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Pseudo-symmetry curvature conditions on hypersurfaces
of Euclidean spaces and on Kahlerian manifolds

J. DEPrEZ() @ | R. DEszcz(® L. VERSTRAELEN()

RESUME. — Nous étudions des variétés Riemanniennes pseudo-symétri-
ques, qui sont des généralisations des espaces symétriques et semi-symétri-
ques. Nous classifions les hypersurfaces pseudo-symétriques d’un espace
Euclidien. Nous prouvons qu’il n’y a pas de variété Kaehlerienne pseudo-
symeétrique et non semi-symétrique.

ABSTRACT.— We study pseudo-symmetric Riemannian manifolds, which
are generalizations of symmetric and semi-symmetric spaces. We classify the
pseudo-symmetric hypersurfaces of a Euclidian space. We prove that there
are no pseudo-symmetric Kaehlerian manifolds that are not semi-symmetric.

I - Introduction

In this paper we study Riemannian manifolds satisfying the curvature
condition R - R = fQ(R) (this type of condition will be called a pseudo-
symmetry curvature condition and will be explained in the next section).
This condition arose during the study of umbilical hypersurfaces (see [AD],
[DEP]) and is a generalization of the conditions VR = 0 and R-R = 0
(symmetric and semi-symmetric spaces [DDV]).

First, we study one simple case, namely isometric immersions into
an (N + 1)-dimensional Euclidean space of N-dimensional Riemannian
manifolds satisfying this curvature condition or one of the related conditions
R-C = fQ(C) or R-S = fQ(S) for the Weyl conformal curvature
tensor C' and the Ricci tensor S. We obtain a full classification of the
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hypersurfaces satisfying one of these conditions. We show that there are
many non-conformally flat Riemannian manifolds satisfying R- R = fQ(R)
(in this respect, see [DDV, Theorem 5.1]). Furthermore, we obtain that each
conformally flat hypersurface of a Euclidean space satisfies R- R = fQ(R).
Theorems 1 and 3 show that each hypersurface of a Euclidean space
satisfying R-C' = fQ(C) satisfies R-R = fQ(R). This is related to a theorem
of Deszcz and Grycak which states that each analytic Riemannian manifold
satisfying R - C = fQ(C) also satisfies R- R = fQ(R) or C = 0 in case
N > 5 (for a precise formulation, see [DG]; see also [G]). Concerning Kahler
manifolds we obtained a stronger result : there are no Kahler manifolds that

satisfy R- R = fQ(R) and for which R- R # 0.

More precisely, we will prove the following theorems.

THEOREM 1.— Let F : (M",g) — EN*! be an isometric immersion
of a Riemannian manifold in a Euclidean space. Then (MY ,g) satisfies
R-R = fQ(R) of and only if for each point p in M, F has at most two
distinct principal curvatures inp or R-R =0 in p.

THEOREM 2.— Let F : (MN,g) < EN*1 be an isometric immersion
of @ Riemannian manifold in o Euclidean space. Then (MN,g) satisfies
R-S = fQ(S) if and only if for each point p in M, F has at most two
distinct principal curvatures inp or R-S =0 in p.

THEOREM 3.— Let F : (MN,g) — EN*1 pe an isometric immersion
of a Riemannian manifold in a Euclidean space. Then (MY ,g) satisfies
R-C = fQ(C) if and only if for each point p in M, F has at most two
distinct principal curvatures in p or R-C =0 in p.

THEOREM 4.— Let (MY, J,g) be a Kihler manifold satisfying R- R =
fQ(R). Then (MY ,g) satisfies R- R = 0.

2 - Preliminaries

Let (M",g) be a (connected) n-dimensional Riemannian manifold (N >
2). In the following X,Y, Z denote vector fields that are tangent to MY, V
is the Levi Civita connection of (M”,g) and R is the Riemann-Christoffel
curvature tensor of (MN, g). § is the (1,1)-tensor related to the Ricci tensor
S of (MV,g) by ¢(SX,Y) = S(X,Y) for all X and Y. 7 = tr § is
the scalar curvature of (MY g). XAY is the (1,1)-tensor field defined by
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(XAY)(2) :=¢(Z,Y)X — g(Z,X)Y. The Weyl conformal curvature tensor
of (MY ,g) (for N > 3) is defined by

C(X,Y) = R(X,Y)—ﬁ(gXAY+X/\§Y)+ XAY.

(2.1)
Let F : (MY, ,g) — EN*! be an isometric immersion of (M¥,g) in
an (N + 1)-dimensional Euclidean space. Let { be a local normal section
on F. Then the second fundamental form h and the second fundamental
tensor A of F are defined by the formulas of Gauss and Weingarten :
VxY = VxY +h(X,Y)¢ and Vx¢& = —AX (V is the standard connection
of EN*1). A is related to h by h(X,Y) = g(AX,Y). We will not distinguish
between A, and its matrix (p € M). The equation of Gauss is given by

(N=-1)(N-2)

R(X,Y) = AX A AY. (2.2)

Let p € M. In the following z,y,z denote vectors in T,M. Let Ay
denote the endomorphism T,M — T,M : z — g(2,y)z — g(z,x)y. Since A,
is symmetric, there exists an orthonormal basis {e;,...,en} of (TpM,g;)
consisting of eigenvectors of A,, i.e. such that

Aei = Aiei, (2.3)

where A\; € R for each 7 € {1,...,N}. Ay,..., AN are called the principal
curvatures of F in p. (2.1), (2.2) and (2.3) imply that

R(ei,ej) = Aidjei Aej,
Sei = pie,
C(e.-,ej) = aije; A ej,
where (2.4)

Hi = )\.-(tr A - /\,'),

. 1 . N, (tr AP —tr A%
a'l—A'AJ N_2(“!+#J)+(N_1)(N_2)
for all ¢,j and k in {1,...,N}.

Let Xl,...,X, denote the mutually distinct eigenvalues of A, with
multiplicities s;,. .., s, respectively. Denote by V, the space of eigenvectors
with eigenvalue /\a(a € {1,...,r}). If ej,ex € Vo and ej,eq € V3, then
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pi = pr and aij = ake, (i,j,k,ﬂ € {1,...,N} and a,8 € {1,...,1'}). We
define numbers p, := p; and Gop := a;; where e¢; € V, and ¢; € Vj,
(:,7€{1,...,N}and a,B € {1,...,r}).

Let (M, J,g) be a Kéhler manifold and let p € M. Then the following
properties are well known :

R(JX,JY) = R(X,Y) (2.5)

R(X,Y)J = JR(X,Y) (2.6)

for all X and Y tangent to M.

(MM, g) is called (locally) conformally flat if (MY, g) is (locally) confor-
mally equivalent to EN. It is well known that (MY, g) is conformally flat if
and only if C = 0 for N > 4. We recall that every surface is conformally flat
and that C = 0 for every 3-dimensional Riemannian manifold. F is called
quasi-umbilical if for each point p in M A, has an eigenvalue with multipli-
city at least N — 1. For N > 4, E.Cartan proved that F' is quasi-umbilical
if and only if (MY, g) is conformally flat. We remark that C = 0 in p if and
only if A, has an eigenvalue with multiplicity at least N — 1 if N > 4 (i.e.
also the “pointwise” version of Cartan’s result holds).

Concerning the notations R-C, R-S, ... we say for example that (MY, g)
satisfies R-C = 0 if and only if R(X,Y")-C = 0 for all vectorfields X and Y
tangent to M, where R(X,Y’) acts as a derivation on the algebra of tensor
fields on M, i.e.

(R(X,Y)-C)(2,U;V,W) = —C(R(X,Y)Z,U; V,W)
- C(2,R(X,Y)U;V,W) - C(2,U; R(X,Y)V, W)
- C(2,U;V,R(X,Y)W)

for X,Y,Z,U,V,W tangent to M. The derivation R(X,Y)- is the deriva-
ticn VxVy —‘Vny - V[X,y].

For every (0, s)-tensor T on M a (0, s + 2)-tensor Q(T') is defined by
QIT)(X1,....Xe;Y,2) = (Y A 2)-T)(X1,...,X,)

(see, e.g. [T]). We say that a Riemannian manifold (M7, g) satisfies R-T =
fQ(T) if there exists a function f : M — R such that

(R(K Z) ’ T)(Xla v ,X-!)(p) = f(P)Q(T)(Xl, s ,X,;Y,Z)(p)

- 186 -



Pseudo-symmetry curvature conditions

for every p in M and all X;,...,X,,Y, Z tangent to M.

3 - Proof of theorem 1

Suppose that F : (MY, g) < EN*! is an isometric immersion of a
Riemannian manifold. Let p be a point in M and let {e;,...,en} be a
. basis for Tp M satisfying (2.3). From (2.4) it is easy to obtain that

(R(ei,e;) - R)(er,ee;€m,€n) — F(P)Q(R) ek, €4 €m, €n; €5y €5) =
= (f(p) — MiXj) {6k Aire(Binbem — Simben)
— 6ik A jA(6jnbem — Ojmbien)
+ 65eAi Ak (6imOkn — 6inbkm)
— 8ieAj Ak (8jmbkn — 6jnbkm)
+ 6jm Ak Ae(8iebkn — 6ikben)
— bim Ak Ae(85ebkn — 6jkbtn)
+ 8in Ak Ae(6ikbem — iebrm)
— 8in Ak Ae(8jkbem — 8jebim)}
for all i,j,k,4,m and n in {1,...,N}. Using this it can be verified
that R- R = fQ(R) in p if and only if (R(e.-,ej) - R)(ei,ex;ej ex) =
f(p)Q(R)(ei,ex; €j,€x; €iyej) for all mutually distinct ¢,j and k in
{1,...,N}, i.e. if and only if

(f(®) = XiXj))(Mi = A)Ae =0 (3.1)

for all mutually distinct ¢,j and k in {1,...,N}.

Let Xl, e ,Xr be the mutually distinct eigenvalues of A(p) and denote
their respective multiplicities by sy,..., 3.

If r =1, it is clear from (3.1) that R- R = fQ(R) in p.
If r = 2, it is easy to see from (3.1) that R- R = fQ(R) for f(p) = X\, X,.

Now suppose that r > 3 and choose mutually distinct indices a, 8 and ¥
in {1,...,r}. Assume that (M, g) satisfies R- R = fQ(R) in p. (3.1) implies
that

Xﬂ (f(p) - Xoxx'y) =0 (3'2)

A, (f(p) = A 25) =0. (3.3)
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Subtraction of (3.2) and (3.3) yields that (Xﬂ - X,’) f(p) = 0 from which we
conclude that f(p) = 0 and hence that R- R = 0 in p. The converse is trivial
(take f(p) = 0). This proves Theorem 1.

From Theorem 1 and the fact that a hypersurface of a Euclidean space is
conformally flat if and only if it is quasi-umbilical it easily follows that each
conformally flat hypersurface of a Euclidean space satisfies R- R = fQ(R).
Moreover it is now easy to give examples of non-conformally flat Riemannian
manifolds satisfying R- R = fQ(R) : in a Euclidean space all hypersurfaces
with exactly two principal curvatures with multiplicities at least two provide
examples of such manifolds.

4 - Proof of theorem 2

Suppose that F : (MV,g) — EN+1 is an isometric immersion of a
Riemannian manifold. Let p be a point in M and let {e;,...,en} be a
basis for T, M satisfying (2.3). From (2.4) it is easy to find that

(Rei,ej) - S)(ers e0) = F(P)Q(S)(ex, ec; ir €5) =

= (f(p) — AiXj)(pi — p5)(6irje — 8iebjk)
for all 4,5,k and £in {1,...,N}. It can be verified that R- S = fQ(S) in p
if and only if (R(ei,e;)-S)(ei, ;) = f(p)Q(S)(e:, €j; €i, €;) for all distinct 2
and jin {1,..., N}, i.e. if and only if

(F(P) = XXj)(Xi = Xj)(tr A= Xi = };) =0 (4.1)

for all distinct ¢ and j in {1,...,N}.

Denote by XI,. .. ,Xr the mutually distinct eigenvalues of A(p) and let
81,.-.,3y be their respective multiplicities. Then R- S = fQ(S) in p if and
only if o L

(F(P) = A ) (tr A=A, —25) =0 (4.2)
for all distinct & and S in {1,...,r}.

Ifr=1,then R-S = fQ(S) in p.

If r =2, then R- S = fQ(S) in p for f(p) = X, \,.

Now assume that r > 3. Choose mutually distinct indices a, 8 and v in
{1,...,7}. Suppose that (M,g) satisfies R- S = fQ(S) in p. Since A,, Az
and X,Y are mutually distinct we may assume that tr A —Xa - -Xﬂ # 0 and tr
A—XO,-——):,7 # 0. (4.2) now implies that f(p)—-XaXﬂ =0and f(P)—:\_aX., =0.
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Subtraction yields that A, = 0 and hence that f(p) = 0, which means that
R-S = 0. The converse is trivial.

5 - Proof of theorem 3

Suppose that F : (MY,g) < EN*! is an isometric immersion of a
Riemannian manifold. Let p be a point in M and let {e;,...,en} be a
basis for T, M satisfying (2.3). From (2.4) it is easy to obtain that

(R(eire;) - C)(ers et emsen) — F(P)Q(C) ek, i €m, €ni €i €5) =
= (f(p) — XiXj) {6ikaie(8inbem — Simben)
- 5,'kaj1(5jn5[m — 5]',,,6@,.)
+ 6eaik(8imOkn — binbrm)
— 5,-gajk(5jm6k,, — 5,',,6]“")
+ 8imare(8iebrn — Sikben)
— 8imare(8;e6kn — 8jkben)
+ 8inare(8ikbem — bitbkm)
— binare(8kbem — 65¢6km)}
for all 7,j,k,¢,m and n in {1,...,N}. Using this it can be verified
that R-C = fQ(C) in p if and only if (R(ei,e;) - C)(ei,er;ej, ex) =
f(P)Q(C)(ei, ek; €j, ek; €i, ;) for all mutually distinct ¢, and k in
{1,...,N}, i.e. if and only if

(f(B) = M)A = A)tr A= X=X = (N =2)\) =0 (5.1)

for all mutually distinct 4, and k in {1,...,N}. Let Xu - ,Xr be the mu-
tually distinct eigenvalues of A in p and denote their respective multiplicities
by s1,..., Sr.

If r =1, it is clear from (5.1) that R- C = fQ(C) in p.

If r = 2, it is easy to see from (5.1) that R- C = fQ(C) in p for
flp) = AAg-

Now suppose that r > 3 and assume that (M, g) satisfies R-C = fQ(C)in
p- Choose mutually distinct indices o, § and v in {1,...,r}. Since A, A 5 and
X7 are mutually distinct we may suppose that tr A—X —X7—(N —Q)Xﬂ #0
and tr _1_4: —Xﬂ - X‘v - (N —_2)&t # 0. By (5.1) then,_we obtain that
f(p) = A2, = 0 and f(p) — AgA, = 0. It follows that A = 0 and also
that f(p) =0 and hence R-C = 0 in p. The converse is trivial.
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Theorems 1 and 3 imply the following.

COROLLARY .— Let F : (MN,g) — EN*! be an isometric immersion of
a Riemannian manifold in ¢ Euclidean space. The following conditions are
equivalent :

(i) (MY, g) satisfies R- R = fQ(R),
(i) (MN,g) satisfies R-C = fQ(C).

Proof .—1If (MY, g) satisfies R+ R = fQ(R), then (M™,g) also satisfies
R- S = fQ(S) since the derivations R(X,Y)- and (X AY)- commute with
contractions (see Lemma 2.1 from [DDVV]). It is easy to see then that

(MY, g) also satisfies R- C' = fQ(C) (use a reasoning similar to the one in
part (iii) of Lemma 2.1 in [DDVV]).

Suppose that (MY, g) satisfies R-C = fQ(C) and let p be a point in M.
There are two possibilities : (i) A(p) has at most two distinct eigenvalues,
or (ii) A(p) has more than two distinct eigenvalues and R-C =0 in p. In
the first case it is clear that R- R = fQ(R) in p by Theorem 1. For the
second case, it follows from Proposition 2 from [BVV] that R - R(p) = 0
(use formula (3.1) with f(p) = 0).

6 - Proof of theorem 4

Suppose that (MY, J, g) is a Kéhler manifold satisfying R - R = fQ(R).
Suppose that p is a point in M for which R - R(p) # 0. We will derive a
contradiction.

It is clear that f(p) # 0. First, observe that

Q(R)(u,v; Iz, Jw; z,y) = Q(R)(u,v; 2, w; 2, y) (6.1)
for all z,y,u,v,2,w € T, M. Indeed, using (2.5) and (2.6),

Q(R)(u,v; Iz, Jw; z,y) = % (R(a:,y) . R)(u,v; Jz, Jw)

1
= f—(p—) (R(w,y) ) R)(u)vy z’w)
= Q(R)(u’ v; 2, w; T, y)
(6.1) and (2.5) imply that

R(u,v;(z Ay)Jz, Jw) + R(u,v; Jz,(z A y)Jw)

— R(u,v;(z Ay)z,w) — R(u,v;z,(z Ay)w) =0. (62)
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Let {e1,e€2,...,en} be an orthonormal basis for T,M. (6.2) yields that

N
0= Z{R(u,v; (ei Ay)Tz, Jei) + R(u,v; Jz(e; Ay)Je;)

=1

— R(u,v;(ei Ay)z,ei) — R(u,v; z,(ei Ay)ei) } (6.3)
N
= (Z R(u,v; e, Jei)) 9(J2z,y) — (N = 2)R(u, v; 2, y)

for all u,v,z,y € T,M.
Let z € T,M\{0}. By (6.3)

N
(Z R(u,v;e;, Je.-)) g(Jz,Jz) = (N - 2)R(u,v;z, Jz)

i=1

= (N - 2)R(z, Jz; u,v)

N
= (Z R(z, Jz;e;, Je.‘)> g(Ju,v)

=1

for all u,v € T, M, which implies that

N
ZR(u,v;e;,Je,-) =rg(Ju,v), (6.4)

=1

for all u,v € T, M, where

_ Eil R(z,Jz;e;, Je;)
B 9(Jz,Jz)

r

Combination of (6.3) and (6.4) gives that

R(u,v;2,0) = —59(Ju,0)g(Jz,w) (6.5)

for all u,v,z,w € TpM. From (6.5) and (2.6) it is easy to see now that
R - R(p) = 0, which contradicts our initial assumption.

This proves that R- R =0 on M.
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