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On the composition of nondegenerate quadratic forms
with an arbitrary index

JULIAN 0141AWRYNOWICZ(1) AND JAKUB REMBIELI0143SKI(2)

Annales Faculte des Sciences de Toulouse Vol. X, n01, 1989

On considère deux formes bilinéaires non dégénérées avec in-
dices et signatures quelconques : (a, b) S - symetrique et ( f g) v - symetrique
ou antisymetrique qui satisfont la condition (a,a)s ( f , 9)v = (af , a9)v ~
D ans le cas ou les deux indices sont zero et la forme ( f g) v est symétrique,
le probleme a ete resolu par A. HURWITZ (1923). On montre que la solu-
tion generale est liee aux algebres de CLIFFORD ainsi qu’à des structures
complexes et hermitiennes convenables.

ABSTRACT. - Two non-degenerate bilinear forms of arbitrary indices and
signatures are considered : (a, b) S - symmetric and ( f , g) jr - symmetric or
antisymmetric. The problem of determining all such forms which satisfy
the condition (a, a)s ( f , 9)v = (af, a9)v is solved. In the case where the
both indices are zero and ( f g)v is symmetric, the problem was solved by
A. HURWITZ (1923). The general solution is shown to be connected with
Clifford algebras as well as with suitable complex and hermitian structures.

Introduction

In 1923 there appeared a famous, posthumous paper by A. HURWITz [11]
solving the problem of determining all pairs of positive integers (n, p) and
all systems of real numbers :

such that the collection of bilinear forms F; = a03B1ckj03B1fk satisfies the condition
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In other words, he solved the problem of determining all pairs of n- and
p-dimensional positive-definite symmetric bilinear forms ( f, g) n and ( a, b)p ,
satisfying the condition (a, a)p ( f f)n = (a f, a f)n. It is obvious that the

solution has to rely upon a suitable choice of the multiplication (a, f ) = a f, ,
and so it determines the real structures constants (1) in connection with the
classification problem for real Clifford algebras (cf. e.g. [22], pp. 272-273).

Following several earlier attempts (cf. the papers by Adem [1-3] and
the list of references given there), including our own studies [14-17] on
geometrical realizations of possible multiplication schemes, we are going
to consider two real vector spaces S and V equipped with non-degenerate
pseudo-euclidean real scalar products ( , )5 and ( , ) v. Namely, for
f, g, fi E V ; a, b, c E S, and cx, (3 E R we suppose that :

In S and V we choose some bases and (ej), respectively, with a =
1,..., dim S = p ; k = 1,... dim I’ = n. We assume that p  n. For the
metrics :

by the postulates (3), we get :

Without any loss of generality we can chose the basis (faJ so that

The multiplication of elements of S by elements of V is defined as a mapping
S x V - V with the properties.

(i) (a+b)f = a f + b f and a( f + g ) = a f +ag for f , g E V and a, b E S’;

(ii) (a, a)s( f , g) jl = (af,ag)Bí (the generalized Hurwitz condition~ ;

(iii) there exists the unit element 60 in S with respect to the multipli-
cation : ~0f = f for f E V. .



By (i), the multiplication is an R-linear operation on V; ; by (iii), the
multiplication by a E R is identified with the multiplication by 

The product a f is uniquely determined by the multiplication scheme for
base vectors :

The scheme, together with the postulates (3), yields in particular the
following formulae for the real structure constants ( 1 ) :

i.e. they are simply the matrix elements for ~x treated as an R-linear
endomorphism of V. If the multiplication S x V -~ V does not leave invariant
proper subspaces of V, the corresponding pair (V, ~S’) is said to be irreducible.
In such a case we call (V, S) a pseudo-euclidean Hurwitz pair.

If the scalar products ( , ) S and ( , ) v are euclidean, it is sufficient
to consider the corresponding euclidean norms ~ ~S and [) ~ v, and to
replace the generalized Hurwitz condition (ii) by = which
is just the original Hurwitz condition (2). In this case the corresponding
euclidean Hurwitz pair is simply called a Hurwitz pair [14, 15].
Now the programme of our paper may be described so that we aim at

solving the following.
Problem. Determine all the pseudo-euclidean Hurwitz pairs effectively,

i.e. find all the admissible scalar products ( , )8 and ( , )v so that
they correspond to a pseudo-euclidean Hurwitz pair (V, S).

Denote by ind 5’ the index of ,5‘, that is, the number of naa = -1 in (6).
Set : .

r = p - s - 1, s = ind S, where p = dim S. (9)
Now we may say we have to determine all the admissible systems

(n, r, s, : j, k = 1,..., n ) , where n = dim V, ( 10)

being determined in (4), what gives rise to the calculation of the
structure constants (1) according to the formulae (8). All the results of
HURWITZ [11] are included in our results obtained in the case s = 0 and
[Kjk] symmetric and positively defined.

Let us describe briefly the earlier approaches to the problem. CHEVALLEY
[5] and LEE [21] used already Clifford algebras in a systematic way for stu-
dying composition of quadratic forms. The study of which quadratic forms



admit such compositions was done over arbitrary fields (of characteristic
not 2), independently of ADEM [1-3], by SHAPIRO [23-27]. The duality of
the quadratic structure on V compatible with C~’’’~~- action, where 
is the associated Clifford algebra, appears as a consequence of the general
theory due to FRÖLICH and Mc EVETT [8]. The monograph [9] on orthogonal
designs points out additional combinatorial aspects. Finally, more general
types of composition for sums of squares with their relation to algebraic
topology have recently been discussed in [27].

Thus, our rask may be described as a specification of some results
given in [24, 25, 9], namely of [9], pp. 220-227, in the sense of giving the
complete and effective determination and classification of all the admissible
metrics (4) corresponding to ( , ) sand ( , ) v. . Yet this statement

- shows that our approach goes outside the consideration of pseudo-euclidean
bilinear forms ( , )s and symmetric or anti-symmetric (skew-symmetric)
bilinear forms ( , ) v . The geometrical aspect of the problem, completely
abandoned in [24, 25, 9] gave rise to discussions of J. LAWRYNOWICz
with the unforgetable Professor A. ANDREOTTI, yielding a series of papers
[14-17] with a geometrical approach enabling an original, the simplest
foundation of the regular mapping theory within CLIFFORD analysis, and
also physical models connected with particle physics [16, 17], including
solitons (solitary waves) [12, 13, 28, 29]. As noticed by HESTENES [10],
p. 9, Clifford algebras "become vastly richer when given geometrical and/or
physical interpretations". Another geometrical approach has been proposed
in [6, 7].

Whithin our approach, from Lemmas 1 and 2 in Sec. 1 it follows that the
metric K in (4) can be expressed in terms of a function (r, s) --~ which
is double periodic, exactly (8, 8) - periodic. For the sake of convenience we
will use the notation (r, s) --~ The rest of that section is devoted in
each case to the characterization of the representation space, the calculation
of its dimension and the dimension of V, as well as the description of the
possibility of constructing the real and imaginary Majorana representations
of Clifford algebras (Theorem 1). The real (resp. imaginary) Majorana
representation of a Clifford algebra is defined by the choice of its
generators as real (resp. purely imaginary) matrices (cf. [23], p. 699). Thus
the section is of a preparatory character and is inerely a repetition of a
fragment of our previous paper [16].

After these preliminaries we can concentrate, in Section 2, on determining



all the admissible systems

(n~.P~~)~ 1 ~P~ ~ ~ 8, (11)

where k and ko are integers, and k ~ 0, as well as the corresponding metric
03BA (Theorem 2). The formulae for 03BA in an arbitrary basis (ej) of V appear
to be pretty complicated, so it is natural to simplify them by choosing a
suitable basis. Therefore in Section 3 we prove that the basis (ej) be chosen
so that

where In and I(1/2)n stand for the identity n x n - and ! n x 2 n matrices,
respectively (in Theorem 1 it is stated that, except for the trivial case n = 1,
n has always to be even). Theorem 3, in addition to this statement, gives
a complete and effective classification of the possibilities in ( 12) in terrns of
(r, s), including the cases where no solution exists.

Finally, in Section 4 we oberve that r~ generates some complex and
hermitian structures, and this gives rise to the establishment of a natural
pairing of the symmetric and antisymmetric cases (Theorem 4). The reason
for calling Lemma 3, the key lemma for Theorem 4, the principle of triality,
is motivated by its analogy to the principle of triality due to Cartan ([4],
pp. 119-120) and its extensions ([22], pp. 435-462, [6], [7] ). The principle
seems quite important in physics, for distance in the Kaluza-Klein theories
[18].

The formulae expressing all the admissible systems (10) and their natural
pairing have several symmetries which are not too easy to be observed
without writing explicitly the corresponding matrix transformation, drawing
suitable coloured schemes, and giving tables. These has been published as
a separate paper [18]. .

1. Classification according to the admissible pairs (n, p)

The study of a pseudo-euclidean Hurwitz pair (V, S) can be a priori given
without or with the use of the bases of V and S ; in the latter case e.g. in the
spirit of [20]. There are three reasons why we are prefer the first approach.
Firstly, the paper is planned as a natural continuation of Hurwitz’s work [11]
written in the matrix notation. Secondly, by choosing the first approach we



avoid introducing many notions, unnecessary for final results, and simplify
essentially the formulae obtained, e.g. (23) and (30) below. Thirdly, the
results seem to be of some interest to theoretical physicists (cf. ~17~ ) what
motivates additionally the use of the matrix language.

Let us pass to the matrix notation for the real structure constants ( 1 ) :

LEMMA 1. Given a pseudo-eucliden Hurwitz pair (V, S), the ma-
trices 03B303B1, introduced in (14), are uniquely determined, up to an orthogonal
transformation 0 E 0(n~, by the conditions (1.~~ and :

where In stands for the identity n x n-matrix.

Proof. - We rewrite the generalized Hurwitz condition (ii) in the coor-
dinate form.

We have :

Hence, by (8), the property ( i i ) becomes :

or, equivalently,

In the matrix notation (13) the latter relation reads :



Now we observe that the R-linearity of E« as an endomorphism of V,
together with the relations (7) and (19), is equivalent to the conditions
(i) and (ii) which are required for the chosen multiplication. Besides, (19)
yields the invertibility of Ca. Let us fix an arbitrary integer t E ~l, ... ,p}.
Introducing the matrices fa, a ~ t, determined by (14), we arrive at the
system (15) - (17), where = being chosen diagonal as in
(6). Since ~tt = 1 or - 1, we get the system (14) - (18), equivalent to the
original system of the equations (7), (13), (14), and (19). Since the Hurwitz
pair (V, S) is given, the real structure constants (8) are uniquely defined,
up to an orthogonal transformation 0 E O(n), and this, by (13) and (14),
yields the uniqueness (in the same sense) of the matrices fa, a = 1,... , p;
a ~ t. Thus the proof is completed.
We see et once that ~a are generators of a real CLIFFORD algebra. The

precise result reads as follows : :

LEMMA 2. - Given a pseudo-euclidean Hurwitz pair (V, S), the matrice3
~a satisfying the condition$ (1.~~ - (18) are generators of a real Clifford al-
gebra with (r, s) determined by the signature of n := ~~«a) and by (9~.
These generators are chosen in the (imaginary) Majorana representation.
Conversely, any pseudo-euclidean Hurwitz pair (V, S) is a geometrical rea-
lization of a real Clifford algebra , and the relationship is given by the
conditions (1,~~ - (18~; (r, s) being determined by the signature of ~ and by
(9).

Proof. - The first conclusion follows from Lemma 1, especially from
the conditions (17) and (18), if we take into account (9). The second
conclusion is a consequence of (15) and (16). The third one is established
due to the uniqueness, up to an orthogonal transformation 0 E 0 (n), of fa,
a = 1,... , p; a ~ t, for any fixed t E ~ 1, ... , p~ ; the uniqueness being also
asserted in the same lemma.

By Lemmas 1 and 2 it is natural to make the following

Assumption (A). Suppose that S) is a pseudo-euclidean Hurwitz pair, for
which we admit the notation (9) and n = dim V. Let ~y«, a = 1, ... , p - 1,

. be the associated generators of the corresponding Clifford algebra C~’’~~~,
whereas and (e;) - some bases of S and V, respectively, restricted by
the condition (6), the metrics y/ and ~ being defined by (4).

Denote by F = R, C, and H the real, complex and quaternion number
fields, and let M(N, F) be the algebra of N x N-matrices over F. Let



further :

where [ stands for the function "entier". We have

THEOREM 1. Let us take the assumption (A) and the notation (20).
Then the following assertions hold.

(~~ For each pair (r, s) of non-negative integers r and s the algebra 
is isomorphic to :

(II) The dimension of the representation space (,~1~ is :

2~ for r -~-1 - s - 3, 4, 5, 7, 0,1 (mod 8)

and

2~+1 for r + 1 - s - 2, 6 (mod 8).

(III) The dimension n of V equals :

2~ for r -f-1 - s - 7, 0,1 (mod 8)

and

2~+1 for r + 1 - s - 2, 3, 4, 5, 6 (mod 8).

(IV) If r - s _ 0,1 (mod 8), one can construct both the real and the
imaginary Majorana representation (shortl y RMR and IMR). If r - s - 2
(mod 8), one can construct the its imaginary analogue IRM can only
be constructed after doubling the dimension of the representation space (,~1~.
If r - s - 5, 6, 7 (mod 8), one can construct the IMR ; the RMR can only be
constructed after doubling the dimension of (,~1~. Finally, if r-s - 3, 4 (mod
8), the RMR and IMR can only be constructed after doubling the dimension
of (~1).



Proof.-The reasoning, based on Lemmas 1 and 2, is completely
analogous to that given in [6] in the euclidean case s = 0. The only impor-
tant change is that we have to take into account the recurrence relations.

At the end of this section ive illustrate the assertion (III) of Theorem 1
giving the table of log2 n in terms of r+1 and S for 1  r+1  9, 0  s  10 :



2. Classification according to the admissible systems (n, r, s)

Consider the sequence of matrices :

with as in the assumption (A) and, further, the matrices :

if s = 0 we set B = ~n One verifies directly their properties :

LEMMA 3. - In contrast to the matrices (2,~~ which are imaginary, the
matrices (,~~~ are real. Besides,

Assumption (B ). Consider the particular cases of (22), where each irredu-
cible representation of the Clifford algebra can be embedded in an

irreducible representation of either

Then the corresponding sequence of matrices (22) can naturally be
modified as follows : either
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or

respectively.
Now we return to the general situation which includes the one covered

by the assumption (B). We consider the finite sequence of matrix functions
ofrands: :

for 8 = 1 and - 1. We may treat (24) as a function z - K(z) of a complex
variable, defined for z = m8 and z = m8i. For the sake of convenience we
take into consideration also the point z = 0, assuming that in this case the
value K(z) is undefined. We are interested in investigating the composition

with ( p, ~) as in (11), where A = is a complex 8 x 8-matrix,
defined by the formulae :

One verifies directly the properties of A : :

LEMMA 4. - a~+4, k+4 = a~k and a~, k+4 = a~+4, k for 1 _ j, k  4.
The above con3truction lead3 us to : 

THEOREM 2. - Let us take the assumption (A). Then for each pair (r, s)
, 

there are two possible metrics : 
’

K = I~1 or h = I~2 at most (26)

(zero, one or two possibilities). The functions K1 and K2 can be chosen to
be expressible in term3 of the (8, 8)-periodic function (r, s) ~ a,.+1,9, defined



for 1  r + 1, s  8 by (25) and having the propertie3 li3ted in Lemma ,~.
Explictly,

or, equivalently,

where k is given by (24), as,r+1 denote3 the complex conjugate of the

indice3 p and o~ are related to rand s by (11~, k and ko appearing in (11~
are integers, and k > 0. In particular,

s) and Ii2(r, s) are defined whenever ~ 0, 28
are undefined whenever = 0, ( )

and r~T = br~.

Proof. - Let us take the assumption (A) and consider a corresponding
system (10) with the notation (9). It is interesting to notice that the pair
(r, s) is not determined uniquely, yet this observation is of no importance
to us now. By Lemma 2 the metric ~ = ~~~k~ in (10) has to be an element
of the Clifford algebra with generators a = 1, ... , p - 1, namely :

where the coefficients a, b, ... are real and antisymmetric with

respect to the transposition of the indices a, /?, 6, ....

By Lemma 1 the metric 03BA has to satisfy all the contraints (14) - (18)
given in that lemma, in particular :

= ’~’~Ya ~ EY # I , ... , p - I ,

or, equivalently,

Now, we are going to consider, separately, eight cases

p - a z q (mod 8), q = os 1, ... , 7,



p and 03C3 being given in (11), where k and ko are integers, and k > 0. In each
of them we have to derive all the admissible possibilities, combining (29)
with (30).

It seems that the easiest case is when q = 1. We find, by a direct
verification, that the only possible pseudo-euclidean Hurwitz pairs are those
satisfying one of the following four sets of conditions :

where =~ abbreviates "what implies" and 6 is defined by r~T = 6",. In the
calculations we utilize the formulae given in Lemma 3. By (11), within each
set of the conditions we have still one additional point (p, 6), namely, in our
sets we have the points (1 + 4, 8 - 4) = (5, 4), (8, 7), (7, 6), and (6, 5),
respectively. Hence, by (24) and (25), we arrive at (26) with :

Now we return our attention to the case q = 7, which is the most similar to
the case q = 1. In analogy to that case we find :

By (24) and (25) we arrive at (26) with :

given in (27); 1 (p, ~) = (8, 1), (4, 5), (2, 3), (6, 7); 32K2 g iven in (27); (03C1,03C3) = (7, 8), (3, 4), (1, 2), (5, 6). ( )

The case q = 2 is quite different. By the assertion (I) in Theorem 1 we have
to take into account that each irreducible representation of C"’" can be
in our case, owing to the congruence r - (s + 1) = 0 (mod 8), embedded
in an irreducible representation of the Clifford algebra which is

isomorphic to the corresponding matrix ring. Consequently, K has to belong
to and this is why we are led to the possibilities :



We arrive at (26) with :

K2 given by (27); 1 (~ r) = (2, 8), (6, 4), (4, 2), (8, 6); 1 ~~~~(5, 3), (1, 7), (3, 1), (7, 5). 

If q = 6, then, as in the preceding case, we observe, by the assertion
(I) in Theorem 1, that each irreducible representation of can be
embedded in an irreducible representation of wich is isomorphic
to the corresponding matrix ring.

Consequently, Khas to belong to so we find

We arrive at (26) with :

K2 given by (27);

In the case q = 3 each irreducible representation of can be embedded

in an irreducible representation of and then of C~’’’~+2~. We get :

We arrive at (26) with :

.~’~ given by (27);

If q = 5, then, as in the preceding case, we observe that each irreducible
representation of can be embedded in an irreducible representation of

a,nd then of C{r+2’$~, so we find


