shown that $\Gamma = -\mathcal{L}_{\xi}J$ is a connection on TM (here \mathcal{L}_{ξ} is the Lie derivative and $\mathcal{L}_{\xi}J$ is defined by

$$(\mathcal{L}_{\xi}J)(Y) = ([\xi, JY] - J[\xi, Y])).$$

When ξ is a spray (homogeneous second-order differential equation) then $\Gamma = -\mathcal{L}_{\xi}J$ is a connection on M such that its associated semispray is precisely ξ . For a semispray ξ there is a family of connections $\Gamma = -\mathcal{L}_{\xi}J + T$,

where T is a semibasic tensor field of type (1.1) on TM in equilibrium with ξ (in fact T is the strong torsion of Γ) (see [GR]). In the non-autonomous situation the relation between connections and semisprays becomes much more simpler, as we will show below.

The jet manifold $J^1(\mathbf{R}, M)$ is fibred over $\mathbf{R} \times M$, \mathbf{R} and M with projection maps π , π_1 , and π_2 . We notice that $J^1(\mathbf{R}, M)$ can be identified with $\mathbf{R} \times TM$ in a very natural way. Therefore we transport the geometric structures defined on TM to $J^1(\mathbf{R}, M)$ like the almost tangent structure J and the Liouville vector field C on TM. We may define a new tensor field \tilde{J} of type (1.1) on $J^1(\mathbf{R}, M)$ by

$$\widetilde{J} = J - C \otimes dt, \tag{1}$$

which is locally characterized by

$$\widetilde{J}(\partial/\partial t) = -C; \ \widetilde{J}(\partial/\partial x^i) = \partial/\partial x^i; \ \widetilde{J}(\partial/\partial y^i) = 0$$
(2)

where (t, x, y) are local coordinates for $J^1(\mathbf{R}, M)$.

Hence \tilde{J} has rank m and satisfies $(\tilde{J})^2 = 0$. We define the adjoint of \tilde{J} , \tilde{J}^* , as the endormorphism of the exterior algebra $\Lambda(J^1(\mathbf{R}, M))$ of $J^1(\mathbf{R}, M)$ locally given by

$$\widetilde{J}^{*}(dt) = 0, \ \widetilde{J}^{*}(dx^{i}) = 0, \ \widetilde{J}^{*}(dy^{i}) = dx^{i} - y^{i} \ dt.$$
 (3)

Like in the autonomous situation we associate to \widetilde{J} operators $i_{\widetilde{J}}$ and $d_{\widetilde{J}}$ on the algebra $\Lambda(J^1(\mathbf{R}, M))$ by

$$i_{\widetilde{J}}\omega(X_1,\cdots,X_r) = \sum_{\ell=1}^r \omega(X_1,\cdots,\widetilde{J}X_\ell,\cdots,X_r), \\ d_{\widetilde{J}} = i_{\widetilde{J}}d - di_{\widetilde{J}},$$

$$(4)$$

and so we have

$$\left. \begin{array}{l} i_{\widetilde{J}}(df) = \widetilde{J}^{*}(df), \text{ for all } f \text{ on } J^{1}(R,M) \\ i_{\widetilde{J}}(dt) = i_{\widetilde{J}}(dx^{i}) = 0; \ i_{\widetilde{J}}(dy^{i}) = dx^{i} - y^{i} \ dt \end{array} \right\}$$
(5)

$$\begin{aligned} d_{\widetilde{j}}f &= \frac{\partial f}{\partial y^{i}} \left(dx^{i} - y^{i} dt \right) \\ d_{\widetilde{j}}(dt) &= d_{\widetilde{j}}(dx^{i}) = 0; d_{\widetilde{j}}(dy^{i}) = -d(dx^{i} - y^{i} dt) = dy^{i}\Lambda dt. \end{aligned}$$

$$(6)$$

In the following we will set

$$\theta^i = dx^i - y^i \ dt, \ 1 \le i \le m. \tag{7}$$

- 173 -

Also, it is not hard to see that a vector field ξ on $J^1(\mathbf{R}, M)$ is a semispray iff $\theta^i(\xi) = 0$ and $dt(\xi) = 1$, $1 \le i \le m$. In such a case ξ is locally given by

$$\xi = \partial/\partial t + y^i \ \partial/\partial x^i + \xi^i \ \partial/\partial y^i. \tag{8}$$

Furthermore, a vector field ξ on $J^1(\mathbf{R}, M)$ is a semispray iff $J\xi = C$ and $\widetilde{J}\xi = 0$.

Let ξ be a semispray on $J^1(\mathbf{R}, M)$. A curve s in M is called a path of ξ if its canonical prolongation is an integral curve of ξ .

Let s be a curve in M locally given by $(x^i(t))$. Then $\tilde{s}^1(t) = (t, x^i(t), \dot{x}^i(t))$ and so s is a path of ξ if and only if satisfies the following non-autonomous system of differential equations

$$rac{d^2x^i}{dt^2}=\xi^i\left(t,x,rac{dx}{dt}
ight),\quad 1\leq i\leq m$$

where ξ is given by (8).

3. Semisprays and dynamical connections

The tensor fields J and \tilde{J} on $J^1(\mathbf{R}, M)$ permit us to give a characterization of a kind of connections for the fibration $\pi: J^1(\mathbf{R}, M) \to \mathbf{R} \times M$.

DEFINITION (1). — By a dynamical connection on $J^1(\mathbf{R}, M)$ we mean a tensor field Γ of type (1.1) on $J^1(\mathbf{R}, M)$ satisfying

$$J\Gamma = \widetilde{J}\Gamma = \widetilde{J}, \ \Gamma \widetilde{J} = -\widetilde{J}, \ \Gamma J = -J.$$
(9)

By a straightforward computation from (9) we deduce that the local expressions of Γ are

$$\Gamma(\partial/\partial t) = -y^{i} \partial/\partial x^{i} + \Gamma^{i} \partial/\partial y^{i},$$

$$\Gamma(\partial/\partial x^{i}) = \partial/\partial x^{i} + \Gamma^{j}_{i} \partial/\partial y^{i},$$

$$\Gamma(\partial/\partial y^{i}) = -\partial/\partial y^{i}.$$

$$(10)$$

The functions $\Gamma^i = \Gamma^i(t, x, y)$, $\Gamma^j_i = \Gamma^j_i(t, x, y)$ will be called the *components* of the connection Γ . From (10) we easily deduce that

$$\Gamma^3 - \Gamma = 0 ext{ and rank } (\Gamma) = 2m.$$

- 174 -

This type of polynomial structure is called f(3, -1)-structure in the literature (see [YI]). Now, we can associate to Γ two canonical operators $\underline{\ell}$ and \underline{m} given by

$$\underline{\ell} = \Gamma^2, \ \underline{m} = -\Gamma^2 + I.$$

Then we have

$$\underline{\ell}^2 = \underline{\ell}, \underline{m}^2 = \underline{m}, \underline{\ell}\underline{m} = \underline{m}\underline{\ell} = 0, \ \underline{\ell} + \underline{m} = I, \tag{11}$$

and $\underline{\ell}$ and \underline{m} are complementary projectors. From (11) we deduce that $\underline{\ell}$ and \underline{m} are locally given by

$$\underline{\ell}(\partial/\partial t) = -y^{i} \partial/\partial x^{i} - (\Gamma^{i} + y^{j}\Gamma_{j}^{i})\partial/\partial y^{i}; \underline{\ell}(\partial/\partial x^{i}) = \\
= \partial/\partial x^{i}; \underline{\ell}(\partial/\partial y^{i}) = \partial/\partial y^{i}; \underline{m}(\partial/\partial t) = \\
= \partial/\partial t + y^{i} \partial/\partial x^{i} + (\Gamma^{i} + y^{j}\Gamma_{j}^{i})\partial/\partial y^{i}; \underline{m}(\partial/\partial x^{i}) = \\
= \underline{m}(\partial/\partial y^{i}) = 0.$$
(12)

If we put $\mathcal{L} = Im\underline{\ell}, \mathcal{M} = Im\underline{m}$, then we have that \mathcal{L} and \mathcal{M} are complementary distributions on $J^{1}(\mathbf{R}, M)$, that is,

$$T(J^1(R,M)) = \mathcal{M} \oplus \mathcal{L}.$$

From (12) we deduce that \mathcal{L} is 2*m*-dimensional and is locally spanned by $\{\partial/\partial x^i, \partial/\partial y^i\}$. \mathcal{M} is one-dimensional, globally spanned by the vector field $\xi = \underline{m}(\partial/\partial t)$. Taking into account the local expression of ξ , we deduce that ξ is a sempispray which will be called the *canonical semispray associated to* the dynamical connection Γ .

Furthermore, we have $\Gamma^2 \underline{\ell} = \underline{\ell}$ and $\Gamma \underline{m} = 0$. Thus Γ acts on \mathcal{L} as an almost product structure and trivially on \mathcal{M} . Since $\mathcal{M} = \ker \Gamma$, Γ is said to be an f(3, -1)-structure on $J^1(\mathbf{R}, M)$ of rank 2m and parallelizable kernel. Moreover, Γ/\mathcal{L} has eigenvalues +1 and -1. From (10) the eigenspaces corresponding to the eigenvalue -1 are the vertical subspaces $V_z, z \in J^1(\mathbf{R}, \mathcal{M})$. Recall that for each $z \in J^1(\mathbf{R}, \mathcal{M})$, V_z is the set of all tangent vectors to $J^1(\mathbf{R}, \mathcal{M})$ at z which are projected to 0 by $T\pi$. Thus V is a distribution given by $z \mapsto V_z$. The eigenspace at $z \in J^1(\mathbf{R}, \mathcal{M})$ corresponding to the eigenvalue +1 will be denoted by H_z and called the strong-horizontal subspace at z. We have a canonical decomposition

$$T_z(J^1(\mathbf{R},M)) = \mathcal{M}_z \oplus H_z \oplus V_z,$$

- 175 -

M. de Leon and P.R. Rodrigues

and obviously,

$$T(J^{1}(\mathbf{R}, M)) = \mathcal{M} \oplus H \oplus V, \tag{13}$$

where H is the distribution $z \mapsto H_z$.

Let us put $H'_z = \mathcal{M}_z \oplus H_z$; H'_z will be called the *weak-horizontal subspace* at z. Then we have the following decompositions

$$T_z(J^1(\mathbf{R}, M)) = H'_z \oplus V_z, \quad z \in J^1(\mathbf{R}, M)$$

and

$$T(J_1(\mathbf{R}, M)) = H' \oplus V, \tag{14}$$

where $H': x \to H'_z$ is the corresponding distribution.

We notice that $\mathcal{L}, \mathcal{M}, H$ and H' may be considered as vector bundles over $J^1(\mathbf{R}, M)$; the bundles H and H' will be called *strong* and *weak-horizontal* bundles, respectively. Thus, from (14) Γ defines a connection on the fibration $\pi : J^1(\mathbf{R}, M) \to \mathbf{R} \times M$ with horizontal bundle H' (see ROUX [R] and de LEON & RODRIGUES [DLR 1]). But not every connection on the fibration $\pi : J^1(\mathbf{R}, N) \to \mathbf{R} \times M$ arises in this way.

A vector field X on $J^1(\mathbf{R}, M)$ which belongs to H (resp. H') will be called a *strong* (resp. *weak*) horizontal vector field. From (14), we have that the canonical projection $\pi : J^1(\mathbf{R}, M) \to \mathbf{R} \times M$ induces an isomorphism

$$\pi_*: H'_z \to T_{\pi(z)}(\mathbf{R} \times M), \quad z \in J^1(\mathbf{R}, M).$$

Then, if X is a vector field on $\mathbf{R} \times M$, there exists a unique vector field $X^{H'}$ on $J^1(\mathbf{R}, M)$ which is weak-horizontal and projects to X. The projection of $X^{H'}$ to H will be denoted by X^H .

From (10) and by a straightforward computation, we obtain

$$(\partial/\partial t)^{H'} = \partial/\partial t + (\Gamma^{j} + \frac{1}{2} y^{i} \Gamma^{j}_{i}) \partial/\partial y^{j}$$

$$(\partial/\partial x^{i})^{H'} = \partial/\partial x^{i} + \frac{1}{2} \Gamma^{j}_{i} \partial/\partial y^{j}.$$
 (15)

Then, if we put $H_i = (\partial/\partial x^i)^{H'}$ and $V_i = \partial/\partial y^i$, one deduces that $\{\xi, H_i, V_i\}$ is a local basis of vector fields on $J^1(\mathbf{R}, M)$. In fact, $\mathcal{M} = \langle \xi \rangle$, $H = \langle H_i \rangle$, and $V = \langle V_i \rangle$; $\{\xi, H_i, V_i\}$ is called an *adapted basis* to the f(3, -1)-structure Γ . In terms of $\{\xi, H_i, V_i\}$ (15) becomes

$$(\partial/\partial t)^{H'} = \xi - y^i H_i, \ (\partial/\partial x^i)^{H'} = H_i.$$

- 176 -

Therefore, we obtain

$$(\partial/\partial t)^H = -y^i H_i, \ (\partial/\partial x^i)^H = H_i.$$

If $X = \tau \ \partial/\partial t + X^i \ \partial/\partial x^i$ is a vector field on $R \times M$, we have

$$X^H = (X^i - \tau y^i)H_i \tag{16}$$

(compare with CRAMPIN, PRINCE and THOMPSON [CPT]). Finally, we notice that the dual local basis of 1-forms of the adapted basis $\{\xi, H_i, V_i\}$ is given by $\{dt, \theta^i, \psi^i\}$, where $\theta^i = dx^i - y^i dt$, and $\psi^i = -(\Gamma^i + \frac{1}{2} y^j \Gamma^i_j) dt - \frac{1}{2} \Gamma^i_j dx^j + dy^i$. This fact can be shown by a straightforward computation.

Let ξ be a semispray on $J^1(\mathbf{R}, M)$ and suppose that ξ is locally expressed by

$$\xi = \partial/\partial t + y^i \ \partial/\partial x^i + \xi^i \ \partial/\partial y^i.$$
⁽¹⁷⁾

Then a simple computation in local coordinates shows that

$$\left[\xi, \partial/\partial t \right] = -\frac{\partial \xi^{j}}{\partial t} \partial/\partial y^{j},$$

$$\left[\xi, \partial/\partial x^{i} \right] = -\frac{\partial \xi^{j}}{\partial x^{i}} \partial/\partial y^{j},$$

$$\left[\xi, \partial/\partial y^{i} \right] = -\frac{\partial}{\partial x^{i}} - \frac{\partial \xi^{j}}{\partial y^{i}} \partial/\partial y^{j}.$$

$$\left\{ \left. \left\{ \xi, \partial/\partial y^{i} \right\} \right\} = -\frac{\partial}{\partial x^{i}} - \frac{\partial \xi^{j}}{\partial y^{i}} \partial/\partial y^{j}. \right\}$$

$$\left\{ \left. \left\{ \xi, \partial/\partial y^{i} \right\} \right\} = -\frac{\partial}{\partial x^{i}} - \frac{\partial \xi^{j}}{\partial y^{i}} \partial/\partial y^{j}. \right\}$$

$$\left\{ \left. \left\{ \xi, \partial/\partial y^{i} \right\} \right\} = -\frac{\partial}{\partial x^{i}} - \frac{\partial \xi^{j}}{\partial y^{i}} \partial/\partial y^{j}. \right\}$$

$$\left\{ \left. \left\{ \xi, \partial/\partial y^{i} \right\} \right\} = -\frac{\partial}{\partial x^{i}} - \frac{\partial \xi^{j}}{\partial y^{i}} \partial/\partial y^{j}. \right\}$$

$$\left\{ \left. \left\{ \xi, \partial/\partial y^{i} \right\} \right\} = -\frac{\partial}{\partial x^{i}} - \frac{\partial}{\partial y^{i}} \partial/\partial y^{j}. \right\}$$

$$\left\{ \left. \left\{ \xi, \partial/\partial y^{i} \right\} \right\} = -\frac{\partial}{\partial x^{i}} - \frac{\partial}{\partial y^{i}} \partial/\partial y^{j}. \right\}$$

PROPOSITION (1). — Let $\Gamma = -\mathcal{L}_{\xi} \widetilde{J}$. Then Γ is a dynamical connection on $J^1(\mathbf{R}, M)$ whose associated semispray is, precisely, ξ .

Proof. — In fact from (18) we have

$$\Gamma(\partial/\partial t) = -y^{i} \partial/\partial x^{i} - \left(y^{j} \frac{\partial \xi^{i}}{\partial y^{j}} - \xi^{i}\right) \partial/\partial y^{i},$$

$$\Gamma(\partial/\partial x^{i}) = \partial/\partial x^{i} + \frac{\partial \xi^{j}}{\partial y^{i}} \partial/\partial y^{j},$$

$$\Gamma(\partial/\partial y^{i}) = -\partial/\partial y^{i}.$$
(19)

Now, from (19) we easily deduce that Γ is a dynamical connection on $J^1(\mathbf{R}, M)$. Furthermore, taking into account (12), we have that the associated semispray to Γ is, precisely, ξ .

M. de Leon and P.R. Rodrigues

From Proposition (1) we may observe that the theory of dynamical connections on $J^1(\mathbf{R}, M)$ is more simpler than the theory of connections on TM.

Let Γ be a dynamical connection on $J^1(\mathbf{R}, M)$.

DEFINITION (2).— A curve $u : \mathbf{R} \to M$ is called a path of Γ if the canonical prolongation $j^1 u$ of u to $J^1(\mathbf{R}, M)$ is a weak-horizontal curve.

Now, we shall find the differential equations for the paths of Γ (the dots meaning time derivatives).

If $u : \mathbf{R} \to M$ is locally given by $t \mapsto (x^i(t))$, then we have $j^1u(t) = (t, x^i(t), \dot{x}^i(t))$. Hence,

$$\dot{\hat{j}^1}u(t) = \frac{\partial}{\partial t} + \frac{dx^i}{dt} \frac{\partial}{\partial x^i} + \frac{d^2x^i}{dt^2} \frac{\partial}{\partial y^i}$$

Therefore, u is a path of Γ if and only if $\psi^i(\hat{j^1}u(t)) = 0, 1 \le i \le m$, that is u satisfies the following system of differential equations:

$$\frac{d^2x^i}{dt^2} = \Gamma^i\left(t, x, \frac{dx}{dt}\right) + \Gamma^i_j\left(t, x, \frac{dx}{dt}\right) \frac{dx^j}{dt}.$$
 (20)

Let ξ be the associated semispray of Γ . Then ξ is locally given by

$$\xi = \partial/\partial t + y^i \, \partial/\partial x^i + \xi^i \, \partial/\partial y^i,$$

where $\xi^i = \Gamma^i + y^j \Gamma^i_i, 1 \le i \le m$.

From (20) it is clear that the paths of Γ and ξ satisfy the same system of differential equations. Then we have

PROPOSITION (2). — A dynamical connection and its associated semispray on $J^1(\mathbf{R}, M)$ have the same paths.

4. Dynamical connections and non-autonomous regular Lagrangian equations

Suppose that a non-autonomous regular Lagrangian L is given, that is, L is a non-degenerate real function on $J^{1}(\mathbf{R}, M) = \mathbf{R} \times TM$. Then it is Dynamical connections and non-autonomous Lagrangian systems

well-known that an extremal for L is a curve $s : \mathbf{R} \to M$ (or a section of $(\mathbf{R} \times M, p, \mathbf{R})$) such that

$$(\tilde{s})^*(i_X \ dL\Lambda dt) = 0 \tag{21}$$

for all vertical vector fields on $\mathbf{R} \times TM$. Also, it is known that (21) is equivalent to

$$(\tilde{s}^2)^* (i_X \ d\Omega_L) = 0, \tag{22}$$

for all π_1 -vertical vector fields on $J^1(\mathbf{R}, M)$. In (22) Ω_L is the POINCARE-CARTAN canonical form on $J^1(\mathbf{R}, M)$ locally given by

$$\Omega_L = L(t, x, y)dt + \frac{\partial L}{\partial y^i} \,\, heta^i,$$

where θ^i is defined in (7) of section 2.

In terms of the tensor field \tilde{J} and J and the Liouville vector field C on $J^1(\mathbf{R}, M)$, the POINCARE-CARTAN form takes the following expression :

$$\Omega_L = L \ dt + \frac{\partial L}{\partial y^i} \ \theta^i = L \ dt + d_{\widetilde{J}}L,$$

or equivalently,

$$\Omega_L = L \ dt + \frac{\partial L}{\partial y^i} \ dx^i - y^i \frac{\partial L}{\partial y^i} \ dt = \left(L - y^i \frac{\partial L}{\partial y^i}\right) dt + d_J L$$
$$= (L - CL) dt + d_J L = d_J L - E_L dt; E_L = CL - L.$$

Thus

$$\Theta_L = d\Omega_L = dd_{\widetilde{J}}L + dL\Lambda dt$$

or

$$\Theta_L = dd_J L - dE_L \Lambda dt.$$

A straightforward computation in local coordinates shows that

$$\Theta_L \Lambda \cdots \Lambda \Theta_L = \pm det \left(\frac{\partial^2 L}{\partial y^j \partial y^i} \right) dx^1 \Lambda \cdots \Lambda dx^m \Lambda dy^1 \Lambda \cdots \Lambda dy^m$$

and if L is a non-autonomous regular Lagrangian we deduce that Θ_L is a contact form on $J^1(\mathbf{R}, M)$. Consequently, the *characteristic* bundle of Θ_L

$$R_{\Theta_L} = \left\{ v \in T(J^1(\mathbf{R}, M)); i_v \Theta_L = 0 \right\}$$
$$-179 -$$

M. de Leon and P.R. Rodrigues

has one-dimensional fibers, that is, they are a line-bundle over $J^1(\mathbf{R}, M)$. Let us recall here that a vector field X on $J^1(\mathbf{R}, M)$ is *characteristic* if X is a section of R_{Θ_L} , that is, $i_X \Theta_L = 0$. The following result can be compared with the corresponding one for autonomous Lagrangian [see [DLR 1]].

PROPOSITION (3). — Let L be a non-autonomous regular Lagrangian on $J^1(\mathbf{R}, M)$ and ξ a characteristic vector field which satisfies $i_{\xi}dt = 1$. Then ξ is a semispray on $J^1(\mathbf{R}, M)$ whose paths are the solutions of the Lagrange equations

$$rac{d}{dt} \left(rac{\partial L}{\partial y^i}
ight) - rac{\partial L}{\partial x^i} = 0, \ 1 \leq i \leq m.$$

We call ξ the Lagrange vector field for L.

THEOREM (1). — Let L be a non-autonomous regular Lagrangian on $J^1(\mathbf{R}, M)$ and let ξ be a Lagrange vector field for L. Then there exists a dynamical connection Γ on $J^1(\mathbf{R}, M)$ whose paths are the solutions of the Lagrange equations. This connection is given by $\Gamma = -\mathcal{L}_{\xi} \tilde{J}$.

Proof.—From Proposition (1) we deduce that $\Gamma = -\mathcal{L}_{\xi} \widetilde{J}$ is a dynamical connection whose associated semispray is precisely ξ . Thus the theorem follows directly from Proposition (2) and (3).

Finally, let ut remark that the results of CRAMPIN, PRINCE and THOMP-SON [CPT] can be re-obtained in terms of Γ . In fact, with the notation of Section 3 we have a local basis of vector fields on $J^1(\mathbf{R}, M)$ given by $\{\xi, H_i, V_i\}$ where H_i is given by

$$H_i = \frac{\partial}{\partial x_i} + \frac{1}{2} \frac{\partial \xi^j}{\partial y^i} \frac{\partial}{\partial y^j}.$$

Thus the corresponding dual basis is $\{dt, \theta^i, \psi^i\}$, where

$$\psi^{i} = -\left(\xi^{i} - \frac{1}{2} y^{j} \frac{\partial \xi^{i}}{\partial y^{j}}\right) dt - \frac{1}{2} \frac{\partial \xi^{i}}{\partial y^{j}} dx^{j} + dy^{i}.$$

The significance of this dual basis is that the form Θ_L can be re-written as follows

$$\Theta_L = \frac{\partial^2 L}{\partial y^i \partial y^j} \; \theta^i \Lambda \psi^j$$

and so the semispray ξ is uniquely determined by the equations

$$i_{\xi}\theta^i = i_{\xi}\psi^i = 0, \ i_{\xi}dt = 1.$$

Dynamical connections and non-autonomous Lagrangian systems

References

- [C] CRAMPIN (M.). Tangent bundle geometry for Lagrangian dynamics, J. Phys. A : Math. Gen., t. 16, 1983, p. 3755-3772.
- [CPT] CRAMPIN (M.), PRINCE (G.), THOMPSON (G.).— A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics, J. Phys. A : Math. Gen., t. 17, 1984, p. 1437-1447.
- [DLR 1] DE LEON (M.), RODRIGUES (P.R.). Generalized Classical Mechanics and Field Theory. — North-Holland Math. Studies, t. 112, 1985.
- [DLR 2] DE LEON (M.), RODRIGUES (P.R.). Formalisme hamiltonien symplectique sur les fibrés tangents d'ordre supérieur, C.R. Acad. Sc. Paris, t. 301,ser.II,7, 1985, p. 455-458.
 - [G] GALLISSOT (T.). Les formes extérieures en Mécanique, Ann. Inst. Fourier, Grenoble, t. 4, 1952, p. 145-297.
 - [GN] GOTAY (M.), NESTER (J.).— Presymplectic Lagrangian Systems, I/II. Ann. Inst. Henri Poincaré 30,(2), 1979, p. 129-142; ibidem, 32,(1), 1980, p. 1-13.
 - [GR] GRIFONE (J.). Structure presque-tangente et connexions, I/II.Ann. Inst. Fourier (Grenoble), 22,(3), 1972, p. 287-334; ibidem, 22,(4), p. 291-338.
 - [K 1] KLEIN (J.). Espaces variationnels et Mécanique, Ann. Inst. Fourier (Grenoble), t. 12, 1962, p. 1-124.
 - [K 2] KLEIN (J.). Opérateurs différentiels sur les variétés presque- tangentes, C.R. Acad. Sc. Paris, t. 257 A, 1963, p. 2392-2394.
 - [R] ROUX (A.). Jets et connexions, Publ. Math. Univ. Lyon, t. 7, 1970, p. 1-42.
 - [SCC] SARLET (W.), CANTRIJN (F.), CRAMPIN (M.). A new look at second-order equations and Lagrangian mechanics, J. Phys. A: Math. Gen., t. 17, 1984, p. 1999-2009.
 - [YI] YANO (K.), ISHIHARA (S.). Tangent and Cotangent bundles. Pure and Appl. Math. Ser. 16, Marcel Dekker, N.Y., 1973.

(Manuscrit reçu le 27 janvier 1987)