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Linear forms in two logarithms
and Schneider’s method (III)

MAURICE MIGNOTTE(1) AND MICHEL WALDSCHMIDT(2)

Annales Faculte des Sciences de Toulouse

Nous appliquons la méthode de Schneider pour obtenir des
bornes inferieures pour des formes linéaires en deux logarithmes de nombres
algébriques. Ici nous ne considerons que le cas rationnel. Dans la premiere
partie, nous raffinons les estimations que nous avons obtenues dans le second
papier de cette série. La fin de cet article est consacree au cas ou l’un de ces
logarithmes est egal a t?r.

ABSTRACT. -- We apply Schneider’s method to get lower bounds for linear
forms of two logarithms of algebraic numbers. Here we consider only the
rational case. In the first part, we refine the estimates which we proved in
the second paper of this series. The end of this paper is devoted to the case
when one of these logarithms is equal to i1r.

Introduction

We refine the lower bound which was obtained in our previous paper [M.
W. 2] (which will be denoted [*] in the sequel). We consider an homogenous
linear combination of two logarithms of algebraic numbers with integer
coefficients.

We combine the method of [*] with a technique which already appeared in
[M. W. 1]. We improve the numerical results, which is relevant in several
circumstances (see e.g. [C.K.T.], [C. W.], [C.F.]). We treat the case of linear
dependent logarithms which was only tackled in [*] and we pay special
attention to the case when one of the algebraic numbers is a root of unity.

Since we use intensively [*], we keep the numerotation of the sections up
to §8 and very often we only give the modifications which we introduce here
(this is the reason why there is no §4 here).
(1) Université Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg, France
(2) Institut Henri Poincaré, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 5, France



§1. A lower bound for linear forms in two logarithms

We first give here a simple statement : better estimates will be proved
later (especially theorem 5.11 in §5).

For the convenience of the reader, we recall the definition of Weil’s
absolute logarithmic height h(a) of algebraic numbers. Namely, if a is

algebraic of degree d over Q, with conjugates and minimal

polynomial

then

Let a1, a2 be two non-zero algebraic numbers of exact degrees D1, D2. Let
D denote the degree over Q of the field a2 ) For j = 1, 2, let log a~
be any non zero determination of the logarithm of aj.

Further let b1, b2 be two positive rational integers such that

Define B = max b2 ~ and choose two positive real numbers ai, a2
satisfying

Then theorem 5.11 implies the following result.

COROLLARY 1.1.2014 Under the above hypotheses, have

At the end of this paper, we study .

The fact that we get a sharper estimate than in our previous work

[*] comes from two modifications. Firstly, we look more closely at the



conditions which are to be verified by the parameters of the auxiliary
function. Secondly, we conclude in two steps :

(i) like in [*], we show that the polynomial cp which occurs in the
construction of the auxiliary fucntion is zero at integer points (u, v) in a
rectangle of average size (this rectangle is not as "big" as in [*]), 

.

(ii) then (like in [M. W. 1]), we prove that c~(u/2, v/2) = 0 for integer
points in a big rectangle.

The plan of this paper is the following : :
~ 1. a lower bound for linear forms in two logarithms
§2. auxiliary lemmas

§3. interpolation formula

§4. zero estimate

§5. the main result

~6. numerical examples

§7. a consequence of the main results

§8. proof of corolary 1.1

§9. examples

a) class number one

b) quotient of two pure powers
c) ray class-field

§10. the case of a root of unity

§ 11. numerical examples for theorem 10.1 .

§12. a consequence of theorem 10.1

§13. a corollary of theorem 10.1

§14. an example of a measure of irrationality
references

appendix : a lower bound for the Euler function.

§2. Auxiliary lemmas

We keep the auxiliary lemmas given in [*], ~ §2, except for the following
one.

LEMMA 2.1.2014 (Siegel’s lemma ). Let aI, ... aq be algebraic numbers of
absolute heights at,..., , aq respectively. Define D = ... , Oq) : Q] .
Let



be polynomials (not all zero ) of degree at most in Xh (for 1 ~ h  q).
Define

If v > then there exist rational integers xl , ... , xv not all of which are

zero, such that

dnd  ((Vl ... V )D/(03BD- D), uJhere Vj = Lj . exp 03A3 Njhah).h=1
Proof. . Apply (B . V . ~ theorem 12 .

§3. Interpolation formula

We replace lemma 3.2 of (*~ by the following result.

LEMMA 3.2. Let 03B2 be a rational number, 03B2 - b1 /b2, b1, b2 E Z,
(bl,b2)=1. .
Let U and V be two positive integers. Put

We suppose

(H) the points (u + ~u~  4U and ~v)  4V are pairwise distinct.
Then we have

Proof . The proof is the same as in [*] except that we notice that our
new hypothesis (H) implies now that each value of x" can be obtained
only once, where - for v ~ vo fixed - we denote by xv be the minimum of

uo +/3(~ - 



Thus, arguing as in [*], we get

This implies lemma 3.2.

§4 Zero estimate

There is no section 4 here because we shall just apply the zero estimate
of [*] §4.

§5. The main result

5.1. . Common notations and for §§5, 6 and 7

Let a2 be non-zero algebraic numbers of respective degrees
equal to Di and D2, the total degree of the field we are working in is
D = [Q(~i,~2) : : Q], log a; is any non-zero determination of the logarithm
of = log , for j = 1,2.

Moreover let 03B2 = b1/b2 be a rational number, where bl, b2 E Z, 0  bl, b2,
and ( b1, b2 ) = 1, such that

does not vanish.

We define many parameters as follows.

a) parameters depending on cx1 and a2 (namely a1, a2, a1, a2, a’ v, vl, v2,
f , ~,) . .

We define

03B1’j = = 1, 2), a’ = = max{Log|03B11|, Log |03B12|}, so
that a"  Da’,

a’~ = = 1, 2, (so that 0  v~  I) , v = (vi + a~2)/2 (so that
©v1).



Now we notice that for any non-zero algebraic number a and any non-zero
determination log a of its logarithm we have

therefore we can choose a real number f with 1  f  2eD~a~+1 ~, such that
the numbers aj = satisfy

We also assume

c~ for j = 1,2.

Finally we put v = 1 if D > 1 and v = 0 if D = 1.

b) parameters depending on ~Q (namely B, G, Go, G’, ~, p) :

We put
B = max{b1, b2~, 

-

Go = 0.59 + Log B + Log Log 2B,

0.09 + Log B + Log Log 2B = (1 + ~ ) Log B.

Let p be a positive number (further conditions on p will be required in
§5.3 below), we define

G’ = 1 + Log (0.5 + P/ll ), G = Go + max~0.41, 

c) the parameters Z, 8, 80, 81, 03B82 :

Let

be a real number and let Z be a positive number which satisfies

1  Z  min{DG/03B8, Da1, Da2, Log (e f )} (as usual e is defined by
Log e = 1),

We put

e = Z/Log (e f ) (so that E  1).
Further we define

91 = 8(D a2/Z), 82 = 8(D (so that 81, 82 > 8), 80 = max{03B81, 03B82}.



d) the main parameter U :

As in [*], we define
U = D4ala2G2Z-3.

Notice that (5.0) and the conditions on Z imply .

U > max{03B8DG,100D2a1,100D2a2, 03B82Da1, 82Da2, 

5.2 Notations and hypotheses for §5 and §6

Let co , c1, c, Xo , X1, X2 , X , C, r~*, ~c, p, p* , ~, ~a be positive real numbers.
Assume

(as usual, for a real number jc we define a*~ = max{a*, 0~~



(5.10) either ~i and a2 are multiplicatively independent or

5.3 Statement of the main result.

THEOREM 5.11.2014 Under the above hypotheses, we have ~A~ > 

The rest of §5 is devoted to the proof of this inequality. Therefore we
assume Log ~A~  -CU and we shall eventually reach a contradiction.

5.4. The parameters

We define L0, L1, M1, M2 by

We put

so that ~y~ - 2cl  1/8~ for j = 1, 2.
The following inequalities



and Mi, M2 > 20, Li are all consequences of the definition of Z and
of (5.1).

By lemma 2.2 and the definition of a~s, we have

This shows first that the numbers u + vQ, ~u ~  4Mi and v ~  4M2 are
pairwise distinct (here and in the sequel the letters u and v represent rational
integers) ; otherwise bl  8Mi and b2  8M2, which implies

and contradicts the assumption since C > lOc and 200.

We have a2 b2 ~  fB . and the hypotheses on f , C and I~
imply

We also remark that M2  b2 /33 : if not (*) implies the estimate

which contradicts ~A~  since C > ~10 and M2a2D  
This remark is used in the proof of proposition 5.19.

Moreover, we remark also that (*) and (5.0) imply

so that Log B > 9.2, G > 12.49, o;(2B)  0.09 + Log Log 2B (see lemma
2.7 of [*] for the definition of w(x)) and also U > 186D Log D.

5.5 auxiliary function.

We denote by ~~1, ... , ~D ~ a basis of over t~, where ~d =
0  d~’  = 1, 2) and d1 + d2  D. This implies the estimate

As in [*], we shall construct an auxiliary function of the form



and is defined in lemma 2.4 of [*]. For rational integers u and v we
put

PROPOSITION 5.14.- There exist rational integers ph,k,d, not all zero,
such that

with

where p = + + 03C32y2)) and ~ = y1y2/(c0x1 - WyZ).
Moreover

Remark . By (5.2), we have 0.?  r~  ~*  1.22 ; moreover, p  p* .

Proof of proposition 5.14.

We have to solve in Z a linear system of (2Mi + 1)(2M2 ~-1 ) equations in
the D(Lo + l)(2Li + 1) unknowns ph, k,d . We use lemma 2.1. By definition,
we have

(5.15)

With the notations of lemma 2.1, we have

with di + d2  D. By lemma 2.4 of ~*~, using the inequality /3a1  1.001a2
as well as our assumption (5.1) we get



Notice that

Now we have

Hence, since a similar result holds for the summation over v,

An application of lemma 2.1 shows that there is a non trivial solution with

where Go = 0.59 + Log B + - Log Log B  G - 0.41.

Moreover 
’

We have

By (5.0) and (5.1), we have also

Now it is easy to get proposition 5.14.



5.6 The extrapolation.

Put Mi,o = [~0cD2a2GZ-2 + 0.5] and M2,o = [~0cD2a1GZ-2 + 0.5]. In
this section we prove that

By construction, this is true for -Ml  u  Mi and -M2  v  M2.
We proceed almost exactly like in [*], and we give only the details wich are
different . ’

Define N = M1,o + M2,o - Mi - M2 and Xn by

We proove, by induction on n, (0  n  N), that

As already seen, this is true for n = 0, while (P)N is nothing else than (#). .
We consider the set

PROPOSITION 5.19.2014 We have

where

so that



so that

Proof . Thanks to the interpolation formula, we have

this implies the first upper bound for Log El. The second one follows like
in [*], except that now

The interpolation formula implies also

so that

This implies the first upper bound of Log E2. The second one follows from
(5.25). This completes the proof of proposition 5.19.



PROPOSITION 5.29. - Put a = For 03B3 = u + v03B2 E I‘N,
we have

where

Proof. - We first show that for -L1  k  Ll and -M2,o  v  M2,o ,
we have (5.30) I 

Indeed,

We have ILog ~a2 ~ ~  Da2 and ~a~ ~  + so that

These lower bounds give

and (5.30) follows since 03B12| ~ exp{-CU + 

The conclusion follows like in [*].

PROPOSITION 5.34. - For, = u E rN, either p(u, v) is equal to
zero or



with

Proof. - From Liouville inequality, we deduce

and the result follows.

PROPOSITION 5.35. - Assume that in (5.21) we have

Proo f . We use (5.5) to check

and then we shall use (5.6) (i) to check

Put mo = (2Mi + 1)(2M2 -f-1). The first inequality is true when (we know
that ~ - 0.5)

It is again sufficient to check this inequality for n = 1 and (5.36) is implied
by

mo~Z - (DP1 + (co + 0.02v)U + 2DL1 ((Ml -f-1)a1 + M2a2 ) + 3) > 0.

Remark that M1 > Li implies



We have also 3  0.016Lo and

Therefore (5.36) is a consequence of

[recall that p = + + y203C32)) and ~ = y1y2/(c0x1 -
We see that 0, so that the worst value for a:i is 2ci - 1/B : :

Whereas

As easily verified, 82H/8yi  0 and 8(yz 18H/8y1)/8y2  0, so that

8H/8y1  0 when

This proves that (5.5.i) implies 8H/8yi  0 (and also 8H/8y2  0). Now,
by condition (5.5.ii) we have H > 0.
We now prove (5.37). It is sufficient to check

We have

And now m is bounded by

This shows that (5.37) is a consequence of (5.6.i).
We have proved (#).



5.7 End of the proof.

We shall prove that the non-zero polynomial ~-

nishes at the points .

where Mi = + 0.5~ and Mg = + 0.5~ .
According to proposition 4.1 of [*] (zero estimate) and the obvious analog

of proposition 5.43 of [*], we will obtain a contradiction; and this will prove
theorem 5.11.

Consider a point 03B3 = (u + v03B2)/2, with |u| ~ M*1,|v|  M2 .
We suppose that, does not belong to rN (otherwise ~p(u/2, v/2) = 0 by

the preceeding section) and we apply the interpolation formula for, and
the points of rN with

We get

where

Now,

so that



This leads to

Notice that m* ~ 4~20c2U + 4Ml,o + 4M2,o -f-1. Without loss of generality,
we may suppose that M2,o, and then we have

(we have used the notation x+’ = for real numbers), this gives

Moreover, (~p(u/2, v/2) - ~  E; with

where -X* = max{0.5, = 0.5 (by (5.1) and ~ ~ e), thus

Finally, if ~p(u/2, v/2) ~ 0 then ~Sp(u/2, vi2) ~ > E4 , where



Now it is easy to verify that condition (5.5.iii) implies Ei  E;/3 and that
condition (5.6.ii) implies  E4 /3. This proves that

This completes the proof of theorem 5.11. .

6. Numerical examples

We use the notations and hypotheses of §5.1 and 5.2, and we produce
suitable values for the constant C, so that the assumptions (5.1) to (5.10)
have been checked. Therefore the conclusion

of theorem 5.11 holds.

Here we choose f = 2e, = 1 (the worst values for 03C3 and e). we
proceed essentially as in [*] : we fix 03B8 > 10 and Z > 1, then we choose c and
ci, and for those values we seach a suitable co (if it exists), for this we have
to solve a quadratic equation and then to verify the conditions (5.1). From
(5.6), with the value of X given by (5.9) and (5.10), we deduce a suitable
value for C.

The results are given in fig. 1 and 2 in the case of multiplicatively
independent numbers. These results improve those of [*], for example in
figure 1 for Z = 1 and 8 = 14, we got C = 530 and now we have C = 258.

In fig. 1 we fix Z = 1, 8 varies, and we display the optimal value of C
together with the corresponding choices of c, ci and Co.

figure 1 : multiplicatively independent numbers, Z = 1.

In fig. 2, both Z and 03B8 vary and we display the optimal value of CZ-3 , .
At the end of each row we display the range for (c, ci) corresponding to the
given row. For instance, at the end of the first row in fig. 2 the indication



means that for Z = 1 and for the given values of 03B8 (with 10  e  100) we
always choose c and ci in these intervals.

figure 2 : multiplicatively independent numbers, values of C/Z3. .

Figures 3 and 4 correspond respectively to figures 1 and 2 for multipli-
catively dependent numbers.

figure 3 : dependent numbers, Z = 1.

figure 4 : multiplicatively dependent numbers, values of C /Z3 if 03B8 > 12.

7. A consequence of the main result

With the notations and hypotheses of §5.1, we shall deduce from theorem
5.11 :

COROLLARY 7.1.2014 Take f = 2e, 8 = 11 and suppose that A is not zero
then



Proof .-We suppose ~A~  exp{-1000 U}. This implies Log B > 10.8 :
by Liouville estimate, if Log B  10.8 then

with 2DBa2 +Log B+D   98100Da2, and Da2  

Thus G > 14.24.

We get the result with the constant C by dividing the interval [1, oo[ in
small intervals like in [*]. We check condition (5.5) in the worst case, namely
with e and 03C3 replaced by 1.

The numerical values we obtain are displayed in fig. 5 below. For instance,
in the range 1  Z  2, one can choose ci = 2.26, c = 6.65, (and co = 89.21,
a value which is not given in the table), and one gets C = 1000.

figure 5 : values of C in intervals on Z, 8 > 11. .

8. Proof of corollary 1.1

We assume that the hypotheses of corollary 1.1 are fulfilled, and we shall
prove the conclusion by considering several cases. As we may, we assume
a1b1 ~ a2b2. .

a) Assume Log B  10.7. Then we prove the estimate in corollary 1.1
with the constant 268 instead of 270. For this we use lemma 2.2 of [*] :

Since Log B  10.7 we have 2B + Log 2 + Log B  268(7.5 + Log B ) 2,
hence 2DBa2 + DLog 2 + Log B  268Da2 (7.5 + Log B)2, which proves
our claim.

b) From now on we assume Log B > 10.7. There is no loss of generality
to assume that bI and b2 are relatively prime. We are going to use theorem
5.11 with



In [*] we proved that li ~ exp( -Dai) for i = 1, 2 and 211 > exp(-Da2
c) Assume l1 ~ 1 /22.3. In this case we take Z = 1,

and then we may choose G = 5 + Log B + Log Log 2B.

We prove the inequality of corollary 1.1. We use the estimates of §6 with
admissible choices of 8.

Put F = (5 + Log B + Log Log 2B ) / ( 7. 5 + Log B). .
To prove our claim we consider the following seven cases :

10. 7  Log B  14.3, then B > 18, C = 264, F  1.01 and F2 C  270,
14.3  Log B  16.25, then 8 > 22, C = 262, F  1.014 and F2 C  270,

16.25 f Log B  19.1, then 8 > 24, C = 260, F  1.0183 and F2C  270,

19.1  Log B  20.95, then 8 > 27, C = 259, F  1.021 and F2C  270,

20.95  Log B  24.77, then ? > 29, C = 258, F  1.0229 and F2 C  270,

24.77 ~ Log B  30.6, then 8 > 33, C = 257, F  1.0248 and F2 C  270,
30.6  Log B, then 8 > 39, C = 256, F  1.026 and F2 C  270.

d) Now on we assume 12 ~ l1  1/22.3. With the present notations

so that we have Dai > 3.1. Looking again at Liouville estimate, we see that
if Log B  11.97 then

Hence we may suppose Log B > 11.97. Besides one may choose

Thus G > 20.6 and

We take Z = min{G/l1, Zo}. We obviously have



Now, from corollary 7.1 we deduce

If G z 11Zo then Z = Zo > 3.1,

and we have proved our claim.

Whereas if G  llZo then by the results of figure 5 :
. if Z  3 then C = 1330 and 1330G2 /Z3  1330 ~ 113 /20.6,
. if Z > 3 then C = 1770 and 1770G2 /Z3  1770 113 /33,
and the result follows in each case.

Now the proof of corollary 1.1 is complete.

9. Examples

a) class number one

J. M. Cherubini and R. V. Wallisser [C.W.], applied an estimate of linear
forms in logarithms taken from [M. W. 1] to compute all the imaginary
quadratic fields of class number one.

The linear form which is used by these authors is

Put al - 5 + 2~, a2 - 2 + B/3; then D = 4, l1 = 2.29243... and 12 =
1.31695 ... We take a1 = l1 /2, a2 = 12 /2, f = 1, Z = Log 2e, ~ = = 1

and G = 1 + Log 4A + Log Log 8A.
If we choose co = 403.51,ci = 2.91 and c = 16.58 then the same

computation than in §6 gives C = 3455.5. This leads to d > -5.1 . 1017,
whereas the lower bound of [M. W. 1] gave only d > -1034, and we got
d > -2.5 . 1019 in [*].

b) quotient of two pure powers
Let x, y, p, q be positive rational integers with xp ~ yq. Let X, Y, $

be positive real numbers satisfying X > 
max ~ p, q ~ We prove that



If x and y are multiplicatively dependent the result is obvious (see the end
of §5 of [*]). Now we assume that x and y are multiplicatively independent
and consider two cases :

i) If Log B  13.8, we have y-q > exp(-BLog Y, and the
assumption Log B  13.8 implies B  2072(8 + Log B)2. Now we have

Therefore, we get the conclusion.

ii) If Log B > 12.33 we use theorem 5.11 with Z = ~ = f = D = 1. 
We choose now G = 1.0021(8 + Log B),9 = 21.86,co = 212.77,

ci = 1.99, c = 10.02 and find C = 1896 and the result follows easily.

c) ray class field

In this section we present a work of J. Cougnard and V. Fleckinger which
uses some linear form in two logarithms. They consider the ray class field

K, extension of k = Q(. J - 19), associated to ?~7, the principal ideal of k

generated by 1 + 2 . They show that the ring of integers OK
of the field K does not have any basis over Ok composed of the powers of
some element of OK .

They reduce this problem, via the study of the integers points of some

elliptic curve, to the computation of the integers for which a certain linear
form in two logarithms is very small. Namely, they want to find all the
rational integers b1 and b2 such that

where B = ~b2 ~ ~ and c~i is a real root of the polynomial

P = X 9 -1SX8 -38X7 -179Xs -~41X 5 -237X4 -f-307X3 -120X2 -f-19X -1,

and ae2 a root of the reciprocal polynomial with respect to P, with

l1 = Log cfi = 2.92112 ... 12 = Log a2 = 2.24999....

Using Baker’s estimate they prove B  10212. Here, we apply theorem 5.11
to this linear form.



Firstly, using the method of computation of the measure of a polynomial
described in [CMP], we see that M(P)  344.56, so that

We put D = 9, f - 5.843, a1 = fll/D,a2 = = 0.852,
Z = 1.97 (it is easy to verify that this value of Z satisfies the inequali-
ties Z  min{Da1, Da2, Log (e,f)}). We have G’  0.2D so that we can
take G = 1 + Log B + Log Log 2B. .

We suppose Log B > 23.17, then G > 27 and 03B8 > 120. Applying theorem
5.11 we find the constant C  1235 (for co = 140.56, c1 - 2.58, c = 9.11).
This gives

10. The case of a root of unity

We consider here the special case when one of the numbers c~, is a root
of unity. We choose the following notations ( is a root of unity, ( = e~"~’~‘,
and a is a non zero algebraic number.
We put D = (t~(~, a) : Q]. We choose log ( = and log a is any non-

zero determination of the logarithm of a, 1 = (log al. As before ,Q = b1/b2 is
a rational number, Z, 0  bl,b2,(bl,b2) = 1 such that

does not vanish. We put B = b2 ~, a’ = h(a) [notice that It(~’) = 0].
We denote by a, G, G’, Z, 8, f, p positive real numbers which satisfy the

following relations :

With the present notations, we have 91 = 8 fl/Z, 82 = 8 



We define as before and put now cr = h(a)/2a (so that 0  ~  1/2),
and

Now suppose that Co, c1, c, XO, Xl, , X2 , X C, r~ *, ~C, p, p*, £ , go are positive real
numbers which satisfy the hypotheses (5.1) to (5.9), and replace (5.10) by

THEOREM 10.1. Under the hypotheses of this paragraph, zve have

where C’ = Cpr/m.

Proof of theorem 10.1.

We suppose that ~A~  
~ 

and we show that this leads to a

contradiction. We first remark that this implies a ~ = 1. Indeed, if 1

then by Liouville inequality,

and h(lal)  h(a), which contradicts  e-CU. Thus D > 2. Remark
also that now we have a" = 0.

An easy proof (given at the end of §5 of [*]) shows that a is not a root
of unity.

Then the proof of theorem 10.1 follows exactly that of theorem 5.11,
except at the very end, when we apply the zero-estimate.

Recall that X2 = and Xl = X - X2. We define the integers U2
and V2 by

and U1, V1 by

[recall that Mi = + 0.5 and Mi = + ~.5~.



Since a is not a root of unity, we have

thus the condition

is implied by (5.10)’.
To conclude, we have to verify that (2Ui + 1 ) ( 2 V1 +1) > Lo. We have

and the conclusion follows again from (5.10)’.
This completes the proof of theorem 10.1. .

11. Numerical examples for theorem 10.1

We keep the notations and hypotheses of §10 and we give suitable values
for the constant C’. The results are given in figures 6, 7 and 8 below.

In figure 6 we fix m = 1, f varies, and we give a value of C’ f and the
corresponding choices of co,ci and c.

In figure 7, we suppose f > 5 and m = 1, and we give the values of the
product 5C’ for D in the range 2 ~ D  10.

Figure 8 displays some cases with m ~ 2 and f = 5.

figure 6 : case of a root of unity and Z = 1.



figure 7 : case of a root of unity, m = Z = 1, 2  D  11

figure 8 : some examples with m > 1 and f = 5

12. A consequence of theorem 10.1.

PROPOSITION 12.1.2014 Under the hypotheses of theorem 10.1, we have

For f > 2 e we can take C’ = 2545 (choose co = 15, ci = 1.53, c = 2.32).
The estimate of Euler function given in the appendix enables us to

get G’ /D  0.76 (the worst case is D = 2 and m = 3). Thus we can
always take G = 1.35 + Log B + Log Log 2B. It is easy to verify that
G  1.00212(6.5 + Log B). Hence the result.

13. A corollary of theorem 10.1

COROLLARY 13.1.2014 Let a be an algebraic number of degree D, b a
positive rational integer and ~ a root of unity of order m.

Let a = suppose f > then



The proof is a straightforward application of the numerical estimates of
§12.

14. An example of a measure of irrationality

Let a = (3 + then 2a2 - 3a + 2 = 0 and a = e=e with

We want to get a lower bound for ~2014 2014 2014~, where p and q are rational
7T q

integers.
One verifies that the number

has the following expansion as continued fraction

This implies

We put A = ip03C0-03B8iq and apply theorem 10.1 with D = 2, h(a) = (Log 2)/2,
m = l,/i = ,r,~ = ~,/ = 1/~ = 1.383..,7 = a’ = Log2/2,e’~ = Log (e f),
since ?’/2 ~ (1 + Log (0.5 + 1.22/?r))/2  0.45 we can take

then G > 68.9 and we get (take co = 67.26, ci = 1.81, c = 6.68, then
C’f = 4179).

PROPOSITION . The number ~ = Arccos (3/4)/~r has the following
measure of irrationality



Remark : Our measure of irrationality of A is not the best known. Baker
proved that there exists a constant c such that ~a > q-~ for q > 2. But
the best known estimate of linear form of logarithms with Baker’s method
which comes from [B G M M S] gives

so that our result is better for Log q  1010 . .

Added in ~roof . Our main result, theorem 5.11, is not very good when
one of the logarithms is very small. A remedy is to introduce a new

parameter q = al bl/( a2b2). This leads to several minor changes which
concern essentially the conditions (5.6.i) and (5.6.ii) : for example,
the term Log (2e) in (5.6.i) is replaced by Log((l + q)e).
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APPENDIX

A lower bound for the Euler function
For the proof of the proposition 12.1, we have used the following estimate

PROPOSITION A.I.2014 For all positive rational integers one has

Suppose that the decomposition of n in prime factors is n = pi ... 
with pi  ...  Pk, then

Put A = 1 - Log 4/Log 5, then p; /(p; - 1 )  5/4 ~ p1 for k ~ 3. Thus,

so that, n  (2.341~p(n))1/~1-~>  2.685~(n)l~lsl.

Remark . It is clear that, for any 8 > 1, the method used to prove the
proposition permits to compute a sharp constant C8 such that n ~ ce 
for all n ; for example

n  3.046 . . ~p(n)1.1.
In fact our proof shows that the maximum value of the quotient 
is reached for the integer 2.3.5.... ~~, where ~p~ is the largest prime p such
that p/(p - 1)  pl-1/e.

Moreover, this method can also be applied to many multiplicative arith-
metical functions.

COROLLARY A2. - If a number field of degree D contains a root of unity
of order k then

The estimate n « ~p(n)1+~, for any fixed e > 0, is not the best possible
for n large : the following result holds.



PROPOSITION A3. - For D > 2 we define the function

Then, for any ~ > 0, there exists an integer 2 such that, for all
D > Do, we have

where C is Euler’s constant (so that eC = 1.78107...). Moreover,

Inequality (A.1) is an easy consequence of inequality (3.42) in theorem
15 of [RS], namely

Indeed this inequality is more precise than the first estimate of proposition
A3 and permits to compute admissible values for Do(e). For example :

Proof of (A.4) : Consider D > e34.1 and N > 1 such that p(N) = D. Denote
by w(N) the number of different prime factors of N.

If weN)  15 then Log LogN > 3.71, Log Log D > 3.66 and (A.3) gives

So that N  1.97 . D. Log Log N  D2l/20, since 1.97Log LogN  N1I20 ,
This implies

and inequality (A.4) follows easily.
If  15 then N  7.06. D and (A.4) is also true.
Another special case of (A.I) is

The proof of (A.5) is similar to that of (A.4) : Consider integers D > 48
and N > 1 such that p(N) = D. .
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Ifw(N) > 5 then N ~ 2  3  5  7  11 = 2310 and d >_480. Then
(A.3) implies

By proposition A.I, we have N  2.7 x D1 ~1s1 ~ D1.148 ~ since D > 480 ; so
that

and inequality (A.4) follows in this case.

 5 then ~V  2014D and (A.4) is also true.~ 

0

Now, we prove (A.2). From (A.5) we have only to consider D  48. Let
D  48 and suppose that = ~V.

Since D  48, we have ~(~V)  3. Thus ~V  2014D, so that (A.2) is true
for D ~ 12. 

~ 

4

Finally, if D ~ 12 then a direct study shows that (A.2) is still true.


