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Bifurcation problems
for nonlinear elliptic variational inequalities

MARCO DEGIOVANNI(1)

Annales Faculté des Sciences de Toulouse Vol. X, n°2, 1989

On étudie un problème de bifurcation variationnelle associé
a. des fonctionnelles non regulieres. On prouve un théorème general de
bifurcation de la premiere valeur propre. On donne aussi un résultat de
bifurcation pour les valeurs propres successives et un résultat de multiplicité.
On montre une application aux inéquations variationnelles elliptiques du
second ordre.

ABSTRACT. - A problem of variational bifurcation associated with non-
smooth functionals is studied. A general bifurcation theorem for the first
eigenvalue is proved. Also the bifurcation from higher eigenvalues and
a multiplicity result are given. An application to second order elliptic
variational inequalities is shown.

1. Introduction

Eigenvalue problems for nonlinear elliptic variational inequalities of the
form

where K is a convex subset of some functional space, ~4 a nonlinear potential
operator and L a symmetric linear operator, have been considered by several
authors (see [3, 4, 8, 9, 19, 20, 23, 24, 25, 29, 30, 31, 32, 33, 36, 37, 40, 41,
42]).

Some of them ([19, 20, 24, 29, 30, 31, 32, 33, 37, 42]) treat the bifurcation
problem, which is the study, under the further assumptions that 0 E K and
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A(0) = 0, of the real numbers Ào such that the pair (~o, 0) accumulates
solutions (À, u) of (1.1) with 0.

As in the case of equations [22], it is true under reasonable assumptions
that every Ao of bifurcation for (1.1) is an eigenvalue of the "linearized"
problem

namely (Ao , u) satisfies ( 1.2) for some u ~ 0, where Ko is the convex cone
defined as the closure of U tK.

t>o

About the converse, which is also true for equations [22], only partial
results are available.

The problem has mainly two difnculties. If we use the variational ap-

proach, which yields the sharpest results in the case of equations, we have
to apply critical point theory to the potential of A constrained on the sets

K ~ u : == ±03C12}, which are not smooth. A further difficulty comes2( ~ ) p ~ J Y

from the fact that the convex set K and the manifolds u : 1 2( Lu ‘ u ) = 
may be "t angent" in a sense that has been precised in [8, 9].

The first difficulty can be overcome by considering only the (at most)
two eigenvalues of (1.2) which correspond to minimize 1 2( A’ ( ) ~ ) 0 u u J
on the sets Ko rl u : : = ±1 ~, as it is done in [19, 20, 29, 37]. The~ .. ~ C l
second one by assuming that K is a convex cone. Infact, if K is a convex

cone, K and u : - ~ p 2 are never tangent. Actually, in [19, 20,
24, 30, 31, 32, 33, 37, 42] the set K is supposed to be a convex one. In [29]
this condition is not required, but an extra assumption is imposed in order
to avoid tangency.

Our first purpose is to give a general bifurcation result (Theorems
3.21 and 4.14~ for the eigenvalues of (1.2) corresponding to minimize

~ L u ~ -(~4/(0)t~u) ~ 2 J on Kn~ ~ u ~ ) == ±1 J ~. The crucial point is the
following : if .A is a potential of A, ph ~ 0 and K and {u : 1 2(Lu|u) = ±03C12h}
are tangent at some then -~ +00. Therefore the possible
tangency points does not interact with the minimization technique. Then



it is possible to apply the -generalized theorems on Lagrange multipliers
contained in [8, 9].

Another purpose is to provide a bifurcation result for all eigenvalues of

(1.2) under the assumption that Ko is a linear space (Theorems 3.29 and
4.16). In this case the main tool is contituted by the techniques of critical
point theory for nonsmooth functions developed in [11, 13, 18, 27]. These
last results are obtained as particular cases of more general theorems (3.20
and 4.13) involving a topological assumption on the eigenvalue of (1.2) under
consideration.

In the case in which Ko is under a linear space, also a multiplicity result
is given (Theorems 3.30 and 4.18) for simple eigenvalues.

In section 3 we develop an abstract theory of variational bifurcation for
nonsmooth functions. The main results were announced in [15, 16, 17] in
the case in which L is the identity map.

In section 4 we show an application to some nonlinear elliptic variational
inequalities of second order (in which L is the identity map). An application
to elasticity, in which L is not the identity map, is contained in [14].

2. Some recalls of nonsmooth analysis

In this section we recall some notions and results of nonsmooth analysis
[8, 9, 11, 13, 18, 27] which will be used later. For the elementary notions of
homotopy theory involved here, the reader is referred to [38].

Throughout this section H will denote a real Hilbert space. The scalar
product, norm and metric of H will be denoter by (-~-), ~ ~ ~ [ and dH
respectively, while B(u, r) will denote the open ball of center u and radius r.

Let W be an open subset of Hand

a function. We set

For every u in D( f ~ let us denote by 9 f(u) the (possibly empty) set of a’s
in H such that



We set also a- f (u) = f~, Vu E W ~D( f ) and

Since a- f(u) is convex and closed, for every u in D(~- f ) we can denote
by grad- f(u) the element of a- feu) having minimal norm.

If W = Hand f is convex, the notion of ~- f coincides with the usual
notion of subdifferential in convex analysis. If g : : V~ --> R is Fréchet

differentiable at u E W then + g)(u) = ~- f(u) + grad g(u).

DEFINITION 2.1. A point u E W is said to be critical from below for
f, if 0 E a- f(u). A real number c is said to be critical from below for f, if
there exists u ~ W such that 0 E = c.

DEFINITION 2.2. - The function f is said to have a p-monotone subdif-
ferential of order two, if there exists a continuous function X : (D( f ~)2 x
R2 ---~ R+ such that

whenever u, v E f), ~ f(v).

DEFINITION 2.3.2014 Let c be a real number. The function f is said to

verify the Palais-Smale condition at level c (or, briefly, (Pj5’),~~, if for every
sequence in D(~- f) with lim grad- = 0, lim f( Uh) _ c, there

exists a subsequence (Uhk) converging to an element of W.

Remark 2.4. - Let us assume that f is lower semicontinuous and has a
03C6-monotone subdifferential of order two. Then the set

{c E R : c is not critical from below for f and (PS)c holds } is open
in R.

Proof. - See [13, Remark 4.2].
Besides the metric dH induced by I~, it is convenient to consider on D( f) )

also the graph metric d* defined by

However, when the metric is not specified, zve mean that D(f) is endowed
with the metric dH. .

THEOREM 2.6. - Let us suppose that f is lower semicontinuous and has
a 03C6-monotone subdifferential of order two. Let -oo  a  b  



Then the pair (fb, fa) endowed with the metric d* is homotopically
equivalent to the pair endowed with the metric dH. In particular,
f ~ is a weak deformation retract of f b with respect to the metric d* if and
only if the same fact occurs in the metric dH.

Proo f . - See (13, Theorem 3.1$~ .
As in classical critical point theory, also in the nonsmooth case an

important tool is constituted by the deformation lemma (see [27, Lemma
3.10~ ~ . Here we recall a version taken from ~13~ . .

LEMMA 2.7. Let ns suppose that f is lower semicontinuous and has a
03C6-monotone subdifferential of order two. Let -~  a  b  -I-oo. Let us

assume that

i~ for every c in [a, b~, c is not critical from below for f ;

it) for every c in [a, b~, f ~ is closed in I~;

iii~ for every c in [a, b(, the function f verifies (P S)c.
Then f a is a weak deformation retract of f b.

Proof. - If we consider the metric d*, we result is contained in [13,
Lemma .~..~J. For the metric dH we can apply Theorem 2.6.

DEFINITION 2.8. - A real number c is said to be essential for f, if there
exists two sequence3 (ak) in ] - oo, c[ and (bk) in ]c, converging to c
such that :

i~ Vk E N ak and bk are not critical from below for f ;

ii) ~k EN, the set is not a weak deformation retract of , endowed
with the metric d* .

If A is a subset of H, we define a function IA : H --~ R U by

For every u in is a closed convex cone (in some sense, the outward
normal cone to A at u).

Remark 2.9. - If M is a hypersurface in H of class ~’1, we have for every
uinM



where v(u) is a normal unit vector to M at ~c.

DEFINITION 2.10. - Let A and B be two subsets of Hand u E A n B.
Then A and B are said to be (outwardly) tangent at u, if

Remark 2.11. Let A be a subset of H, C a convex subset of H and
u E A n C. Then A and C are not tangent at u if and only if

THEOREM 2.12.- Let M be a hypersurface in W of class CI and

a lower semicontinuous function such that, for some continuous function
q : R,

whenever c E W, u E D(~- f ~, a E o‘~- 
Let uo E D( f) n M and let us assume that and M are not tangent

at .

Then we have

Proof. - See [8, Theorem 1.13 and Remark 1.12~,j .
Finally, let us recall the notion of r-convergence (epiconvergence in the

language of [1]) from [12].

DEFINITION 2.13.2014 Let X be a topological space and

a sequence We say that



as the following fact3 hold: :

i~ for every u in X, for every sequence in X converging to u, we
have

ia~ for every u in X there exists a sequence in ~ converging to u
such that

From now on in this section we shall consider a sequence of functions

DEFINITION 2.14. - The sequence is said to be equicoercive, if for
every real number c the closure of the set

is compact.

Remark 2.15.- Let us suppose that is equicoercive and that
f~ = 0393-(H)  fh. Then for every real number c the set fc~ is compact.
Therefore the closure of the set U fch is compact.

heN

THEOREM 2.16. - Let us suppose that

i) for every h in N, f h is lower semicontinuous ;

it) there exists a continuous function

such that

h E N, u, v E fh), c~ E E~ ,fh(u)~ ~ 



the sequence ( fh) is equicoercive.

Let -~  a  b  +~ and let us assume that a and b are not critical

from b elow for f ~ .
Then there exists ho E N such that for every h > hQ the pair ( f h, f h ) is

homotopically equivalent to the pair ( f ~, f ~ ).

Proof . - By Remark ~.15 we can apply ~13, Theorem 5.12 and Remark
5.13~ .
We conclude this section by proving a result which will play an essential

role in the study of bifur cation.

THEOREM 2.17. Let M be a hypersurface in H of c:lass 

Let us suppose that

a) M is a closed subset of H and for every h in N, fh 2s lower semicon.

tinuous ;

b) there exists q in R+ such that ,for every h in N the function
~u ~ fh(u) -~- is convex;

c) f~ = I’-(.H) lim fh ;
d~ the sequence ( fh -i- IIII) is equicoercive ;

e~ for every u in D( f ~) f~ ~1~’, .D( f~) and 11~ are not tangent at u.
Then there exists a sequence ( fh) of functions fh : H ~ R U 

(h E N) with the following properties :

i) ~ = f~; ~h E N, .f h ~ fh ;

ii) ‘dh E N, ‘du, v E H, fh(u) = fh(v) and |u| _ |v| imply _ 

iii) ~h E N, ,fh is lower semicontinuous ;
iv)‘dh E N, the function {u H f h(u) + q|u|2} is convex;

v) f ~ = I~-(H) lim f h ; _

vi~ ‘dh E N, ~u E f1 11~1’, D( fh) and ~11 are not tangent at u; ;
iv) if (2ch) is a sequence in with lim sup fh(uh)  -i-oo, we have

h

fh(uh) -’= a _ ~- fh(uh)

eventually as h --~ -~-oo.



Moreover, if we set fh = fh -f- t~h E N, the ,following hold :

viii ) t/h E N, fh is lower semicontinuous ;

i2~ there exists d continuous function

such that

whenever v E H, u E a E ~- fh(u);
in particular, there exists a continuous function

such that

whenever h E N, ’u, v E D(~-h), a E a 03B2 E a ;

z ) .f~ = r~(H) ~~~ fh ~

the sequence ( fh) is equicoercive.

Proo f . - For every h E N, set

ch = inf{fh(u) . u E D( fh) fl D( fh) and M are tangent at u} with
the convention inf f~ _ -f - oo .

First of all we claim that

Indeed, by contradiction, we could find a subsequence (fhle) and a sequence
(uk) in H such that ~k E D(fhk) n DC/hie) and M are tangent at uk and
su p fhk(uk)  -+-oo.
k



By equicoercivity, up to a subsequence converges to some u in M.

Moreover by r-convergence u E By Remark 2.11

We can suppose that = 1. Because of Remark 2.9, up to a subsequence
converges to some v E with |v| = 1. Again by Remark 2.11

and assumption e) there exists w E such that (v (w - u)  0. Let

(wk) be a sequence converging to w with = Then we

have

eventually as k --~ +00, which is a contradiction.

Now for every h e N, let ~9~ : R --~ R U be an increasing lower
semicontinuous convex function such that

We set foo = f~ and ~h ~ N,

Then properties i), ii), iii), iv and v) are immediate.
Let us prove vi). Let h (E N, u E rl M and v E ~-IM(u)B{0}.

Since  ch - q~u~2  ch, there exists t~ E with (v~w - u)  0.

Then, if t ~]0, 1] is suniciently small, we have (u -f- t(w - u)) E D(h) and
-~- t ( w - u ) - u  0. . B y Remark 2 .1 I , D ( f h ) and M are not t ange nt at

..

Let us prove Since f h - by assumption d) we have that, up
to a subsequence, (uh) converges to some u in M. Then it is obvious

.. 

that - fh(uh) eventually as h ~ -f-oo. Since f h > we have

eventually as h ~ -1-00. On the other hand for large
h

whenever e 1) and  + 1. Therefore, if h is sufficiently
large, we have = whenever ~ 1) and  

In particular ~"//t(~~) G 



Now we set Vh E N, f h = jh + .

Property viii) is obvious. Since fh > fh + IM, xi) follows from d).
Let us remark that by iv) ‘v e have

whenever h E N, u E a E 

Let us prove x) . Since M is closed, by v) we have only to prove that
du E H, ~(uh) converging to u with lim h(uh) - Actually it is

sufficient to show that ~u E D( ~) fl M, ‘dr, ~ > 0, ~h0 E N : ~h > ho,

Let r,6 > 0 and let v E with ~v~ = 1. By iv), vi),

Remarks 2.9 and 2.11. there exist u+, u- E D~ f~) such that
vlu+ - u) > 0, - u)  Q. By substituting u~ with (su~ + (1 - s)u)
for some smalls in Q,1 ~ , we can also assume that q’ u+ - u - ~ 2  2~,
/oo(~~) ~ + E/2 and that for every v~ in a neighborhood of u~ 

+(1 - E M n B(u, r) for some t E ~0, 1~.
Let and (uh) be two sequences in H such that - u~,

lim h(u±h) = Then
h

(1 - E B( u, r) for some t~ E ~0, lj
eventually as h 2014~- and by i v ) we have

Finally, let us prove ix). By paracompactness and partition of unity, it is

sufficient to show that for every (u, x) E (u there exist 6 > 0,

Ii E R such that

whenever h E N, v E H, u E D(~-h), a E ~- fh(up |u- C u|  e,
 x ~  ~.



By contradiction, we could find (u, :c) and sequences (h~), (uk), (vk~, ak~
such that 

’

U~~ to a subsequence, we have that li~ hk - h~ E 1‘I. By lower

semicontinuity a,nd I’-convergence, we deduce that u E D( f ~,~ ) fl By
iii) , vi) and (2.18) we can apply Theorem 2.12 obtaining ak -_ 03B2k + ~k with
03B2k ~ ~- hk (uk), ~k ~ ~-IM(uk).

We claim that

Of course we can assume that 0. By Remark 2.9, up to a subsequence
(~k/|~k|) converges to some v E ~-IM(u) with |03BD| = 1. By vi) and Remark
2.11 there exists w E D( f h~ ) such that (v~w - u)  0. By r-convergence,
there exists (wk) converging to w with = h~(w). By (2.18) we
conclude that

namely

which gives the result.

Now we remark that vk ~ uk and

because At is of class C’i’ .loc

Then, taking into account (2.18), we conclude that



which is absurd.

We point out that a property like ix) was already proved in [8, Theorem
1.13] for a single function f . 

’

3. Variational bifurcation for nonsmooth functions

Throughout this section we keep the notations of §2. We shall consider a
real Hilbert space H, a convex open subset W of H with 0 E IV, a function

such that

and a symmetric bounded linear operator

Our purpose is to study the set of the pairs (A, u) such that

Because of ~3.1~, for every ,B in R the pair ~~, 0) satisfies ~3.2). .

DEFINITION 3.3. - A real number a is said to be of bifurcation for (3.,~~,
if there exists a sequence ((03BBh, uh)) or solutions of (3.2) with uh ~ 0 and

As in the case of smooth functions f (see j~2~), we want to compare
the bifurcation values with the eigenvalues of some "linearized" problem.
In order to carry out such a program, we make the following further
assumptions on f :

(Al) the function f is lower semicontinuous on Wand there exists

q E R+ such that the function {u ~ f(u) + is convex on W ;
(A2) there exists a function fo : H ~ R U such that for every

sequence (03C1h) in ]0, 1] converging to zero, we have



where Vp E~O,1~, fp : H ---~ R U is defined by

PROPOSITION 3.4. - Let p E~O,1~. . Then the following facts
hold :

i~ f p is lower semicontinuous on H and the function
{u ~ fP(u) + is convex on H ; 

_

ii) Vv E H, ~u E fp), ~03B1 E a we have

iii) f p(0~ = 0, 0 E C~ 

iv~ Vu, a E H, we have
u E fp) and a E ~‘~ fp(u) ~ pu E f) and pa E a f(pu);

v~ for every sequence. in ~0,1~ converging to p, we have

Proo f . - Properties i), iii~, iv) and v) are immediate consequences of the
definition of fp. Property ii) is an easy consequence of propery i).

PROPOSITION 3.5.- Let be a sequence in (uh) and (ah)
two sequences in H. Let us suppose that (ph) converges to p E ~0,1~=

converges to u E H, (ah) converges weakly to a E H and that

ah E (uh}, Vh EN. Then we have

PROPOSITION 3.6. - The following facts hold :

i~ fo is lower semicontinuous on H and the function
{u ~ fo(u) + is convex on H ;

ii) Vv E H, Vu E Z7(c‘? fo), Va E ~- fo(u), we have



iv) ~s > 0, Vu e H, fo(su) = 

v) ~s > o, ~u e D(~-f0). ~03B1 e ~-f0( ), s03B1 e 

vi) Vu e Va e = 
.

Proof ~.~ and 9.6.-Property (3.6)1 is a simple consequence of Propo-
sition (3.4)i and the definition of r-convergence; property (3.6)ii is an easy
consequence of (3.6)1.

Let us prove Proposition 3.5. By Proposition 3.4ii and (3.6)u we have

~ ~ /p~(~) ~ + (ahlv - ~A) - qlv - 

By (A2) and Proposition 3.4v we can choose v = where lim zh = u and
h

= /p(~ obtaining
h 

~ 
.

By the definition of r-convergence we conclude that

Now Vw e H we choose v = .wh, where limwh = w, lim f03C1h (wh) = 
h h

obtaining

which implies a ~ 9 

Property (3.6)iii is a consequence of Propositions (3.4)iii and 3.5.

Let us prove (3.6)~. Let be a sequence in ]0~1] converging to zero
and let be a sequence such that lim uh = u, lim f03C1h(uh) = 

h h

Since

by (A2) we have



For the same reason

Therefore (3.6)iv is proved.
Property (3.6)v is an easy consequence of (3.6)iv.
Finally, let us prove (3.6)vi. By (3.6)vi we have

On the other hand

The function fo(u) introduced in (A2) plays the role of the quadratic
in the smooth case. In the following it will be convenient

to consider also the "linearized" problem

Remark 3.$. For every a in R the set

is a closed cone.

Proof . It is a consequence of Propositions 3.5 and (3.6)v.
It is not true, in general, that ~{u E H: : ÀLu E a- is convex. Take,

for instance, H = W = R2, y) = (x4 + y4)1/2 and L the identity map.
Then (3.1), (Al) and (A2) are satisfied with fo(x, y) = (x4 -~- y~)1~2, but for
B = v2 we have

and for A = 2 we have



DEFINITION 3.9. - A real number A 13 said to be an eigenvalue of (3.7),
if tke pair A, u) satisfies (9. 7) for some u # 0.

Remark 3.10. - If (A, u) satisfies (3.7), then fo(u) = 1 2 A(Lu[u) °
Proof.- It is a consequence of Proposition (3.6)vi .
Now it is convenient to introduce the sets

which are hypersurfaces in H of class C°° and closed subsets of H.

According to Remark 2.9, we have for every u in M~,

PROPOSITION 3.11.2014 For every u E n lt~~, and are

not tangent at u.

Proo f . - Let u E D ( f o ) n M+. The set is a convex cone by
Proposition (3.f ~i and (3.6~;~ . If we take u+ = 2u, u- = 0, we have

By remark 2.11 D( fo) and M+ are not tangent at u. The same argument
works for M- .

PROPOSITION 3.12. - Given E R, let us consider the following facts: :

i) (03BB, u) satisfies (9. 7) for some u with > 0;

ii) a is critical from below for (10 + IM+);
iii) (~, u) satisfies (~.7~ for some u with  0 ;

iv) -~ is critical from below for ( fo -~- IM- ).
Then we have



Proof.-By Propositions (3.6);, (3.6)it and 3.11 we can apply Theorem
2.12, obtaining for every v in n M+,

Now let us prove that i) =~ ii). Let (A, u) be a solution of (3.7) with
> 0 and let

By Remark 3.8 03BBLv E Moreover v E M+ and ( fo + IM+)(v) = 03BB

by Remark 3..10. By (3.13) we conclude that 0 E + 

Let us prove that ii) =~ i). Let v E M+ be such that fo(v) = ~~
0 E + IM+)(v). Of course (Lv~v) > 0. By (3.13) there exists ~c E R

such that Lv E ~- f o (v). By Remark 3.10 we conclude that 03BB = f0(v) = .

The proof that iii) -~ iv) is analogous.

. 

THEOREM 3.14. - Let us assume that for every sequence (uh) in Z~B~0~
with

the sequence has a convergent subsequence.

Then every A of bifurcation for (3.2) is an eigenvalue of (3.7).

Proof.-Let ((~h, uh~~ be a sequence as in Definition 3.3 and let ph =
vh = By proposition (3.4~i~.

Moreover by Proposition (3.4)it and 

Since = 1, we have

Therefore, up to a subsequence, (Vh) converges to some v in H with |v| = 1.

By Proposition 3.5 we conclude that



The converse is not true, in general. Let us take the following counter-
example from [30].

Let H = R2, W = B ( 0,1 ) , f : T~~ - R defined by

and L the identity map. Then all the assumptions of Theorem 3.14 are
satisfied with 

On the other hand A = 2 is an isolated eigenvalue of (3.7) which is not of
bifurcation for (3.2).

From our point of view, the feature of this example is that A, which is
critical from below for ( f o + h. j+ ) by Proposition 3.12, is not essential for
( f o + IM+ ) in the sense of Definition 2.8.

Roughly speaking, the first purpose of this section is to show that, if

A E R is an eigenvalue of (3.7) and A is essential for ( f o + .I~.~+ ) or -~ is
essential for ( f o + IM- ), then ~ is of bifurcation for (3.2). On the contrary,
we shall not treat the eigenvalues A such that

First of all let us consider the following compactness assumptions :

(A3+) for every sequence in W with 6]0,1] and
2

the sequence has a convergent subsequence ;

(A3") for every sequence (uh) in W with -(Luh|uh) ~ [20141,0[ and

the sequence has a convergent subsequence.
If L is the identity map of H, hypothesis (A3+) implies the compactness

assumption made in Theorem 3.14.



PROPOSITION 3.15. - Condition (A3+)(resp. (A3-)) holds if and only if
for every sequence irL ]0,1] the sequence ( f03C1h -1-IM+) (resP. ( +IM-))
is equicoercive.

.~roof . Let (A~~) hold. Let c E R. and let be a sequence in M~
with  c for some sequence in N.

If we set u k = 03C1hk u k, we have

By (A3~), (u~) has a convergent subsequence.
Now let us assume that for every sequence ( ph) in ]0,1] the sequence
+ is equicoercive.

Let (uh) be a sequence as 
in (A3~). Let ph = ~ B~ -)(L~)t~))) / 

i /2 
and

vh = Then vh E and

Therefore (vh) has a convergent subsequence.

PROPOSITION 3.16.- Let (A~+~ (resp. (A~~~~ hold. Then for every c
in R the set ( fo + IM+ ) c (resp. ( fo -E-1~~- ) ~) is compact.

Proof.- Let (Ph) be a sequence in ~0,1~ converging to zero and let
0. By Propositions (3.4)i, (3.f )~, (A2), (A3~) and Proposition 3.11,

we can apply Theorem 2.17 to the sequence and the hypersurface M~.
Then ( fo + is the r-limit of some equicoercive sequence of functions
by Theorem (2.17)i, (2.17)x and (2.17)xi. By Remark 2.15 the thesis follows.

From now on we restrict our attention to the eigenvalues A such that
03BBLu E ~- fo(u) for same u with 0. For sake of simplicity, we
shall consider only eigenvalues A such that ~Lu E ~- f (u) for some u with

> 0. By changing L in -L and A in -~, we can always reduce
ourselves to this case.

PROPOSITION 3.17.2014 Let (A3+) hold and let 03BB E R. Let us assume that

E : - {u E H . 03BBLu E convex and > 0 for some

Uo E E. Then the set ~2~ E E : : jut = 1~ is compact and we have



Proof .-By proposition (3.6),,i, Vu ~ EnM’~, fo(u) = a. By Proposition
3.16 E n ltT + is compact, hence bounded.

We claim that Vu E jSB{0}, (Lulu) > o. By contradiction, let v E 
with 0. Since u o and v are linearly independent, we have

Since E is a cone by Remark 3.8, eventually oo we can find
Wh C E of the form Wh == (1 - th)hu0 + for some th e [0,1].
Then lim |wh| = +00, which is a contradiction.

h

To conclude the proof, it is sufficient to remark that the map

is a homeomorphism.

COROLLARY 3.18. Let either (A3+) or (A3-) hold and let us assume
that for every 03BB in R the set {u E H : 03BBLu E a- is convex. Then
the sets

and

are disjoint.

Proof.-By changing L in -L, ive can suppose that (A3+) holds. Then
the thesis follows from Proposition 3.17.

LEMMA 3.19. - Let (A3+) hold and let 03BB E R. Then the following 
are equivalent :

i) there exists po > 0, {03BB03C1 : 0  p  03C10} C R,



ii) for every sequence in ]0, 1] converging to zero, there exists ho E
l~, : h > ho ~ C R, : h > ho } C M+ such that

iii~ for every E > 0 and for every sequence (ph) in ~0,1~ converging to zero,
there exists ho EN, : h > h0} C vt,, : h > h0} C M+ such that

Proof. . Let us prove that ii) =~ i). First of all let (ph), (Ah) and (uh) be
as in ii). We claim that lim ah = A.

In fact by Proposition 3.15, up to a subsequence (uh) converges to some u
in ~VI+. By (A2) we conclude that u e D(fo). Again by (A2) and Proposition
(3.6);V, for every s > 0 we can find a sequence (wh) converging to su with

= fo(su) = s2 fo(u). By proposition (3.4);; we have

On the other hand

Since we can choose s in ]0,1[ and in ]1, we conclude first of all that

By Proposition 3.5 we deduce that fo(u) = ~. Therefore, because of the
arbitrary of s,

Moreover, if we set vh = phuh, we have, taking also into account Proposition
(3.4~;",



Now, arguing by contradiction, it is easy to see that ii) ==~ i).
The proof that iii) ==~ ii) is trivial. Let us prove that i) =~ iii). Let 

and Up be as in i) and let ( ph ) be a sequence in ]0, 1] converging to o: We
have ph eventually as h - oo. Then and t?~ = have the

required properties.
Now we can give the main result in this section.

THEOREM 3.20.2014 Let hold and let 03BB E R be essential for
(f0 + IM+).

Then ~ is an eigenvalue of (3.7~ and of bifurcation for (~.,~~. More
precisely, there exists po > 0, : 0  p ~ 03C10} c R, {u03C1 : 0  p 

C W such that

Proo f . - Let (ak) and (bk) be as in Definition 2.8. We want to apply
Lemma 3.19 verifying the condition (3.19)i~; . Therefore let us consider E > 0
and a sequence (ph) in ]0,1] converging to 0. Let us set 0 and let

be such that A - E  ak  bk  A + e.

By Propositions 3.4s, 3.5i, 3.15, (A2) and Proposition 3.11, we can apply
Theorem 2.17 to the sequence (fPh) and the hypersurface ~1’+ Let and

(A) be the sequences given by Theorem 2.17.

By (2.17)i f~ = /oo + IM+ = fo + IM+. . By (2.17)viii, (2.17)ix,
(2.17)x and (2.17)xi we can apply Theorem 2.16 to the sequence ( f h ) with
a = ak, b = bk. Let ho E N be such that Vh > ha, the pair (bkh, , f h ) is

homotopically equivalent to the pair ( f o + + .

Then ho, f h "~ is not a weak deformation retract of Because oflo-
wer semicontinuity and equicoercivity, we can apply the deformation lemma
17, obtaining that Vh > ho, 3uh e D( fh) such that 0 E ak 

bk. In particular uh E M’+.

By (2.17);;^ (2.17)vi and (2.18) we can apply Theorem 2.12, obtaining
E ~- fh(uh) for some ~h E R. Since  bk, by (2.17)vii we

conclude that



eventually as h -y +00. Therefore condition (3.19)iii is fulfilled.

Finally, let us show that A is an eigenvalue, of (3.7). Let po, ~P and up
be given by (3.19)i. If we set vp = uP/ p, we have v p ~ M+ and 03BB03C1Lv03C1 E
a- by Proposition 3.4;" . By Proposition 3.15 converges to some

v E along some sequence (p) converging to zero. By Proposition 3.5
we conclude that

Now we wish to consider two cases in which the condition that À is essential
for ( f o + IM+) is not explicitely required.

The first one concerns the bifurcation from the "first eigenvalue" which
has been studied, in a different framework, also in [29, 37]. A difference
with respect to [37] is that in our situation the set D( f ) is not requested
to be a cone. On the other hand in [29] a further assumption is imposed,
in order to avoid the tangency between D( fp) and M~. In our approach
we take advantage of the property (essentially proved in Theorem 2.17)
taht, if and M ~ are tangent at some u h and (Ph) --~ 0, then

~ +oo.

THEOREM 3.21. - Let assumption (~A~~ hold and let us suppose that
,fo(u)  for some u with > 0.

Then a : = inf fa is achieved, a is an eigenvalue of (3.7~ and of
M+

bifurcation for (~.~~. More precisely, all the thesis of Theorem 3.~0 holds.

Proof. - By Proposition 3.6iv we have that D ( f o ) n M+ ~ 0, so that
A : = inf ( fo + IM+)  +00. By Proposition 3.16 we conclude that A E R

and the infimum is achieved. Of course A is critical from below for 

By Proposition 3.12 A is an eigenvalue of (3.7).
To conclude the proof, we want to apply Lemma 3.19 verifying the

condition (3.19)ii. Let (ph ) be a sequence in ]0,1] converging to zero and let
p~ = 0. As in the proof of Theorem 2.10, we can apply Theorem 2.17 to
the sequence (fPh) and the hypersurface M+, obtaining two sequences of
functions ( f h ) and ( f h ) Of course 03BB = min f~.

By (2.17)x it is readily seen that

On the other hand, by (2.17)viii and (2.17)xi the infima at the right hand
side are achieved at some uh E H with 0 E a- Again by (2.17)X and



(2.17)xi we get

Now, as in the proof of Theorem 3.20, we conclude that 03BBhLuh E 
for some .~h E R and that = = 

eventually as h --~ oo.

In the second case, concerning the situation in which f o is a "quadratic
form" in some generalized sense, we can give a bifurcation result also for
higher eigenvalues of (3.7). ~~e need a quite standard lemma on linear
operators.

LEMMA 3.22. - Let X be a real Hilbert space and B, K : X --~ X two

symmetric bounded operators such that BK = Let M = {u EX: :

)(Bu[u) = 1), Qo(u) = Q(u) = 1 2|u|2 - Qo(u) and let us
assume that M is nonempty and sequentially weakly closed in X, Q0|M is

sequentially weakly continuous and

if M is not bounded. Let ~ be a critical value of .

Then there exists ~a > 0 such that :

i~ has no critical values in ~~ - -~- ~o~ ~ ~ ~ ~ ;
ii) for every ~ ~]0, ~0], there does not exist any deformation

iii~ the linear space ~u E X : u - ]( u = has finite dimension.

Moreover if {u e X : u - Ku = has dimension one and e is

a critical point of ~f~ with Q(e) = ~, then for every ~ the set

n ~u > 0~ is not a weak retract of n {u E
~r : (2GIe) > 0).

Proof - Let A = I - Ii Evidently AB = BA. First of all we claim that
for every x1, x2 E (kerB). !. and for every u1, u2 EX, ,

Infact, by the resolution of the identity associated with B, we can define
a sequence of symmetric bounded linear operators Ch X - X such that
BCh = ChB, ACh = ChA and



in the weak topology of X.

In particular,

Since = (3.23)
follows.

Let us remark that (KerA) n (KerB) = ~0~. Infact, KerB and (KerB)1
are invariant for A. Let u E M n (KerB)-~-. If v E (KerA) fl (KerB), we
have u + mv E M and Q(u + mv) = Q(u) Vm E N. Therefore the sequence
(u + mv) is bounded, hence v = 0.
Now we claim that, if a1, ~~ E R, ui u2 EX, Au$ = and a2,

we have = 0.

Infact, let u= = t~, + wZ with v~ E kerB, w; E (kerB)1. Then Af; ==
= 0, which implies Vi = 0. By (3.23) we conclude that = 0.

Let A = {  E R : Au = Bu for some u E X with > 0} which is
also the set of the critical values of 

Let us remark that A n] - oo, A] is finite. Infact, by contradiction, if (ah) is
a sequence of distinct values in An] - oo, A] and u h e M, Auh = we

have Q(Uh) = a h  ~. Up to a subsequence, (Uh) converges to some u E M
in the weak topology of A’ and converges to Q(u). Therefore (uh)
converges to u in the strong topology of X. This is absurd, as u ~ 0 and
the are pairwise orthogonal.

Let An] - oo, A] == ~al, ... , ~h} with ~1  ...  ah - a and let

Vi = {u E A’ Au = for i = 1, ... , h. Evidently 03BBi = min o.
h

The subspaces Vi are pairwise orthogonal. Moreover VinM is sequentially
weakly compact, hence bounded. An obvious adaptation of the proof of
Proposition 3.17 shows that Vi has finite dimension and > 0, Vu E

Let

Since -S and A leave invariant each it, the same property holds for V and
K. Moreover > 0 V~ ~ VB{0}.
We claim that (Ay|y) >: ~y C K. Infact, let y E K and let

~ F) Af. Without loss of generality, we can assume that -(B~/)~)  1.
~

Let s G R be such that 1 2(By|y) + s2 == 1. Then y + sv E M, so that



Now let 60 be such that Ah-i  03BB - ~0   min Q.MnY

Evidently has no critical value in [A - 6:o? A 2014 ~0]B{03BB}.
Let ~ El©, 
Since V has finite dimension, M n V is not contractible in It is

readily seen that

Therefore is not contractible in X BY.
Let e E M n Vh. . It is easy to show that X B ~ y + s e . y E Y,s > 0 ~ is

contractible in X BY. We claim that C X B~y -!- se : y E Y, s > 0~.
Infact, let us assume that y + se E M. From -~- ~~ == 1 we deduce
that _

since

Therefore there does not exist any deformation

Now let us assume that Vh has dimension one and let V’ = Vi (B ... (B 

Since V’ has finite dimension, A.f n V’ is not contractible in {u EX: :
(u e~ ~ ~~~~y -f- s e : y E ~’, s > 0~.
On the other hand, Vu E n V‘~,?(u)  so that

In particular, M n V’ is not contractible in n {~ C X : (nje) > 0}.
On the contrary,



defines a contraction of ~tf n V’ in n ~u EX: > 4~.
Therefore n { u EX: : > Q ~ is not a weak retract of

n ~u EX: > 0~.
Let us denote by C the set of the c’s in R such that the function

~u ~ + is convex for some ~ > 0 (in particular,

+ c 2 
~ 

> 0 Vu E H by Proposition 

The set C is not empty. Infact ]2q, by Proposition 3.6;.

If c E C and u E h~, let us denote by i u the minimum point of the
function ~v ~ + c ~v~2 - Evidently

THEOREM 3.26. - Let (A3+) hold and let us assume that

and that

for some c E C.

Then every value a, which is critical from below for 03BB(f0 + IM+), i,s also

essential for ( fo + IM+). Moreover, {u E H : 03BBLu E ~- f0(u)} as a linear

subspace of H of finite dimension.

Proof. - Let c E C be such that (3.28) holds. Combining Proposition
3.6i, 3.6iv and (3.27), we deduce that D( fo) is a linear subspace of H.

Moreover, we can define a scalar product ( ( ~ ~ ~ ) ) on D ( f o ) by

so that the embedding z : ~ (~) --~ (~, ~ ~ ~) is continuous, where ~~ ~ ~~
is the norm associated with ((~~~)).

By the lower semicontinuity of fo, the space (D(fo), ((’!’))) is complete,
hence a Hilbert space. Moreover ~ : . H --~ D ( f © ) is the adjoint map of the

embedding i.



Let us define two symmetric bounded linear operators K, B : D ~ f o ) -.~

D~ f o ~ by li = cii, B = is readily seen that

By (3.28) BI = IB.

If We set M := lU G D(fo): ) ((Bu lu)) = il = M+ n D(fo), ,
Qo(u):= = 1 2|u|2, because of (A3+) M iS sequentially weakly
dosed in Q0|M is sequentially weakly continuous and

if M is not bounded.

Now we claim that for every (A, u) in R x D(fo),

Infact, by (3.24) and (3.25), 03BBLu E ~- fo(u) ~ u = + cu) %S
u - it2014 = 

By Proposition 3.12 A E R is critical from below for ( f o + IM+) if and
only if A is a critical value 

Moreover, the norm [[ . [[ and the graph metric d* associated with fo
(see (2.5)) induce on D( fo) the same topology and Vb E R, (fo + T~+)~ -

. 

Applying Lemma 3.22, the thesis follows.

THEOREM 3.29. - Let us assume that (A~+~, (3.~7~ and (~.~8~ hold and
let A E R be an eigenvalue of ~~’.7~.

Then A is of bifurcation for (3.2). More precisely, all the thesis of
Theorem 3. 20 holds.

Proof. - It is sufficient to combine Proposition 3.12 and Theorem 3.26
with Theorem 3.20.

In the case in which the function f is smooth, several multiplicity results
are known for bifurcation (see [7, 21, 26, 34, 35]). Here we give a first result
for simple eigenvalues.



THEOREM 3.30. - Let us assume that (A3+), (3.27) and (8.28) hold
and let a E R, e E M+ be such that aLe E a- fo(e). Let us suppose that

~u E H : ~Lu E a! which is a linear space by Theorem 3.26, has
dimension one.

Then there exist po > 0, : 0  p _ Po, Z = 1, 2} C R, 03C10,

i = 1, 2~ C W such that

Proof. - First of all it is sufficient to show that there exist po > 0,

{ftp : 0  p ~ /9o} C ~ such that

Let £ = ~u E H : : (u~e) > 0}, a~ = {u E H : : (ule) = 0~ and let
g = f W -+ 

We want to apply Theorem 3.20 with the function f substituted by g. It
is readily seen that g(0) = 0, 0 E a-g(0?, g is lower semicontinuous and the
function {u ~--~ is convex. Moreover, if we define gp according
to the assumption (A2) and we set go = f 4 + we claim that

for every sequence in ]0,1] converging to zero.

Infact, since E is closed, by (A2) we have only to verify that for every
u E n E there exists a sequence in £ converging to. u with



Let be a sequence converging to u with converging to 
E E,let us set u ~ = wh . Otherwise, let E ~3~ be defined by

It is readily seen that converges to u and, by Proposition 3.4i,

Finally, since g > f, condition (A3+) is satisfied by g.
Let ((~~~)) be the scalar product on D(fo) and I~’, B D( fo) -+ D( fo) the

symmetric bounded linear operators defined in the proof of Theorem 3.26.
We know that A is a critical value of fo on the sub manifold M of D( fo).
Let again êo be given by Lemma 3.22.

It is readily seen that (I - = Therefore = In

particular,

Then for every b E R,

Moreover the norm [[ . [[ and the metric d* associated with go induce on
D(go) the same topology. By Lemma 3.22, A is essential for (go + IM+ ).

Let po, ~ p and u p be obtained by applying Theorem 3.20 to the function
g. By (A3+), along some sequence (Ph) conveging to zero we have that

converges to some v E M+. Since and ~- f agree on 03A3, the

proof will be conclued if we show that v = e.

Let us argue by contradiction. By Propositions 3.4iv and 3.5, 03BBLv E
= -~- Since v ~ e it must be v E c~~. A fortiori

+ Since e and -e belong to D( fo), by Remark 2.11
) and c~~ are not tangent at v.

Therefore, by Theorem 2.12 E a- fo(v) for some ~c E R. Since

By (3.25) we have v = namely (I - I~)v = 
Then



hence p = 0, which is a contradiction.

4. Bifurcation for elliptic variational inequalities

We want to show an application of the results of the previous section to
elliptic variational inequalities of the form

More precisely, let S2 be a bounded open subset of Rn and let us assume
that

(HI) for i,j = 1, ... , ?Z, a~? E aij = a~E and there exists v > 0

such that

(H2) ao E for some p > n/2 if n > 2, ao E if n = 1;

(H3) Caratheodory function such that for almost
every x E SZ

and such that

where ~ : R -+ R+ is continuous and at E for some p > n~2 if n > 2,
ai 

(H4) K is the set

{u E WQ’2(S~) : Sp1(x)  u(x)  ~p2(x) quasi-everywhere in SZ}
where ~~ : S2 --~ is quasi-upper semicontinuous,

--~ [0, is quasi-lower semicontinuous and for every u in

tildeu : n --> R is the quasi-continuous function defined

quasi-everywhere by .



(4.2) Remark.-Some comments are in order :

i) If g : SZ x R --> R is of class C~ and g(x, 0) = 0, = 0, then
hypothesis (H3) is automatically satisfied; .

ii) If SZ -i (-oo, 0~ and ~~ : : S~ ~--~ [0, are two Borel func-

tions, then (see [2, Theorem 3.2]) there exist a quasi-upper semicontinuous
function ---~ ~--oo, 0~ and a quasi-lower semicontinuous function
c~2 : SZ --> [0, such that

~u E yvo ~~(~) : ~1(~)  u(x)  c~2(x) quasi-everywhere in SZ} -
= ~u E W~’~(f~) : : ~p1(x)  u(x)  c,~2(x) quasi-everywhere in 52~.
Our aim is to study the pairs (a, u) satisfying (4.1). Because of (H3),

g(x, 0) = ©. Therefore for every a in R, the pair (~, 0) verifies (4.1).

(4.3) DEFINITION A real number A is said to be of bifurcation for (4.1),
if there exists a sequence Uh) of solutions of (4.1) with 0 and

Let ( : R --~ E-2, ?~ be a smooth increasing function such that ~~’’(s)~ 
1 ds E R and ~(s) = s ds E ~-1, I~. We set s) == g(x, ~(s)), G(x, s) ==
9

~o / 
Then § satisfies the hypothesis (H3) with the function q substituted by

the consta.nt fi = : -2  s  2~.
Let (H, (~~~)) denote the space .L2(~2) endowed with the usual scalar

product and let f, fo : : I~’ be defined by

where Ko is the closure in of the set ~ Ut>o tK) .
Evidently, Ko is a closed convex cone.

Finally, let us set = for p > 0, u E I~.

LEMMA 4.4. - Let X be a normed space, g : X ~ R a continuous
convex function and Ii a closed convex subset of X with 0 E K. Let Ko



denote the closure of ~ Ut~o tI). . Then for every sequence in ~0, 
conerging to zero, we have

where Xw denotes the space ~.’ endowed with the weak topology.

Proof. . Let (Ph) be a sequence in ]0, +oo[ converging to zero. I (uh) is
a sequence in X weakly converging to u and (g + c E R, we

have uh E 03C1-1h K and g(uh)  c.

Therefore u E and (g + = g(u)  c.

Now let u EX. We have to prove that there exists a sequence (uh) weakly
converging to u with

To this aim, it is enough to show that for every u E for every r, e > 0,
there exists ho E N such that for every h > ho,

This last fact is obvious, as we can find v E UtK such that v E

t>o

B(u, r), g(v)  g(u) + E.

PROPOSITION 4.5. The following facts hold : :

i) f is lower semicontinuous and the function ~u H f(u) + is

convex for some q E R+ ;
ii) for every sequence ( ph) in ]0, converging to zero, we have

iii~ for every sequence in with

the sequence has a convergent subsequence ;



iv) for every ~ E R, v E K, we have a~c E a- I( u) if and only i,f

v~ for every a E R, u E K~, we have ~u E r?- if and only if

Proof.-By (H1), (H2) and (H3), yve have for every u E 

Therefore, in order to get the lower semicontinuity of f in the strong
topology of L2(S2), it is sufficient to prove the sequential lower semicon-
tinuity of f in the weak topology of L~o ’2 (SZ).

For every u in K we have

Now the first two terms are continuous in the strong topology of Wo ’2 (SZ)
and convex. The third term is sequentially continuous in the weak topology

We deduce that f is sequentially weakly lower semicontinuous in
Moreover, it is readily seen that the function ~u ~ f (u) + 

is convex for some q E R+ .

Let us prove ii). Let (ph) be a sequence in. converging to zero.
By (4.6) it is enough to prove the r-convergence in the weak topology of



Because of (H2) and (H3), we have

whenever (Uh) is a sequence weakly converging in to u. Then

property ii) follows from Lemma 4.4.

Property iii) is an immediate consequence of Rellich’s theorem. Infact, if
v~ = we have by (4.6)

To prove iv), it is sufficient to see that for every u E E H, we have
a E if and only if

Since the function is Fréchet differentiable in L2(03A9), we have

Taking into account the convexity of ~u ~--~ feu) + we conclude that

a E ~- f ( u ) if and only if

which amounts to stating iv).
The proof of v) is similar.

According to the abstract theory of section 3, we shall consider



as the "linearized" problem associated with (4.1).

DEFINITION 4.8. - A real number ~ is said to be an eigenvalue of (l. 7),
if the pair (~, u) satisfies (.~.7~ for some u ~ 0.

PROPOSITION 4.9.- Let u E Wa’2(S~). Then u E Ko if and only if
> 0 quasi-everywhere in and u(x)  0 quasi-everywhere in

03C6-12(0). Moreover Ka = {0} if and only if 03C61 and 03C62 are zero quasi-
everywhere in Q.

Proof. 2014 Let u E Ko and let (uh) be a sequence in U tK converging to
t>o

u in the strong topology of Wo ’ 2 ( S2 ) . Of course > 0 quasi-everywhere
in and  0 quasi-everywhere in ~p2 1 (0). Up to a subsequence,

converges to u pointwise quasi-everywhere, hence the thesis.

Let us prove the converse. To see that u E Ko, it is enough to show that
u+ and -u- belong to Ko. Let us consider -u-, the argument for u+ being
similar. Since u- (x ~ = 0 quasi-everywhere in (0), , -u- ~ ~ is
a decreasing sequence of nonpositive quasi-upper semicontinuous functions
converging to -u- pointwise quasi-everywhere. By [10, Lemma 1.6] there
exists a sequence in Wa ’2 (S2) converging to -u- in the strong topology

with vh > h03C61 quasi-everywhere in Q. Without loss of generality,
we can assume vh  0. Since U tK, the thesis follows.

t>o

It is clear that Ko = ~0~ if ~~ and p2 are zero quasi-everywhere. Let
us suppose that Ko = ~0~ . By [10, Lemma 1.5], there exists a decreasing
sequence (wh) in such that converges to y~1 pointwise quasi-
everywhere. Without loss of generality we can suppose 0. Since

Wh 6 K (I Ko, we have wh = 0, so = 0 quasi-everywhere.
In an analogous way we can see that ~2 (x) = 0 quasi-everywhere in f~.

THEOREM 4.10. - Let A be a real number. If ~ is of bifurcation for ~1~.~~,
then 03BB is an eigenvalue of (4.7).

Proof. - Let ((~h, Uh)) be a sequence as in Definition 4.3. Then (uh)
converges to zero also in L2(03A9) and by Proposition 4.5iv we have 03BBhuh ~
~- f( Uh) eventually oo. Combining Proposition 4.5 with Theorem
3.14 (with L equal to the identity the thesis follows.

DEFINITION 4.11.2014 An eigenvalue 03BB of (4.7) is said to be essential, af



there exists two sequences (ak) in ] - and (bk) in ]03BB,+~[ conveTging
to ~ such that

i~ for every kEN, a~ and bk are not ei.genval.ues of (.~.7~;
ii~ for every the set

is not a weak deformation retract of the set

endowed with the strong topology of 

LEMMA 4.12. - There exists a continuous function c : R ~ R+ such
that for every (a, u) in R x K satisfying

we have u E L°° (S2) and

Proof. - It is sufficient to remark that, if we set

then the function u - ~ck belongs to K, so that

Since (g(x, u~ ~  the argument of [39, Theorem 4.1 and Remark
4.2] works also in this case.



THEOREM 4.13. - Let a be a real number. If a is an essential eigenvalue
of (4.7), then 03BB is of bifurcation for (4.1). More precisely, there exist

po > 0, {03BB03C1 : 0  03C1  C R, : 0  p  C K such that

(aP, u p) satisfies (4.1), 2 03A9 u203C1dx = p and

Proof.2014Let M = {u (= L2(03A9) : 1 2 jf u2dx == 1}. It is readily seen that
D(/o + ~M) C W~’~(~) and the graph metric d~ associated with (/o -- ~Af)
induces on D(/o the strong topology of W~’~(~). By Proposition 3.12
A is essential for (/o + 
By Proposition 4.5 we can apply Theorem 3.20. Since : 0  /? 

~0} is bounded in L~(~) and

by (4.6) we deduce that : 0  p  po ~ is bounded also in 
In particular

Moreover, as in the proof of Proposition 4.5i; we have

so that

Finally, by Lemma 4.12

so that up) satisfies (4.1) eventually as p -~ 0+.



We do not know whether all eigenvalues of (4.7) are essential. Similarly,
we do not know whether all eigenvalues of (4.7) are of bifurcation for (4.1).
Now we shall consider two particular situations in which the condition

that the eigenvalue is essential is not explicitely required.
The first one concerns the bifurcation from the first eigenvalue. If the

set K is a cone (that is (~i takes only the values -oo, 0 and p2 takes only
the values 0, -f-oo) and the nonlinearity g has a more controlled growth, the
problem has already been treated in [37]. On the other hand, for a fourth
order variational inequality, the problem has been treated in [29], provided

. that ~~ and c~2 satisfy a further condition.

TIIEOREM 4.14. - Let us assume that pi and 03C62 are not both zero quasi-
ever.y.where. Then

is achieved, a is an eigenvalue of (4.7) (the first eigenvalue) and 03BB is of
bifurcation for (l~.l J. More precisely, all the thesis of Theorem l~.l ~ holds.

Proof . By Proposition 4.9 we have K0 ~ {0}. Therefore it is sufficient
to apply Theorem 3.21 arguing as in the proof of Theorem 4.13.

In the second situation, concerning the case in which f o behaves like a
quadratic form, we can give a bifurcation result also for higher eigenvalues.

PROPOSITION 4.15. - Let us assume that the set

has null capacity. Then every eigenvalue of (4. 7) is essential. Moreover, for
every ~ in R the set ~u E Ko : (~, u) satisfies ~.~.7~ ~ is a linear subspace
of of finite dimension.

Proof . By Proposition 4.9 Ko is a linear subspace of H, so that

If we apply Theorem 3.26 with L equal to the identity map, the thesis
follows .



THEOREM 4.16. - Let us assume that the set

has null capacity. Then every eigenvalue ~ of (1~.7~ is of bifurcation for
(.~.1~. More precisely, all the thesis of Theorem 1~.13 holds.

Proof. - It is sufficient to apply Theorem 3.29.

Remark 4.17. Let us suppose that there exists an open subset S~’ of ~
such that

~p1 = p2 = 0 quasi-everywhere in ~~SZ’; 
’

wi  0 and c~ 2 > 0 quasi-everywhere in Q’ .

Then the assumption of Theorem 4.16 is satisfied and the eigenvalues of
(4.7) are exactly the eigenvalues of the linear problem

Finally we give a multiplicity result for simple eigenvalues. We point out
that much more is known for equations (see [5, 6, 7, 21, 26, 28, 34, 35]).

THEOREM 4.18. - Let us assume that the set

has null capacity. Let 03BB be an eigenvalue of (4.7) such that {u E Ko : (a, u)
satisfies (4.7)} has dimension one and let (a, e) be a solution of (4.7) with

1 03A9 e2dx = 1. Then there exist po > 0,

such that (~~h~~ u~h~~ satisfies ~,~.1~, 1 ~u~~~~2dx = p2 dndP P 2 ~ P



Proof. - Let us apply Theorem 3.30. We have only to remark that
Theorem 3.30 gives

in L~(52~.
On the other hand by Remark 3.10

and, as in the proof of Theorem 4.13,

Therefore the convergence holds also in 
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