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Jump functions of a real interval to a Banach space

JEAN JACQUES MOREAU(1)

Annales Faculte des Sciences de Toulouse

Les fonctions a variation localement bornée dans un intervalle
reel I, , a valeurs dans un espace de Banach X, forment 1’espace vectoriel
Ibv(I,X), sur lequel une topologie est définie par la famille de semi-normes
f ~--~ var( f; a, b), a E I, b E I. Par definition, les fonction de saut sont les
elements de Fadherence de 1’espace des fonctions localement en escalier.
On construit la decomposition de toute f E Ibv(I, X) en somme d’une
fonction de saut et d’une fonction continue. Entre autres propriétés, on
etudie comment cette decomposition se réflète sur la fonction variation
indefinie Vf de f. . Le lien avec la decomposition d’une mesure réelle sur
I en somme d’une mesure diffuse et d’une mesure atomique est explicite.

ABSTRACT.- On the space Ibv(I, X) of the functions of a real interval I to
a Banach space X, with locally bounded variation, a topology is defined by
the semi-norms f t2014~ var( f a, b), a E I, b E I. By definition jump functions
are the elements of the closure of the space of local step functions. The
decomposition of every f E Ibv(l, X) into the sum of a jump function and
a continuous element of lbv(I, X ) is constructed. Among other properties,
it is studied how this decomposition is reflected on the real function Yf, ,
the indefinite variation of f. The connection of what precedes with the
decomposition of a real measure into the sum of a diffuse measure and an
atomic measure is investigated.

(1) Laboratoire de Mecanique generale des Milieux Continus U.S.T.L., 34060 Montpellier
cedex, France.



1. Introduction

Real functions of a real variable with bounded variation are a standard to-

pic. Elementarily, a function belongs to this class if and only if it equals the
difference of two nondecreasing real functions. In that context, the decom-
position of any element of the class into the sum of a continuous component
and an element of the special sort called a jump function is easily derived.

From the real valued case, the concept of bounded variation may be
extended to functions with values in R~ by referring to their components.
Actually, many properties discovered in that way are found, through the
use of different techniques, to hold also for functions, with values in an
arbitrary Banach space X. This is the setting of the present paper, devoted
to extending the above decomposition property and to developing some of
its topological features.

The author’s primary motivation lies in Nonsmooth Dynamics, i.e. the

study of Mechanical Systems whose motion is not regular enough for
accelerations to exist. The velocity is only assumed to be a vector function
of time with locally bounded variation; this allows for a vector measure, on
the considered time interval, to play the role of acceleration. Accordingly,
the system dynamics is governed by a mesure differential equation or, if such
mechanical effect as unilateral contact, possibly with Coulomb friction, are
taken into account, a measure differential inclusion [6]. On this purpose, a
chapter of a recent book [5] has been devoted to exposing some old and new
properties of the (locally) b.v. functions of a real interval to a Banach space
X and of the associated vector measures. The present paper is intended to

complement this text.

Let I denote a real interval, not empty nor reduced to a singleton. By
f E Ibv(I,X) it is meant that f is a function of I to X with locally bounded
variation, i.e. it has bounded variation on every compact subinterval of I

(in [2], this is called a function with finite variation). Trivial inequalities
concerning variations imply that l bv(I, X ) is a vector space and that, for
every compact subinterval [a, b] of I, the mapping var( f; a, b) is a

semi-norm on this space. If [a, b] ranges through the totality of the compact
subintervals of I, or equivalently through some increasing sequence of such
subintervals with union equal to I, the collection of the corresponding semi-
norms defines on lbv(l’, X ) a (non Hausdorff) locally convex topology that



we shall call the variation topology.
The closure in this topology equals the subspace of constants ;

by going to the quotient, one obtains a metrizable locally convex Hausdorff
space. Equivalently, we shall once for all choose in I a reference point, say
p, and restrict ourselves to 1 bvo (I, X), namely the subspace of lbv(I, X)
consisting of functions which vanish at point p. This linear space will be
shown in Sec. 2 to be complete in the variation topology.

Denoting the Banach norm in X, one obviously has, for every
f E lbvo (I, X ) and every [a, b] C I containing p,

Therefore, in the space 1 bvo (I, X ), the variation topology is stronger than
the topology of the uniform convergence on compact subsets of I.

One denotes by bv(I, X ) the subspace of Ibv(I,X) constituted by the
functions whose total variation on I is finite. Its subspace bvo (I, X ), consis-
ting of the elements which vanish at point p, is a Banach space in the norm
f H var ( f ; I ) .

By writing s E Ist(I, X ), we shall mean that s is a local step function in
the following sense : there exists a locally finite partition of the interval I
into subintervals of any sort (some of them possibly reduced to singletons),
on each member of which s equals a constant. Such functions make a linear
subspace of lbv(I, X ), easily proved to be dense relative to the topology
of uniform convergence on the compact subsets of I. But, in the variation
topology, the closure of lst(I, X ) is a proper subspace of lbv(I, X ), whose
elements, by definition, are the jump functions. . A series of propositions
established in Sec. 3 below yield the proof of :

THEOREM 1.2014 Every f E lbv(I, X ) possesses a unique decomposition
into the sum of a jump function vanishing at point p, say Jo( f ), and a
continuous element of lbv(I, X ), say C( f ). The mappings Jo and Care
linear projectors of lbv(I, X ) into itself, continuous in the variation topology.
On may call Jo( f ) the jump component of f in lbvo(I, X ). Changing the

reference point p results in adding constants to Jo ( f ) and e(f).
With every f E lbv(I, X ), there is associated its variation function,

vanishing at point p, namely the nondecreasing element V f of Ibvo(I, R)
defined as



We shall establish in Sec. 4 : _

THEOREM 2. The nonlinear mapping f H Vf is continuous of
lbv(I, X ) to lbvo(I, R) in the respective variation topologies of these spaces.

THEOREM 3. If the notations C and Jo are also applied to elements

of lbv(I, R) one has = C(Vf) and = .Io(Vf).

Theorems 1 and 3 clearly yield Vf = + so, for every ~a, b~ C I ,

Actually, this equality will in the sequel be established as Proposition 3.2,
prior to proving Theorem 3.

Theorem 3 also implies that an element f of lbv(I, X ) is a jump function
if and only if the same is true for Vf. In fact, if Vf is a jump function,
C(V f) = equals a constant (in fact zero), so e(f) is a constant,

making of f a jump function. Conversely, if f is a jump function, e(f) is a
constant, so C(Vf) equals zero, making of V~ a jump function.

Symmetrically, f is continuous if and only if the same is true for VI; ;
this is elementarily established in [5] and will be used in the sequel prior to

proving Theorem 3.

The most common reason one has for being interested in lbv functions

(letting alone Nonsmooth Dynamics) lies in the fact that, with every
f E l bv(I, X ), an X-valued measure on the interval I is associated, usually
denoted by df or D f , called the differential measure (or the Stieltjes
measure) of f A connection is naturally expected between Theorem 1 and
a property which, at least in the real-valued case, is classical, namely the

decomposition of a measure into the sum of two components, on of which
is diffuse and the other atomic.

Actually, properties of both sorts cannot be strictly equivalent, since the

correspondence between X-valued measures and elements of Ibv(I,X) is not
one-to-one. In fact, if an lbv function f is discontinuous at some point a,
the measure df is expected to exhibit at this point an atom with mass equal
to the total jump of f i.e. the diference between the right-limit f +(a) and
the left-limit f -(a). But the very value that f takes at point a bears non
relationship with df. .

The diferential measures of the elements of l bv(I, X) are characterized
by the following property, which, for infinite-dimensional X, makes of them



a special class of vector measures : they have bounded variation (concerning
this concept, see e.g. [3]) on every compact subinterval of I. In [2], such
vector measures are said to have finite variation ; the corresponding concept
in Bourbaki’s construction of measure theory ~1~ is that of a majorable
vector measure. This property implies the existence of the nonnegative real
measure the modulus measure of df (also called the variation measure
or the absolute value of df ). In Sec. 5, we shall prove :

THEOREM 4. - An element f of lbv(I, X ) is a jump functio n if and only
if the nonnegative real measure |df| is atomic.

Equivalently, the nonnegative real measure dVf is atomic.

2. The variation topology

At the first stage, let us consider functions whose total variation on I is
finite.

PROPOSITION 2.1. The vector space bv0(I,X) is a Banach space in

the norm : = var ( f, I).

Proo f . Let ( f n ) be a Cauchy sequence in this norm. There exists M > 0
such that

In view of inequality (1.1), ( f n ) is also a Cauchy sequence relative to the
supremum norm (~ . ~~ ~, so it converges in the latter norm to some function
f~ : I -~ X, with = 0.

For every finite ordered set of points of I, say S To  Tl  ...  Tv , and

every f : I --~ X, let us put the notation

Since, at every point T= of S, the element of X equals the limit of
in norm, one has

Due to (2.1), this is majorized by M whatever is S, hence foo E bvo(I, X ).



Finally, let us prove that f n converges to foo in norm. Let

6 > 0 ; in view of the assumed Cauchy property, there exists n E N such
that

hence, for every p > n,

One readily checks that, for fixed S, the mapping f - V ( f S) .is a semi-
norm. Therefore

By letting p tend to +00, one concludes V(/n - S)  ~ for every finite
sequence 5’, hence var ( f n - foo, I)  ~

Let us now drop the assumption of finite total variation on I. The

variation topology on lbvo(I, X ) is defined by the collection of semi-norms
f H Nk(f) : = var ( f Kk ), where (Kk) denotes a nondecreasing sequence
of compact subintervals whose union equals I. In addition, on may assume
that all intervals Kk are large enough to contain g. Therefore, the resulting
topology is metrizable and Hausdorff.

PROPOSITION 2.2.2014 The variation topology makes of lbvo(I, X ) a com-
plete metrizable locally convex vector space (i. e. a Fréchet space).

Proof . - Let ( f n ) be a Cauchy sequence in t bvo (I, X ) By definition, for
every U, a neighborhood of the origin in this space, there exists n E N such
that

By taking as U the semi-ball

with k E N and e > 0, this yields the implication

Therefore the restrictions of the functions ( fn) to Kk make a Cauchy
sequence in bvo(Kk,X), In view of Prop. 2.1, this sequence converges to
some element f k of the latter space. If the same construction is effected for



another interval with k’ > k, the resulting function fk’ : Kk~ -~ X is
an extension of f k. Inductively, a function f is constructed on the whole of
I, which constitutes the limit of the sequence ( f n ) in the variation topology.
D

3. Construction of the jump component

Without assuming that I is compact, let us first consider the case where
f : I --~ X has finite total variation on the whole interval. As before, a
reference point (} is chosen in I. With every e E I, let us associate the
single-step function se : I -~ X defined by the following conditions.

The function se verifies

and admits e as its unique possible discontinuity point, with the same jumps
as f at this point, i. e.

Here, the notations + and - refer to the right-limit and the left-limit of the
considered functions at the considered point. By convention, f -(e) = f (e)
if the point e of ~ happens to be the left end of this interval and f "~’(e) = f (e)
if it happens to be the right end.

Clearly, se E bvo(I, X ); ; it equals the zero constant if and only if f is
continuous at point e.

For every finite subset F of I, let us consider the step function

Call ~’ the totality of the finite subsets of I. The inclusion ordering makes
of 7 a directed set [4] and one readily checks that the mapping

of (~’, ~) to R is nondecreasing and bounded by var ( f, I). Hence this
mapping is a convergent net of real numbers.



Let us show that the net F - sF is Cauchy in the Banach norm of
bvo (I, X ). Let 6 > 0; due to the convergence of the net (3.4) in R, there
exists F such that, for every F’ containing F, one has

this is the sum of two step functions with disjoint dicontinuity sets, therefore

which, in view of (3.5) and (3.6), yields

By the triangle inequality, there comes out that, for every F’ and F" in 7,
both containing F, one has

this is the Cauchy property for the net F - sF in the Banach space
bvo(I,X). It secures the existence in this space of the element

If, more generally than above, the given function f belongs to lbv(I, X ),
one may cover I with a nondecreasing sequence of compact subintervals Kk,
all containing ~o. The preceding construction will be applied to the restriction
of f to Kk, yielding as the limit in (3.8) some function j f E bvo(Kk, X ).
Observe that the single-step function se vanishes throughout Kk if the

element e of I is not a discontinuity point of the restriction of f to Kk. .
When Kk is replaced by a larger subinterval Kk of I, the step function
s F previously considered is replaced by some extension of it to For F

ranging in ~’, the limit found in is an extension of the function

precedingly obtained.

By this process, an element j f of lbvo(I, X ) is inductively defined, equal
to the limit of the net F H sF in this Frechet space.



DEFINITION 3.1. For every f E Ibv(1,X) (resp. f E 
the function jf constructed above is called the jump component of f in

X ) (resp . in 000(1, X )~.

Clearly, when the reference point o is changed, the function j f is altered

by the addition of a constant. .

PROPOSITION 3.2. - The function ci = f - j f is continuous.

For every [a, b~ C I, one has

Proof. - It is enough to consider the case f E bv ( I , X ) . Let t E I ; the
part of F consisting of the finite subsets of I which include t is cofinal in

(~’, C). Therefore in (3.8), one may indifferently impose on F the condition
of including t. Under this condition, the function f - sF is continuous at t,
since by construction f - st is so, as well as all the functions se for e ~ t.
Now, continuity at point t is preserved when taking the limit (3.8), because
the on bvo majorizes the norm of uniform convergence. This
proves the first assertion.

In order to establish (3.9), we shall first show that, for every g E bv(I, X)
and every single-step function se such that g - se is continuous at e, one

has

In fact, supposing e E [a, b] (otherwise the equalities that follow are trivial)
one has, in view of [5], Prop. 4.3,

Now, since se equals a constant in [a, t], the two functions g and g - se have
the same variation on this interval, while

This proves that (3.10) holds when [a, b] is replaced by [a, e] ; similar

reasoning applies to ~e, b~ and (3.10) follows by addition.

Applying (3.10) inductively, one sees that, for every finite subset F of I,



Due to the definition of j f in (3.8) and to the continuity of the mapping
g - var (g; a, b) in the variation topology, this yields equality (3.9). 0

PROPOSITION 3.3.2014 The mapping Jo : f ~--~ j f of Ibv(I,X) to

lbvo(I,X) is linear, idempotent and continuous in the variation topology.

Proof . It is enough to consider the bv case. From (3.1), (3.2) and (3.3)
it follows that the mapping f ~ se is linear. By addition, the same is true
for f H s F . Linearity is preserved under the process of going to the limit,
used in order to construct j f.

Equality (3.9) implies I )  var( f, I), securing the continuity of
Jo. That Jo is idempotent results from Prop. 3.2 ; in fact, when applied to a
continuous function such as c f, the process generating the jump component
clearly yields the zero constant. D

PROPOSITION 3.4. - The range of Jo is a closed subspace of lbv(I, X )
in the variation topology. It equals the closure of the set of the step functions
vanishing at point ~O.

The mapping id - Jo f - C f is a linear projector, continuous in the
same topology. Its range equals the totality of the elements of lbv(I, X ) which
are continuous throughout I.

Proof. - Every element g of the range of Jo equals the limit of a net
(equivalently a sequence, since we are working in metrizable spaces) of
step functions vanishing at g. In fact, as Jo is idempotent, g equals the
corresponding jg , which, by construction, equals such a limit.

That every continuous element of t bv( I, X ) belongs to the range of
id - Jo follows from the construction of the jump component : in fact this
construction yields the zero constant when performed upon a continuous
function. D

4. Variation functions

Theorem 2, which states the continuity of the mapping f ~--~ V f in the
respective variation topologies of l bvo (I, X ) and l bvo (I, R) is a consequence
of the following. Incidentally, the vanishing of the considered functions at
point {] is not needed here.



PROPOSITION 4.1. Let f and g belong to lbv(I, X), with v and w as
respective variation functions. Then, for every ~a, b~ C I, one has

Proof. - Let E > 0 ; there exists a finite sequence of points of ~a, b~, say
To  Tl  ...  Tn, such that

For every i E (1, 2,..., n~, there exist a~ and ~3= in [0, ~/2n~ and a sequence

where the integer p depends on i, such that

Then

Now

Therefore, the expression in (4.2) is majorized by

Finally, since ê/2n,



As e is arbitrary, this establishes the expected inequality. 0

To prove Theorem 3, there now remains to investigate how he decompo-
sition f = j f ~- c f is reflected on a decomposition of the variation function
Vf : : I - R (vanishing at point ). Denote by Vj and Vc the respective
variation functions (vanishing at point and c f From equality (3.9)
it follows that

An element of lbv(I, X ) is continuous if and only if its variation function
is continuous [5] ; thus Vc is continuous. Furthermore, Vy is a real jump
function. In fact, j f equals the limit, in the variation topology, of a sequence
of X - valued step functions. The corresponding variation functions are real

step functions which, due to Proposition 4.1, converge to Vy in the variation
topology. Using Proposition 3.3 with X = R, one concludes that Vc and Vj
respectively equal the continuous component and the jump component of

Vf .

, 

5. Differential measures

As recalled in the Introduction, with every f E lbv(I, X ) there is

associated its differential measure df, an X-valued measure on the interval
I. Characteristically, for every compact subinterval [a, b] of I, one has

Here again, it is agreed that, if the point b of I happens to be the right end of
this interval, then by convention f +(b) = f (b); symmetrically, f -(a) = f (a)
if a is the left end of I.

In particular, by taking as [a, b] a singleton ~a}, there comes out that

One thus observes that, when f is discontinuous at point a, the proper
value f (a) of the function bears no relationship with the measure df. .

Consequently, even if one agrees to treat as equivalent two functions which
differ only by a constant, the correspondence between f and df cannot be
one-to-one.



As standard sources concerning the theory of measures with values in a
Banach space, one may refer to 1 J , [2], [3]. The measure df introduced above
I~s the special property of being majorable in the sense of ~1J, i.e. in the

terminology of [2] and [3], this vector measure has finite variation on every
compact subinterval of I. This implies the existence of the nonnegative real
measure on I called in [3] the variation measure of df or, in [2] and [5], the
modulus measure of df. We shall denote it by It is naturally involved in
some inequalities, with the consequence that, in the sense of the ordering of
real measures, the differential measure of the variation function V f satisfies

It is established in [5] that, when f has aligned jumps, i.e. for every a E I
the value f(a) belongs to the line segment of X with endpoints f -(a) and
f+(a), then |df| = dVf (conversely, this equality implies jump alignment,
provided the Banach space X is strictly convez, i.e the triangle inequality
in this space holds as equality for flat triangles only).

The following is classical in the context of nonnegative real measures
on arbitrary spaces : such a measure is said diffuse if it yields zero as
the measure of every singleton. In contrast, the nonnegative measure is
said atomic if it equals the supremum of a collection of nonnegative point
measures. It is found that a nonnegative measure belongs to one of these
two classes if and only if it is singular relatively to every element of the
other. Furthermore, every nonnegative real measure leta itself be uniquely
decomposed into the sum of a diffuse measure and of an atomic measure.

Since f can differ from f - only at its discontinuity points, which form a
countable subset of I, one easily obtains : :

LEMMA 5.1.2014 For every f E Ibv(I,X) the difference f - f - (resp. the
difference f - f+) is a jump function.

This lemma allows one to restrict the proof of Theorem 4 to the case
where f = f -, so f trivially has aligned jumps, a circumstance which makes
Idfl = dVf. As observed in Introduction, Theorem 3 implies that f is a jump
function if and only if the same is true for VI; so we are reduced to the study
of the latter, a nondecreasing real function which, in the present case, is left-
continuous [5]. In particular, when the interval I is bounded from the right
and contains its right end, say r, the left-continuity of V f secures that dV f
has no atom at this point. Recall in addition that V~ has been assumed
to vanish at point e. Therefore, Vi may be recovered from dV’f trough the



following process, a special case of a construction investigated in detail in
[2] or [5].

Let us denote by M the linear space consisting of the real measures on
I with no atom at the possible right end of this interval. Let us call L the
linear operation associating with every element of M , say dw, the function
w : I --~ R defined as

One may check (see e.g. [2] or [5] ; a similar situation is also classically
met in Probability) that L is a linear bijection of M to the subspace W of
Ibvo(I, R) consisting of the left-continuous elements. Trivially w has aligned
jumps, so |dw| = dVw and, for every compact subinterval [a, b] of I,

This readily yields that, when W is endowed with the variation topology of
lbv(I, R) and M with the strong topology of the space of real measures, L
is bicontinuous.

By using these topologies, since Vw = L(dVw), one completes the proof
of Theorem 4 through the following remarks :

1° An element of W is a jump function if and only if it equals the sum
of a series of single-step functions.

2° An element w of W is a single-step function if and only if dw is a
point measure.

3° An element of M is an atomic measure if and only if it equals the
sum of a series of point measures.
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