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Unimodular Lie Foliations

M. LLABRÉS(1) and A. REVENTÓS(1)

Annales Faculté des Sciences de Toulouse Vol. IX, n°2, 1988

Soit 7 un G-feuilletage de Lie de codimension n sur une variete
compacte M.

Nous étudions la relation entre H(Q) et 1’espace de cohomologie basique
H(M/F). Nous démontrons que en general H*(G) ~ H*(M/F); nous

donnons des conditions suffisantes pour l’inclusion H*(G) C_ et

pour l’égalité Hn(G) = 

Finalement, si .~ est un flot de Lie avec Hn (M/.~) ~ 0 nous caracterisons
quand .~’ est de type homogene en termes de sa classe d’Euler.

ABSTRACT. - Let .~’ be a codimension n Lie 0-foliation on a compact
manifold M.

We study the relation between H(Q) and the cohomology space 
We show that in general H* (~) ~ H* (M/~’) and we give sufficient condi-
tions for the inclusion H* (~) C and for the equality =

Finally, if ~" is a Lie flow with 0 we characterize when F is

homogeneous in terms ot its Euler class.

1. Introduction

Let ~’ be a foliation on a manifold M given by an integrable subbundle
L C TM. The complex of basic forms is the subcomplex C S2*(M)
of the De Rham complex given by the forms a satisfiying Lxa = o and
ix a = 0 for all X ~ EL. The cohomology of this complex, is
called the basic cohomology of the foliated manifold (M~ .?~’).

A. EI I~ACIMI and G. HECTRO proved in [3], and independently V.
SERGIESCU in [11], that for Riemannian foliations on compact manifolds
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the space of cohomology satisfies Poincare duality if and only
if 0 (where n = codim .~’). In this case F will be called
unimodular.

The Carriere’s counterexample to Poincare duality (a linear flow on the
hyperbolic torus Tl (cf. [1])) is not only a Riemannian foliation but a
Lie foliation. In fact, it is modeled on the affine Lie group which is not

unimodular.

It seems therefore interesting to study the relation between the basic
cohomology of a Lie ~-foliation and the cohomology H* (~) of
the Lie algebra g.

For instance, if ~’ is a dense Lie g-foliation then = H*(Q)
(cf. Remark 2.3). Thus, in this case, F is unimodular if and only if G is

unimodular.

In this paper we obtain the following results:

THEOREM 3.1.2014 Let ~’ be an unimodular Lie ~-foliation on a compact
manifold M. Then the Lie algebra ~ is unimodular.

We don’t know if the converse is true; but we have

THEOREM 3.2.2014 Let F be a Lie G-foliation on a compact manifold M
with ~ unimodular. If the structural Lie algebra of (~ll,,~’) is an ideal of
~ then .~’ is unimodular.

The most important consequences of this are:

COROLLARY 3.3.2014 Let ~‘ be a Lie ~-foliation with ~ a nilpotent Lie
Then .~’ is unimodular.

COROLLARY 3.4. - Let ~’ be a Lie ~-foliation with codim ~’ = 1. Then
.~’ is unimodular if and only if g is unimodular and the structural Lie algebra
~C is also unimodular.

All this results are obtained by studying the cohomology spaces of
maximum degree.

Paragraph 4 is dedicated to the study of the relation between the

cohomology spaces of degree r  n.

Our first result is in the line of [5] :

PROPOSITION 4.1.2014 Let ~’ be an unimodular Lie ~-foliation. Then for



all r  n the map ii : -~ induced by the canonical
inclusion ir : SZG(G) -~ SZr (G) is injective.

We give an exemple to show that i; is not always exhaustive, i.e.

H* (~) ~ H*(M/0), and we end this paragraph with

PROPOSITION 4.3. - Let J~ be a ~-foliation with r a normal subgroup
of G. Then the map i* is an isomorphism for all r  n.

Finally, in paragraph 5, we prove for one dimensional Lie foliations:

THEOREM 5.1.2014 Let F be an unimodular Lie flow with Lie algebra G.
Then ~’ is homogeneous if and only if the Euler class E 

belongs to HZ(~) (H2(~) c H2.(lVl/~’) by Proposition .~.1~.

We end this paragraph with an exemple of an unimodular Lie flow which
is not homogeneous.
We are indebted with G. HECTOR, who suggested this problems and

helped us in the proofs of theorems.

We also thank A. El KACIMI-ALAOUI for his help and suggestions.

2. Preliminaries

Let F be a smooth foliation of codimension n on a smooth manifold
M given by an integrable subbundle L C TM. We denote by ,~(M, ,~)
the Lie algebra of foliated vector fields, i.e. X E £(M, ~’) if and only if
[X, Y] E FL for all Y e rL. rL is an ideal of ,C(.Jt~f, ~’) and the elements of
X(M, ,~’) = £(M, are called basic vector fields.

If there is a family ~X ~ ... , of foliated vector fields on M such
that the corresponding family ~X 1, ... , X n ~ of basic vector fields has
rank n everywhere the foliation is called transversally parallelizable and
{X1, ... , a transvers parallelism. If the vector subspace G of ~(M/F)
generated by ~X 1, ... , X n ~ is a Lie subalgebra, the foliation is called a Lie
foliation.

We shall use the following structure theorems (cf. [6] and [4]).

THEOREM 2.1.2014 Let ~’ be a transversally parallelizable foliation on a
compact manifold M, of codimension n. Then

a) There is a Lie algebra x of dimension g  n.



b~ There is a locally trivial fibration M -~ W with compact fibre F and

dim W = n - g = m.

c) There is a dense Lie H-foliation on F such that :

i) The fibres of 03C0 are the adherences of the leaves of F.

ii) The foliation induced by ~’ on a fibre F of ~r is isomorphic to the

~-foliation on F.

~-C is called the structural Lie algebra of (M, ~), ~r the basic fibration and
W the basic manifold.

Let be the subbundle of T(M) tangent to the fibres of ~. A transvers
parallelism on M determines a subbundle of T(M) satisfiying T(M) =

A foliated vector field X is called pure horizontal (respectively,
pure vertical) if X E (resp. X E 
A basic form a E is called pure of (p, q)-type (p + q = r) if

, ... Yn) = 0 for all family of r pure vector fields except that p of them
are pure horizontal and q are pure vertical.

If we denote by the A(W)-module of pure forms of (p, q)-type
we have the decomposition

and the operator d of exterior derivative is decomposed as

d = dl,o + do,1 + d2,_1 (cf. ~3])

Let ~~ , ... , 8n denote the dual basis of a given transvers parallelism
X1,... , , X n . That is 81, ... , 03B8n are basic I-forms with = 03B4i,j. The
generator v = 81 n ... n e’~ E is called the basic volume form.

THEOREM 2.2.- Let ,~’ be a Lie ~-foliation on a compact manifold M
and let G be the connected simply connected Lie group with Lie algebra g.
Let p : M --~ M be the universal covering of M. Then there is a locally
trivial fibration D : M -~ G equivariant by Aut(p) ~i. e. if Dx = D y
then Dgx = Dgy for all x, y E M and g E Aut(p)) such that the foliation
~’ = is given by the fibres of D.

The natural morphism h : 03C01M ~ Di f f (G) is such that T = imh C G,
where the inclusion G C Di f f (G) is by right translations.



The space of differential forms on G, invariant under the right action of
r is denoted by and the subspace of SZ*(M/~’) given by the forms
invariant under the action of Aut(p) is denoted by 

The map p* gives an isomorphism between SZ*(M/.~) and 
Also D* gives an isomorphism between and 

So we have = Hr (G).

Remark 2.3. - In particular, since ~’ is dense in M if and only if I’

is dense in G, the above equality shows that for dense Lie g-foliations
H*(~) = H*(M/~’).

Finally, we say that a 1-dimensional Lie ~-foliation ~* (or a Lie flow) on
a compact manifold M is homogeneous if and only if:

i) There is a Lie group H and a discrete Lie subgroup Ho of H such that
M = H/Ho. .

ii) There is a I-dimensional subgroup j~f of H such that the leaves are

the orbits of the left action of K on H.

Throughout this paper we also assume that .K is normal in H.

3. The basic cohomology of maximum degree.

THEOREM 3.1.2014 Let F be an unimodular Lie G-foliation on a compact
manifold M. Then the Lie algebra g is unimodular.

Proof.2014 Let F be an unimodular Lie G-foliation on a compact manifold
M of codimension n. Let W be the basic manifold of (M, .~’), of dimension
m.

As 0, we have an isomorphism:

given by I([v]) = I( ~wl ), where w is the volume element of W and v is the
basic volume form.

Since /~n ~* - c every 0 ~ a E ~’~ g* can
be considered as a nowhere zero basic n-form on M. Hence, a = f v for a
nowhere zero basic function f.

Then I ( ~a~ ) = I ( ~ f v~ ) = hI([v]) = where t~ is a function on W

such that f = .~ thus h is nowhere zero on W. .



As W is compact, w is the volume element of W and h is not zero

everywhere, then hw is not exact and I[a] ~ 0. Therefore a is not the
differential of a basic (n - I)-form on M. In particular a ~ d/3 for all

,~ E ~~‘-~ g* and 9 is unimodular.
This proves Theorem 3.1. ~

THEOREM 3.2.2014 Ze~ ~* be a Lie ~-foliation on a compact manifold M
with ~ unimodular. If the structural Lie algebra of (~,~’~ is an ideal of
9 then ~’ is unimodular. 

We begin with two lemmas:

LEMMA 3.2.1.2014 In the hypothesis of Theorem ~.,~, ~/?-~ is an unimodular
Lie algebra.

Proof . First, we verify that every Lie group G which admits a uniform
discrete subgroup H is unimodular.

Let o- be a right-invariant n-form on G (n =dim C). 7 is projectable, i.e.
a = p* (~ ~ where p : G ~ G/H.

Clearly, = f03C3 for a fixed g E G; and is right-invariant.

Since = fu and a are right-invariant, then the function f is a

constant k.

There is a natural left-action of G over the homogeneous space G/H. As
is compact, we can consider

then k = 1 

Thus a is a bi-invariant n-form on G, and this is equivalent to that G is
unimodular.

In the hypothesis of Theorem 3.2, the quotient G/0393e (where Fe is the

connected component of r at the identity) is a Lie group and 0393/0393e is a

uniform discrete subgroup. Then G/0393e is unimodular and its associate Lie
algebra, is also unimodular. e

LEMMA 3.2.2. - In the hypothesis of Theorem 3.2, d03B2 = 0 for all (n-1)-
basic form /3 of (m, g - 1)-type.



Proof. - Since the estructural Lie algebra ~C is an ideal of ~, one can
choose a transvers parallelism {Y 1, ... , such that y of the foliated vector

fields ~Yl , ... , Yn ~ are tangent to .~ (where g = n - m = codim0- codim0).
Given this parallelism we assume that Yl, ... Yg are tangent to ~’. Let v

be the corresponding basic volume form.

Since 9 is unimodular

because f is a basic function and Yj(f) = 0 for all j  g. ~
Proof of Theorem 3.2 . - Let ~YI, ... and v be as in the proof of

Lemma 3.2.

Assume that 0 is not unimodular; this means that there exists a basic
(n- I )-form a such that v = da.

Moreover we can consider that a is of (m - 1, g)-type because we have
the decomposition:

then a = + and, by Lemma 3.2.2, = 0.

Let (3 be the contraction iY1 ... iYg a, then 03B2 is a (m - 1) basic form of
(m - 1, 0)-type. Since LY03B2 = 0 for all vector field Y tangent to F, 03B2 is

projectable, i.e. there exists a (m - I )-form u on W such that j3 = 7r* u.
Observe that:

for all Xl , ... Xm corresponding to vectors of 9 /H, because is unimo-

dular by Lemma 3.2.1.

Then we have:



So,

Then we have a volume form on the compact manifold W which is exact.

This is a contradiction and Theorem 3.2 is proved. 8

COROLLARY 3.3. Let .~’ be a Lie ~-foliation with ~ a nilpotent Lie

algebra. Then .~’ is unimodular.

Proof . - Since h is a closed uniform subgroup of a nilpotent Lie group

then, following [8], the connected component at the identity, is a normal

subgroup of G, this implies that the subalgebra H of 9 is an ideal. 
Then we

are in the hypothesis of Theorem 3.2 and corollary follows..

COROLLARY 3.4. - Let F be a Lie G-foliation with codimF = 1. Then F

is unimodular if and only if ~ is unimodular and the structural Lie algebra

~ is also unimodular.

Proof - We have only to prove that F is unimodular if G is unimodular.

By Theorem 3.2, it suffices to prove that ?~C is a,n ideal of g.

Let e1, ... en be a basis of G such that e1,...,en-1 is a basis of H.

If we put [ei, ek then H will be an ideal of G if and only if

c~ = 0 for all z  n.

The assumption that 9 is unimodular implies that ~ J -1 for all i .

But since 1{ is unimodular , we have ~ f =1 for all i  n. This implies

that c n = 0 for all i  n, thus H is an ideal. 8

COROLLARY 3.4. - Let F be a G-foliation with r a normal subgroup of

G. Then ~’ is unimodular if and only if ~ is unimodular.

Proof. - We have only to prove that :F is unimodular if g 
is unimodular.



Since r is a normal subgroup of G, the connected component at the
identity, re, is normal too. Then its associate Lie algebra is an ideal of ~.
This proves that is an ideal.

So we are in the hypothesis of Theorem 3.2 and Corollary 3.4 follows. ~

4. The basic cohomology of arbitrary degree.

PROPOSITION 4.1.2014 Let F be an unimodular Lie ~-foliation. Then, for
all r  n, the : --~ induced by the canonical
inclusion ir : - is injective.

Proof.- Let 0 ~ [a] E Since ~ is unimodular there exists

0 ~ [~3] E such that [a A ,Q~ ~ 0. Suppose i*(~a~) = 0. Then
there is a (r - I )-basic form I on M such that a = cf~.

Since d,Q = 0, we have: .

Then the n-form a A (3 is exact as basic form, i.e. [a A /3] = 0 in H’~(M/.~");
but in the proof of Theorem 3.1 we have proved that if a n form is not exact
in G then it is not exact as basic form. 8

There exist unimodular Lie foliations for which i; is not isomorphism:

Example 4.2 . Let 03A3 be the double torus, and let W = T103A3 ~ 03A3 be
the unit tangent bundle over E. Let H denote the universal covering of E
then T1 H is a covering of Wand T1 H = PSL(2, R).

Let ,~’ be the foliation on IV given by points, then ,~ is a transvesally Lie
foliation with Lie algebra sl (2, R).

In this case we have = and, in particular,

but R)) = H2(Sl(2, R)) = 0. This means that in this case ii and
i~ are not exhaustives.

Now, we are interested to know when the map ir is exhaustive for all
r ~ n.

In that sense, we have only the following:



PROPOSITION 4.3. - Let ,~’ be a ~-, foliation with F a normal subgroup
of G.

Then the map ii is an isomorphism for all r  n.

Proof. - Let ZK denote the space of 1~ invariant closed forms on G,
where K is a subgroup of G.

As Zp is a Frechet space, we can adapt the standart construction of
the Haar measure on compact Lie groups (cf. for instance [9]) replacing
the space C(W) of continuous functions on W by the space C(W, Zy) of
continuous functions on W in Zp to obtain a Zp valued Haar measure; that
is, a G-invariant linear map:

This measure induces a linear map:

given by ~(Ex) = ~yy ~« , where ~« : W --~ Zr denotes the map
~« (g) = 

As ~~ belongs to the closure of the convex hull of the set of all left
translates of ~« (which belongs to C(W, Zr) because F is normal) every
traslate of ~« is homotopic to a, we obtain for each [a] E Hr (G) an element

E Zc such that M = j,~j ~«~ E Hr(G).
So the exact sequence:

admits a section and

5. Unimodular Lie flows.

THEOREM 5.1. - Let F be an unimodular Lie flow with Lie algebra G.
Then 0 is homogeneous if and only if the Euler class e(,~’~ E 
belongs to H2 (~) (HZ ~~) C H2 (M/,~’) by Proposition .~.1~.



Proof . The assumption that 0 is unimodular is equivalent to that .~’
is a flow of isometries (cf. [7]). This means that there exists a Riemannian
metric g on l~~ and a vector field Z tangent to ~’ which generates a group
of isometries (pt). We can assume that Z is a unit vector field.

In this situation, the characteristic 1-form of ~’ with respect to (g, Z) is
defined by:

and it satisfies the equations:

X(Z) = 1 and izdX = 0.

In particular, the 2-form dX is basic for ~’.

Following [10] one can define the Euler class of .~’ with respectedto g by

up to a non zero factor this class does not depend on the metric g.

First, assume that e(F) E H~(~) C (see Proposition 4.1).

LEMMA 5.2. - In this case, we can choose foliated vector fields Y1, ... ,

Yn, corresponding to a transvers parallelism, such that Z, Y1, ... , Y~n gene-
rates a Lie algebra H.

Proo f . Given a transvers parallelism Y 1, ... , Yn we can always consi-
der that the foliated vector fields Yi are such that = 0 because

Yi = Yi’ - represents the same class in 

Since Z generates a flow of isometries we have [Z, Yi] = 0, because Yi is
foliated and ~Z, Ya~ must be orthogonal to Z.

The condition E H2 (~), means that dx = where (~ is a basic
1-form and a is a basic 2-form which can be interpreted as a form on g by
the inclusion

We can modify the metric g to obtain another metric 9 such that Z is still

Killing and unitary with respect to 9 and the corresponding characteristic
1-form x- is such that dX~g = a .

Concretely the new metric is 9 = g-(~~03B2+03B2~~), and the foliated vector
fields Yi = Yi + {3(Yi)Z are g-orthogonal to Z. (Remark: using Z, Y1, . - - Yn
as a basis, one can easily verify that 9 is effectively a new metric.)



Then [Z, Yi] = 0 and

thus we have only to prove that bj j are constant.
But = constant and, on the other hand,

This proves the lemma. 8

So we have a Lie subalgebra H C X(M) and therefore a Lie group H,
with Lie algebra ?-~, acting on M in such a way that the Lie algebra of
fundamental vector fields is H.

Since JF is transversally parallelizable and the Lie algebra of H is

generated by a transvers parallelism of ,~’ and the vector field Z (tangent
to ~’), we can assume that the action of H on M is transitive.

In this case there is a diffeomorphism between M and H/Ho where Ho
is the isotropy group of a point mo E M.

Then M is a homogeneous manifold and the leaves of F are the orbits
of the action of the subgroup K of H on M, where K is the connected
subgroup of H whose associated Lie algebra is the ideal generated by Z.

Thus .~’ is a homogeneous flow.

Reciprocally: -

Let ,~’ be an homogeneous flow on M (then M = and let ~ (resp.
?) be the Lie algebra of H (resp. of G = H/Ho); see §2 for notation.

The assumption that 0 is an unimodular Lie flow implies that Q is an
unimodular Lie algebra and ,~ is an isometric flow.
We have to prove that dx(Yi, Yj ) is constant, but the Lie algebra is

generated by Z, Y i , ... , Yn . Thus , Yj] = 03A3nk=1 ckij Yk Z , where Cij, bij
are constants.

Then dx(Yi, Y~ ~ = -bij is constant. Hence dx can be considered as a
2-form on Q and the Euler class of 7* is an element of H2(Q).

Theorem 5.1 is proved. 8
The following example proves that there exist unimodular Lie flows that

are not homogeneous.
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Exampl e 5.3 (G. Hector) . Let E, H, W and T1H be as in Example
4.2. Since H2 (W, Z) ~ 0, there exists a non trivial fibre bundle over W with
fibre 81:

Then we have a flow on M which is transversally a Lie flow with algebra
si~2, R).

By construction the Euler class is not zero:

and since H2 (sl (2, R)) = 0 this flow is not homogeneous (cf. Theorem 5.1 ).
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