ANMAMARIA CANINO

Periodic solutions of quadratic lagrangian systems on p-convex sets

<http://www.numdam.org/item?id=AFST_1991_5_12_1_37_0>
Periodic solutions
of quadratic Lagrangian systems on p-convex sets

Annamaria Canino(1)

Introduction

If M is a compact submanifold without boundary in \mathbb{R}^n and N_xM denotes the normal subspace to M at x, the study of the Lagrangian system

$$\frac{d}{ds} \left(\nabla_v L(s, \gamma, \gamma') \right) - \nabla_q L(s, \gamma, \gamma') \in N_{\gamma(s)}M$$

has been carried out in [1], where the existence of infinitely many periodic solutions γ is proved under quite general assumptions.

The corresponding problem on manifolds with boundary has been treated in [18], where the existence of a periodic solution is proved and in [5], where the existence of infinitely many periodic solutions is shown. The feature of unilateral constraints (cf. [6], [7], [14], [15], [16], [17], [18]) is that, even if the manifold M is of class C^∞, the corresponding variational problem does not have a smooth structure.

(1) Dipartimento di Matematica, Università della Calabria, 87036-Arcavacata di Rende, CS (Italy)
For this reason, it seems to be natural to allow for the set M itself a certain kind of irregularity. The aim of the paper is to treat the case in which M is a p-convex set (see Def. 1.3) and L is quadratic with respect to γ', namely

$$L(s, q, v) = \frac{1}{2} (a(s, q)v, v) - V(s, q).$$

The particular case $a \equiv \text{Id}$, $V \equiv 0$, which leads to the study of geodesics, was already treated in [2] and [3].

The main tools are the techniques of non-smooth nonlinear analysis developed in [8], [9], [10] and [11]. Actually, the main part of the paper, the second section, is devoted to the proof that these techniques can be applied to our situation.

1. Recalls of non-smooth analysis and the main result

We will recall some notions of non-smooth analysis as developed in [6], [7], [8], [9], [11].

From now on, H will be a real Hilbert space, $| \cdot |$ and (\cdot, \cdot) its norm and scalar product, respectively.

If $u \in H$ and $r > 0$, we set $B(u, r) = \{v \in H \mid |v - u| < r\}$.

DEFINITION 1.1. — (see also [6] and [9]) Let Ω be an open subset of H and $f : \Omega \rightarrow \mathbb{R} \cup \{+\infty\}$ a map.

We set

$$D(f) = \{u \in \Omega \mid f(u) < +\infty\}.$$

Let u belong to $D(f)$. The function f is said to be subdifferentiable at u if there exists $\alpha \in H$ such that

$$\liminf_{v \rightarrow u} \frac{f(v) - f(u) - (\alpha, v - u)}{|v - u|} \geq 0.$$

We denote by $\partial^- f(u)$ the (possibly empty) set of such α's and we set

$$D(\partial^- f) = \{u \in D(f) \mid \partial^- f(u) \neq \emptyset\}.$$

It is easy to check that $\partial^- f(u)$ is convex and closed $\forall u \in D(f)$.
If $u \in D(\partial^- f)$, $\text{grad}^- f(u)$ will denote the element of minimal norm of $\partial^- f(u)$.

Moreover, let M be a subset of H. We denote by I_M the function:

$$I_M(u) = \begin{cases} 0 & u \in M \\ +\infty & u \in H \setminus M. \end{cases}$$

It is easy to check that $\partial^- I_M(u)$ is a closed convex cone $\forall u \in M$.

We will call (outward) normal cone to M at u the set $\partial^- I_M(u)$ and tangent cone to M at u its negative polar $(\partial^- I_M(u))^-$, i.e.,

$$(\partial^- I_M(u))^- = \{ v \in H \mid (v, w) \leq 0, \forall w \in \partial^- I_M(u) \}.$$

Remark 1.2. — Let us suppose that $g : \Omega \to \mathbb{R}$ is Fréchet differentiable at $u \in \Omega$. Then:

$$\partial^- (f + g)(u) \neq \emptyset \text{ if and only if } \partial^- f(u) \neq \emptyset$$

and

$$\partial^- (f + g)(u) = \{ \alpha + \text{grad} g(u) \mid \alpha \in \partial^- f(u) \}.$$

Let us introduce the class of p-convex sets as defined in [2] and [3]. An other characterization of this class is in [4].

DEFINITION 1.3. — A subset M of H is said to be a p-convex set if there exists a continuous function $p : M \to \mathbb{R}^+$ such that

$$(\alpha, v - u) \leq p(u) |\alpha| |v - u|^2$$

whenever $u, v \in M$ and $\alpha \in \partial^- I_M(u)$.

Examples of p-convex sets are the following ones:

1. The $C^{1,1}_{\text{loc}}$-submanifolds (possibly with boundary) of H;
2. The convex subsets of H;
3. The images under a $C^{1,1}_{\text{loc}}$-diffeomorphism of convex sets;
4. The subset of $\mathbb{R}^n : \{ x \mid \max |x_i| \leq 1, \sum x_i^2 \geq 1 \}$ (note that it is not included in the classes (1), (2), (3)).
Now, we can state the main result of the paper.

Let M be a p-convex subset of \mathbb{R}^n and let $L : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a Lagrangian of the form

$$L(s, q, v) = \frac{1}{2} \left(a(s, q)v, v \right) - V(s, q)$$

where a, V are of class C^2 on $\mathbb{R} \times \mathbb{R}^n$ and the matrix $a(s, q)$ is symmetric and positive definite, that is there exists a constant $\nu > 0$ such that

$$\left(a(s, q)v, v \right) \geq \nu |v|^2, \quad \forall s \in \mathbb{R}, \forall q, v \in \mathbb{R}^n \quad (1.1)$$

Moreover, let us suppose that a and V are 1-periodic in the first variable:

$$a(s + 1, q) = a(s, q); \quad V(s + 1, q) = V(s, q) \quad (1.2)$$

Theorem 1.4. — Let us suppose that M is compact, connected and noncontractible in itself and that either

a) $\pi_1(M)$ has infinitely many conjugacy classes

or

b) $\pi_1(M)$ has a finite number of elements.

Then, there exists a sequence $\{\gamma_h\}_h \subset W^{2,\infty}(\mathbb{R}; \mathbb{R}^n)$ such that $\forall h \in \mathbb{N}$

i) γ_h is 1-periodic and $\gamma_h(s) \in M$

ii) $\frac{d}{ds} \left(\nabla_v L(s, \gamma_h, \gamma'_h) \right) - \nabla_q L(s, \gamma_h, \gamma'_h) \in \partial^- I_M(\gamma_h)$ a.e. in $[0, 1[$

iii) $\lim_{h \to \infty} \int_0^1 L(s, \gamma_h, \gamma'_h) \, ds = +\infty$.

In order to apply the critical point theory for non-smooth functionals some other notions and results have to be recalled.

Definition 1.5. — Let Ω be an open subset of H and $f : \Omega \to \mathbb{R} \cup \{+\infty\}$ a function. A point $u \in D(f)$ is said to be a lower critical point for f if $0 \in \partial^- f(u)$; $c \in \mathbb{R}$ is said to be a critical value of f if there exists $u \in D(f)$ such that

$$0 \in \partial^- f(u) \quad \text{and} \quad f(u) = c.$$

Definition 1.6. — (see also [8], [11]) Let Ω be an open subset of H. A function $f : \Omega \to \mathbb{R} \cup \{+\infty\}$ is said to have a φ-monotone subdifferential of order two if there exists a continuous function

$$\chi : D(f)^2 \times \mathbb{R}^2 \to \mathbb{R}^+$$

such that

$$(\alpha - \beta, u - v) \geq -\chi(u, v, f(u), f(v)) \left(1 + |\alpha|^2 + |\beta|^2 \right) |u - v|^2$$
whenever
\[u, v \in D(\partial^- f), \quad \alpha \in \partial^- f(u) \quad \text{and} \quad \beta \in \partial^- f(v). \]

The notion of p-convex set is actually a particular case of the previous notion. In fact, it turns out (see [2]) that a subset M of H is p-convex if and only if I_M has a φ-monotone subdifferential of order two.

Theorem 1.7. (see [10]) Let $f : H \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous function with a φ-monotone subdifferential of order two. We set
\[d^*(u,v) = |u - v| + |f(u) - f(v)|, \quad \forall \ u, v \in D(f). \]

Let us suppose that:

1. $\inf_H f > -\infty$
2. every sequence $(u_h) \subset D(\partial^- f)$ with $\sup_h f(u_h) < +\infty$ and $\lim_h \text{grad}^- f(u_h) = 0$ has a subsequence converging in H.

Then, f has at least $\text{cat}(D(f), d^*) = +\infty$, then
\[\sup\{f(u) \mid u \in D(\partial^- f), 0 \in \partial^- f(u)\} = +\infty. \]

Let M be a p-convex subset of H.

Definition 1.8. Let us denote by \hat{A} the set of u's $\in H$ with the two properties:

1. $\delta_p(u, M) < 1$ where $\delta_p(u, M) = \limsup_{|u-w| \to d(u,M)} 2p(w)|u - w|.
2. $\exists r \geq 0$ such that $M \cap \{v \in H \mid |v - u| \leq r\}$ is closed in H and not empty.

Obviously, $M \subset \hat{A}$ and:

Proposition 1.9. (see prop. 2.9 in [2]) Let $M \subset H$ be p-convex and locally closed. Then \hat{A} is open and $\forall u \in \hat{A}$ there exists one and only one $w \in M$ such that $|u - w| = d(u, M)$.

Moreover, if we set $\pi(u) = w$, then

1. $(u - \pi(u)) \in \partial^- I_M(\pi(u))$ and $2p(\pi(u))|u - \pi(u)| < 1$, $\forall u \in \hat{A}$
Annalisa Canino

ii) \(|\pi(u_1) - \pi(u_2)| \leq \left(1 - p(\pi(u_1)) |u_1 - \pi(u_1)| +
- p(\pi(u_2)) |u_2 - \pi(u_2)| \right)^{-1} |u_1 - u_2|, \)
\(\forall u_1, u_2 \in \tilde{A} \)

iii) \((t \pi(u) + (1 - t)u) \in \tilde{A}, \forall u \in \tilde{A}, \forall t \in [0, 1].\)

Remark 1.10. — Let us set \(A = \left\{ u \in \tilde{A} \mid 4p(\pi(u)) |u - \pi(u)| < 1 \right\}. \)
Then \(A \) is an open set containing \(M \) and, by proposition 1.9 ii), \(\pi : A \to M \)
is Lipschitz continuous of constant two.

Proposition 1.11. — (see prop. 2.2 in [2]) Let \(M \subset H \) be p-convex.
If \(\{u_h\}_h \subset M \) is a sequence converging to \(u \in M \) and \(\{\alpha_h\}_h \subset H \) is a sequence converging weakly to \(\alpha \) with \(\alpha_h \in \partial^- I_M(u_h) \), then \(\alpha \in \partial^- I_M(u) \).

Proposition 1.12. — (see prop. 2.12 in [2]) Let \(M \subset H \) be locally closed and p-convex. Then
\[
\lim_{t \to 0^+} \frac{\pi(u + tv) - u}{t} = P_u v, \quad \forall u \in M \quad \text{and} \quad \forall v \in H
\]
where \(P_u \) is the projection on the tangent cone to \(M \) at \(u \).

Proposition 1.13. — Let \(M \subset H \) be locally closed and p-convex. Let \(\{u_h\}_h \) be a sequence in \(M \) converging to \(u \in M \) and let \(\tau \in (\partial^- I_M(u))^- \).
Then
\[
\lim_{h} P_{u_h} \tau = \tau.
\]

Proof. — Since \(\{P_{u_h} \tau\}_h \) is bounded, up to a subsequence \(\{P_{u_h} \tau\}_h \) is weakly convergent to some \(\xi \in H \). Since \((\tau - P_{u_h} \tau) \in \partial^- I_M(u_h) \), by proposition 1.11 we have \((\tau - \xi) \in \partial^- I_M(u) \). Therefore \((\tau - \xi, \tau) \leq 0 \),
which implies \(|\tau| \leq |\xi| \), hence
\[
\liminf_{h} |P_{u_h} \tau| \geq |\tau|.
\]
From the equality
\[
|\tau|^2 = |P_{u_h} \tau|^2 + |\tau - P_{u_h} \tau|^2
\]
the thesis follows. □
2. The variational structure of the problem

In this section, we want to supply our problem, that is the research of periodic orbits of the considered Lagrangian system, with a variational structure. Our aim is to characterize such periodic orbits as lower critical points of the functional

\[f : L^2(0, 1; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\} \]

defined in the following way:

\[
\begin{align*}
f(\gamma) &= \begin{cases} \\
\frac{1}{2} \int_0^1 (a(s, \gamma) \gamma', \gamma') \, ds - \int_0^1 V(s, \gamma) \, ds & \gamma \in X \\
+\infty & \gamma \in L^2(0, 1; \mathbb{R}^n) \setminus X
\end{cases}
\end{align*}
\]

where the space of the admissible paths is:

\[X = \{ \gamma \in W^{1,2}(0, 1; \mathbb{R}^n) \mid \gamma(s) \in M, \, \gamma(0) = \gamma(1) \} . \]

Since \(M \) is compact, we shall assume the function \(p \) of definition 1.3 to be constant.

Moreover, if \(\gamma \in W^{1,2}(0, 1; \mathbb{R}^n) \) with \(\gamma(s) \in M \) and \(\delta \in L^2(0, 1; \mathbb{R}^n) \), we set

\[(P_{\gamma(s)}\delta)(s) = P_{\gamma(s)}\delta(s)\]

where \(P_{\gamma(s)} \) is the projection on the tangent cone to \(M \) at \(\gamma(s) \), according to the scalar product

\[(u, v)_s = (a(s, \gamma(s))u, v) .\]

Let us also denote by \(\pi_s \) the projection on \(M \) according to the scalar product \((u, v)_s\). By remark 1.8 and the assumptions on \(a \), there exists an open set \(A \) containing \(M \) such that each \(\pi_s \) is defined on \(A \) and is Lipschitz continuous of constant 2.

Let us begin with a regularity result.

Theorem 2.1. — Let \(\gamma \in X \). If \(\partial^- f(\gamma) \neq \emptyset \) then

\[\gamma \in W^{2,2}(0, 1; \mathbb{R}^n), \quad \gamma'_+(0) = \gamma'_-(1) \]
Moreover, if \(0 \in \partial^{-} f(\gamma) \) then \(\gamma \in W^{2,\infty}(0,1;\mathbb{R}^{n}) \).

For the proof of this theorem, we need some lemmas.

Lemma 2.2. Let us take \(\delta \in W^{1,2}(0,1;\mathbb{R}^{n}) \) and \(\gamma \in W^{1,2}(0,1;\mathbb{R}^{n}) \) such that \(\gamma(s) \in M, \forall s \in [0,1] \).

Then the following facts hold:

a) \(\lim_{t \to 0^{+}} \frac{\pi_{s}(\gamma + t\delta) - \gamma}{t} = P_{\gamma}\delta, \quad \forall s \in [0,1] \)

and

\[
\lim_{t \to 0^{+}} \sup_{s} \left\| \frac{\pi_{s}(\gamma + t\delta) - \gamma}{t} \right\|_{L^{\infty}} < \infty
\]

b) for every sufficiently small \(t > 0 \), we have

\(\pi_{s}(\gamma + t\delta) \in W^{1,2}(0,1;\mathbb{R}^{n}) \)

and \(a.e. \) in \([0,1] \)

\[
\left| (\pi_{s}(\gamma + t\delta))' \right|_{s} \leq |\gamma' + t\delta'|_{s} + \text{const} |(\gamma + t\delta) - \pi_{s}(\gamma + t\delta)| (1 + |\gamma'| + t|\delta'|)
\]

\(c) \lim_{t \to 0^{+}} (\pi_{s}(\gamma + t\delta))' = \gamma' \) in \(L^{2}(0,1;\mathbb{R}^{n}) \).

Proof. a) First of all, let us remark that \(P_{\gamma}\delta \) is measurable. By proposition 1.12, we have

\[
\lim_{t \to 0^{+}} \frac{\pi_{s}(\gamma + t\delta) - \gamma}{t} = P_{\gamma}\delta
\]

and, also

\[
\left| \frac{\pi_{s}(\gamma + t\delta) - \gamma}{t} \right|_{s} \leq 2 \left| \frac{\gamma + t\delta - \gamma}{t} \right|_{s} \leq 2|\delta|_{s} \quad (2.2.1)
\]

Then, by (2.2.1), we get

\[
\left| \frac{\pi_{s}(\gamma + t\delta) - \gamma}{t} \right| \leq \text{const} \left| \frac{\pi_{s}(\gamma + t\delta) - \gamma}{t} \right|_{s} \leq \text{const} 2|\delta|_{s} \leq \text{const} |\delta| \quad (2.2.2)
\]

so, the proof of a) is over.
b) Let us consider the two scalar products

\[(u, v)_{s_i} = (A_{s_i} u, v) = (a(s_i, \gamma(s_i)) u, v), \quad i = 1, 2.\]

For every \(u \in A\), let \(w_{s_i} = \pi_{s_i} u\) the projection of \(u\) according to the scalar product \((u, v)_{s_i}\), \(i = 1, 2\). We want to prove that

\[|w_{s_1} - w_{s_2}| \leq \frac{2}{\nu} |u - w_{s_2}| |A_{s_1} - A_{s_2}|.\]

(2.2.3)

Let us observe that, by proposition 1.9, \(u - w_{s_1} \in \partial^{-} I_M(w_{s_1})\), that is

\[
\liminf_{v \to u, v \in M} \frac{(u - w_{s_1}, w_{s_1} - v)_{s_1}}{|w_{s_1} - v|_{s_1}} \geq 0.
\]

(2.2.4)

Passing to the usual metric in \(\mathbb{R}^n\), (2.2.4) is equivalent to

\[
\liminf_{v \to u, v \in M} \frac{(A_{s_1}(u) - A_{s_1}(w_{s_1}), w_{s_1} - v)}{|w_{s_1} - v|} \geq 0.
\]

(2.2.5)

By (2.2.5), it is easy to deduce that

\[A_{s_1}(u) - A_{s_1}(w_{s_1}) \in \partial^{-} I_M(w_{s_1}).\]

Analogously,

\[A_{s_2}(u) - A_{s_2}(w_{s_2}) \in \partial^{-} I_M(w_{s_2}).\]

Since \(M\) is a p-convex set, we have:

\[
\begin{align*}
(A_{s_1}(u) - A_{s_1}(w_{s_1}) - A_{s_2}(u) + A_{s_2}(w_{s_2}), w_{s_1} - w_{s_2}) & \geq \\
& \geq -p \left(|A_{s_1}(u) - A_{s_1}(w_{s_1})| + |A_{s_2}(u) - A_{s_2}(w_{s_2})| \right) |w_{s_1} - w_{s_2}|^2.
\end{align*}
\]

(2.2.6)

On the other hand, we have

\[
\begin{align*}
(A_{s_1}(u) - A_{s_1}(w_{s_1}) - A_{s_2}(u) + A_{s_2}(w_{s_2}), w_{s_1} - w_{s_2}) & \leq \\
& \leq (A_{s_1}(u) - A_{s_1}(w_{s_1}) + A_{s_2}(w_{s_2}) - A_{s_1}(w_{s_2}), w_{s_1} - w_{s_2}) + \\
& \quad + (A_{s_1}(w_{s_2}) - A_{s_1}(w_{s_1}), w_{s_1} - w_{s_2}) \leq \\
& \leq ((A_{s_1} - A_{s_2})(u - w_{s_2}), w_{s_1} - w_{s_2) - |w_{s_1} - w_{s_2}|^2.
\end{align*}
\]

(2.2.7)
By (2.2.6) and (2.2.7), we obtain
\[|\pi_{s_1}^s (\gamma + t\delta)(s_1) - \pi_{s_2}^s (\gamma + t\delta)(s_2) |_{s_1} \leq | s_2 - s_1 |_{s_1} \]
and then
\[\frac{|\pi_{s_1}^s (\gamma + t\delta)(s_1) - \pi_{s_1}^s (\gamma + t\delta)(s_2) |_{s_1}}{| s_2 - s_1 |_{s_1}} + \frac{|\pi_{s_1}^s (\gamma + t\delta)(s_2) - \pi_{s_2}^s (\gamma + t\delta)(s_2) |_{s_1}}{| s_2 - s_1 |_{s_1}}. \]

By substituting \(A \) with a smaller open set containing \(M \), we can assume that
\[[\nu - p\left(|A_{s_1}(u) - A_{s_1}(w_{s_1})| + |A_{s_2}(u) - A_{s_2}(w_{s_2})| \right)] |w_{s_1} - w_{s_2}|^2 \leq \left| u - w_{s_2} \right| |A_{s_1} - A_{s_2}| |w_{s_1} - w_{s_2}|. \]

By hypothesis (1.1), it follows
\[|w_{s_1} - w_{s_2}|_{s_1}^2 \geq \nu |w_{s_1} - w_{s_2}|^2 \]
and then
\[[\nu - p\left(|A_{s_1}(u) - A_{s_1}(w_{s_1})| + |A_{s_2}(u) - A_{s_2}(w_{s_2})| \right)] |w_{s_1} - w_{s_2}|^2 \leq \left| u - w_{s_2} \right| |A_{s_1} - A_{s_2}| |w_{s_1} - w_{s_2}|. \]

By substituting \(A \) with a smaller open set containing \(M \), we can assume that
\[\left[\nu - p\left(|A_{s_1}(u) - A_{s_1}(w_{s_1})| + |A_{s_2}(u) - A_{s_2}(w_{s_2})| \right) \right] \geq \frac{\nu}{2}, \]

hence (2.2.3) follows.

Now, let us consider \(s_2 \in]0, 1[. \) We have
\[\frac{|\pi_{s_1}^s (\gamma + t\delta)(s_1) - \pi_{s_2}^s (\gamma + t\delta)(s_2) |_{s_1}}{| s_2 - s_1 |_{s_1}} \leq \frac{|\pi_{s_1}^s (\gamma + t\delta)(s_1) - \pi_{s_1}^s (\gamma + t\delta)(s_2) |_{s_1}}{| s_2 - s_1 |_{s_1}} + \frac{|\pi_{s_1}^s (\gamma + t\delta)(s_2) - \pi_{s_2}^s (\gamma + t\delta)(s_2) |_{s_1}}{| s_2 - s_1 |_{s_1}}. \]

By i) and ii) of proposition 1.9, we have
\[|\pi_{s_1}^s (\gamma + t\delta)(s_1) - \pi_{s_1}^s (\gamma + t\delta)(s_2) |_{s_1} \leq \frac{|(\gamma + t\delta)(s_1) - (\gamma + t\delta)(s_2) |_{s_1}}{\mathcal{D}} \]
where
\[\mathcal{D} = \left(1 - p |(\gamma + t\delta)(s_1) - \pi_{s_1}^s (\gamma + t\delta)(s_1) |_{s_1} + \right. \]
\[- \left. p |(\gamma + t\delta)(s_2) - \pi_{s_1}^s (\gamma + t\delta)(s_2) |_{s_1} \right). \]
Hence
\[|\pi_{s_1}(\gamma + t\delta)(s_1) - \pi_{s_1}(\gamma + t\delta)(s_2)|_{s_1} \leq \]
\[\leq \text{const} \left(|\gamma(s_1) - \gamma(s_2)| + t|\delta(s_1) - \gamma(s_2)| \right). \]

Moreover, by applying (2.2.3), we get
\[|\pi_{s_2}(\gamma + t\delta)(s_2) - \pi_{s_2}(\gamma + t\delta)(s_2)|_{s_1} \leq \]
\[\leq \frac{2}{\nu} |(\gamma + t\delta)(s_2) - \pi_{s_2}(\gamma + t\delta)(s_2)| a(s_1, \gamma(s_1)) - a(s_2, \gamma(s_2))| \leq \]
\[\leq \text{const} |(\gamma + t\delta)(s_2) - \pi_{s_2}(\gamma + t\delta)(s_2)| (|s_2 - s_1| + |\gamma(s_2) - \gamma(s_1)|) \leq \]
\[\leq \text{const} (|s_2 - s_1| + |\gamma(s_2) - \gamma(s_1)|). \]

Therefore
\[\pi_s(\gamma + t\delta) \in W^{1,2}(0, 1; \mathbb{R}^n) \]
and we have a.e. in \(]0, 1[\)
\[\lim_{s_2 \to s_1} \frac{|\pi_{s_1}(\gamma + t\delta)(s_1) - \pi_{s_1}(\gamma + t\delta)(s_2)|_{s_1}}{|s_2 - s_1|_{s_1}} \leq \]
\[\leq \frac{|(\gamma + t\delta)'(s_1)|_{s_1}}{1 - 2\nu |(\gamma + t\delta)(s_1) - \pi_{s_1}(\gamma + t\delta)(s_1)|_{s_1}} \leq \]
\[\leq |(\gamma + t\delta)'(s_1)|_{s_1} + \]
\[+ \text{const} |(\gamma + t\delta)(s_1) - \pi_{s_1}(\gamma + t\delta)(s_1)| (|\gamma + t\delta)'(s_1)| \quad (2.2.9) \]

and
\[\lim_{s_2 \to s_1} \frac{|\pi_{s_1}(\gamma + t\delta)(s_2) - \pi_{s_2}(\gamma + t\delta)(s_2)|_{s_1}}{|s_2 - s_1|_{s_1}} \leq \]
\[\leq \text{const} \lim_{s_2 \to s_1} |(\gamma + t\delta)(s_2) - \pi_{s_2}(\gamma + t\delta)(s_2)| \times \]
\[\times \left(\frac{|s_2 - s_1| + |\gamma(s_2) - \gamma(s_1)|}{|s_2 - s_1|} \right) \leq \]
\[\leq \text{const} |(\gamma + t\delta)(s_1) - \pi_{s_1}(\gamma + t\delta)(s_1) - (1 + |\gamma'(s_1)|). \quad (2.2.10) \]

Hence we have a.e. in \(]0, 1[\)
\[|(\pi_s(\gamma + t\delta))'|_s \leq |\gamma' + t\delta'|_s + \text{const} |(\gamma + t\delta) - \pi_s(\gamma + t\delta)| (1 + |\gamma'| + t|\delta'|). \]
c) In \(L^2(0, 1; \mathbb{R}^n) \) we can consider the following scalar product
\[
(\eta, \xi) = \int_0^1 a(s, \gamma(s)) \eta(s) \xi(s) \, ds = \int_0^1 (\eta(s), \xi(s))_s \, ds.
\]
Since, by a) \(\pi_s(\gamma + t\delta) \to \gamma \) in \(L^\infty \) and \((\pi_s(\gamma + t\delta))' \) is bounded in \(L^2(0, 1; \mathbb{R}^n) \) as \(t \to 0 \), we have that
\[
(\pi_s(\gamma + t\delta))' \text{ weakly converges to } \gamma' \text{ in } L^2(0, 1; \mathbb{R}^n).
\] (2.2.11)
Moreover
\[
\lim_{t \to 0^+} \left| (\gamma + t\delta) - \pi_s(\gamma + t\delta) \right| = 0 \text{ uniformly on } [0, 1],
\]
and by b) we have
\[
\limsup_{t \to 0} \int_0^1 \left| (\pi_s(\gamma + t\delta))' \right|_s^2 \, ds \leq \int_0^1 |\gamma'|_s^2 \, ds. \tag{2.2.12}
\]
Combining (2.2.11) and (2.2.12), we get
\[
\lim_{t \to 0^+} \left(\pi_s(\gamma + t\delta) \right)' = \gamma' \text{ in } L^2(0, 1; \mathbb{R}^n). \Box
\]

Lemma 2.3. — Let us take \(\delta \in W^{1,2}(0, 1; \mathbb{R}^n) \) and \(\gamma \in W^{1,2}(0, 1; \mathbb{R}^n) \) such that \(\gamma(s) \in M, \forall \ s \in [0, 1] \).

Then
\[
\liminf_{t \to 0^+} \frac{1}{t} \left\{ \frac{1}{2} \int_0^1 (a(s, \gamma)(\gamma + t\delta)', (\gamma + t\delta))' \, ds + \frac{1}{2} \int_0^1 (a(s, \gamma)(\pi_s(\gamma + t\delta))', (\pi_s(\gamma + t\delta))') \, ds \right\} \geq -\text{const} \int_0^1 |\gamma'|(1 + |\gamma'|)\delta - P_\gamma \delta | \, ds. \tag{2.3.1}
\]

Proof. — Let us fix \(t > 0 \) and let us take the path \(\gamma + t\delta \). If \(t \) is small, \((\gamma + t\delta)(s) \in A, \forall \ s \in [0, 1] \).

By lemma 2.2 b), we have \(\pi_s(\gamma + t\delta) \in W^{1,2}(0, 1; M) \) and
\[
\frac{1}{2} \int_0^1 \frac{1}{t} \left\{ \left| (\gamma + t\delta)' \right|_s^2 - \left| (\pi_s(\gamma + t\delta))' \right|_s^2 \right\} \, ds \geq \nonumber
\]
\[
\geq \frac{1}{2} \int_0^1 \frac{1}{t} \left\{ -\text{const} |(\gamma + t\delta) - \pi_s(\gamma + t\delta)|^2 (1 + |\gamma'| + t|\delta'|)^2 + \right. \nonumber
\]
\[
-\text{const} |(\gamma + t\delta)'| |(\gamma + t\delta) - \pi_s(\gamma + t\delta)| (1 + |\gamma'| + t|\delta'|) \right\} \, ds.
\]

- 48 -
Combining lemma 2.2 c) with Lebesgue theorem, we get:

\[
\liminf_{t \to 0^+} \frac{1}{t} \int_0^1 \frac{1}{t} \left\{ \left| (\gamma + t\delta)' \right|^2_s - \left| (\pi_s(\gamma + t\delta))' \right|^2_s \right\} \, ds \\
\geq - \text{const} \int_0^1 |\gamma'|(1 + |\gamma'|) \delta - P_\gamma \delta | \, ds. \quad \square
\]

Lemma 2.4. Let us take \(\delta \in W^{1,2}(0, 1; \mathbb{R}^n) \) with \(\delta(0) = \delta(1) \) and \(\alpha \in \partial^- f(\gamma) \). Then

\[
\int_0^1 (a(s, \gamma) \gamma', \delta') \, ds - \int_0^1 (\alpha, P_\gamma \delta) \, ds \geq \\
\geq - \text{const} \int_0^1 |\gamma'|(1 + |\gamma'|) \delta - P_\gamma \delta | \, ds + \\
+ \int_0^1 (\nabla_q V(s, \gamma), P_\gamma \delta) \, ds - \frac{1}{2} \int_0^1 \left(\frac{\partial a(s, \gamma)}{\partial q} (P_\gamma \delta) \gamma', \gamma' \right) \, ds. \tag{2.4.1}
\]

Proof. Let us take \(\delta \in W^{1,2}(0, 1; \mathbb{R}^n) \) with \(\delta(0) = \delta(1) \) and \(t > 0 \) small enough that

\[
\pi_s(\gamma + t\delta) \in M.
\]

Let us observe that, by setting

\[
f_1(\gamma) = \frac{1}{2} \int_0^1 (a(s, \gamma) \gamma', \gamma') \, ds,
\]
from remark 1.2, we deduce that \(\alpha \in \partial^- f(\gamma) \) if and only if \(\alpha = \tilde{\alpha} - \nabla_q V(s, \gamma) \) where \(\tilde{\alpha} \in \partial^- f_1(\gamma) \).

Now, let us take \(\alpha \in \partial^- f(\gamma) \). By proposition 1.12, we have:

\[
\int_0^1 (a(s, \gamma) \gamma', \delta') \, ds - \int_0^1 (\alpha, P_\gamma \delta) \, ds = \\
= \lim_{t \to 0^+} \frac{1}{t} \int_0^1 \left\{ \frac{1}{2} (a(s, \gamma)(\gamma + t\delta)', (\gamma + t\delta)') - \frac{1}{2} (a(s, \gamma) \gamma', \gamma') + \\
- \tilde{\alpha}(\pi_s(\gamma + t\delta) - \gamma) \right\} \, ds + \int_0^1 (\nabla_q V(s, \gamma), P_\gamma \delta) \, ds \geq \\
\geq \liminf_{t \to 0^+} \frac{1}{t} \int_0^1 \left\{ \frac{1}{2} (a(s, \pi_s(\gamma + t\delta))(\pi_s(\gamma + t\delta))', (\pi_s(\gamma + t\delta))') + \\
- 49 -
\]

Recalling that \((\pi_s(\gamma + t\delta) - \gamma) / t \) is bounded in \(L^2(0,1; \mathbb{R}^n) \), by lemma 2.2 c), proposition 1.12 and Lebesgue theorem, we get

\[
-\frac{1}{2} (a(s, \gamma)\gamma', \gamma') - \alpha(\pi_s(\gamma + t\delta) - \gamma) ds + \liminf_{t \to 0^+} \frac{1}{t} \int_0^1 \left\{ \frac{1}{2} \left(a(s, \gamma)(\pi_s(\gamma + t\delta))', (\pi_s(\gamma + t\delta))' \right) + \frac{1}{2} \left(a(s, \pi_s(\gamma + t\delta))(\pi_s(\gamma + t\delta))', (\pi_s(\gamma + t\delta))' \right) ds + \right. \\
+ \int_0^1 (\nabla_q V(s, \gamma), P, \gamma) ds.
\]

Then, by definition 1.1 and lemma 2.3, we get the thesis. □

Lemma 2.5. Let us take \(\alpha \in L^2(0,1; \mathbb{R}^n) \) and \(\gamma \in W^{1,2}(0,1; \mathbb{R}^n) \). Let us suppose that \((\pi_t(s))_t \) holds \(\forall t \in W^{1,2}(0,1; \mathbb{R}^n) \) with \(\delta(0) = \delta(1) \).

Then, by definition 1.1 and lemma 2.3, we get the thesis. □

\[
\liminf_{t \to 0^+} \frac{1}{t} \int_0^1 \left\{ \frac{1}{2} \left(a(s, \gamma)(\pi_s(\gamma + t\delta))', (\pi_s(\gamma + t\delta))' \right) + \frac{1}{2} \left(a(s, \pi_s(\gamma + t\delta))(\pi_s(\gamma + t\delta))', (\pi_s(\gamma + t\delta))' \right) ds \geq \right. \\
\geq -\frac{1}{2} \int_0^1 \left(\frac{\partial a(s, \gamma)}{\partial q} (P, \gamma)\gamma', \gamma' \right) ds.
\]

Lemma 2.5. — Let us take \(\alpha \in L^2(0,1; \mathbb{R}^n) \) and \(\gamma \in W^{1,2}(0,1; \mathbb{R}^n) \) such that \(\gamma(s) \in M, \forall s \in [0,1] \). Let us suppose that (2.4.1) holds \(\forall \delta \in W^{1,2}(0,1; \mathbb{R}^n) \) with \(\delta(0) = \delta(1) \).

Then

\(i) \ \gamma \in W^{2,2}(0,1; \mathbb{R}^n); \quad \gamma_+'(0) = \gamma_-'(1) \)

\(ii) \ \alpha + \frac{d}{ds} (a(s, \gamma)\gamma') + \nabla_q V(s, \gamma) - \frac{1}{2} \frac{\partial a(s, \gamma)}{\partial q} (\gamma', \gamma') \in \partial^- I_M(\gamma(s)) \ a.e. \)

\(iii) \ |\gamma''(s)| \leq \text{const} \left(1 + |\alpha(s)| + |\gamma'(s)|^2 \right) \ a.e. \)
Proof. — Since $|\delta - P_\gamma \delta| \leq |\delta|$, by applying Cauchy-Schwartz inequality to (2.4.1), we obtain $\forall \delta \in W^{1,2}(0,1; \mathbb{R}^n)$ with $\delta(0) = \delta(1)$

$$
\int_0^1 (a(s, \gamma)\gamma', \delta') \, ds \geq -\|\alpha\|_{L^2} \|\delta\|_{L^2} - \text{const} \int_0^1 |\gamma'| (1 + |\gamma'|) |\delta| \, ds +
- \int_0^1 |\nabla q V(s, \gamma)| |\delta| \, ds - \frac{1}{2} \int_0^1 \left| \frac{\partial a(s, \gamma)}{\partial q} \right| |\delta| |\gamma'|^2 \, ds
$$

and then

$$
\left| \int_0^1 (a(s, \gamma)\gamma', \delta') \, ds \right| \leq \left(\|\alpha\|_{L^2} + \text{const} \int_0^1 |\gamma'| \, ds +
+ \text{const} \int_0^1 |\gamma'|^2 \, ds + \text{const} \right) \|\delta\|_{L^\infty}. \quad (2.5.1)
$$

By (2.5.1), we deduce that $a(s, \gamma)\gamma' \in L^\infty$ and

$$
\|a(s, \gamma)\gamma'\|_{L^\infty} \leq \|a(s, \gamma)\gamma'\|_{L^1} + \|\alpha\|_{L^2} +
+ \text{const} \int_0^1 |\gamma'| \, ds + \text{const} \int_0^1 |\gamma'|^2 \, ds + \text{const}. \quad (2.5.2)
$$

On the hand, by hypothesis (1.1)

$$
\nu |\gamma'|^2 \leq (a(s, \gamma)\gamma', \gamma') \leq |a(s, \gamma)\gamma'| |\gamma'|
$$

which implies

$$
\nu \|\gamma'\|_{L^\infty} \leq \|a(s, \gamma)\gamma'\|_{L^\infty}.
$$

Thus, $\gamma' \in L^\infty$ and

$$
\|\gamma'\|_{L^\infty} \leq \frac{1}{\nu} \left(\|a(s, \gamma)\gamma'\|_{L^1} + \|\alpha\|_{L^2} + \text{const} \int_0^1 |\gamma'| \, ds +
+ \text{const} \int_0^1 |\gamma'|^2 \, ds + \text{const} \right). \quad (2.5.3)
$$

By using (2.5.3), we have

$$
\int_0^1 |\gamma'|(1 + |\gamma'|)|\delta| \, ds \leq \|\delta\|_{L^2} \|\gamma'\|_{L^2} + \|\delta\|_{L^2} \|\gamma'|_{L^2}^2 \leq
\leq \|\delta\|_{L^2} \|\gamma'\|_{L^2} + \|\delta\|_{L^2} \|\gamma'|_{L^2} \|\gamma'|_{L^\infty} \leq
\leq \|\gamma'\|_{L^2} \left(1 + \|\gamma'|_{L^\infty} \right) \|\delta\|_{L^2} \leq
\leq \|\gamma'\|_{L^2} \left(1 + \frac{1}{\nu} \left(\text{const} \|\gamma'\|_{L^1} + \|\alpha\|_{L^2} +
+ \text{const} \|\gamma'||_{L^2}^2 + \text{const} \right) \right) \|\delta\|_{L^2}. \quad (2.5.4)
$$
Since,
\[\frac{1}{2} \int_0^1 \left| \frac{\partial a(s, \gamma)}{\partial q} \right| |\delta| |\gamma'|^2 \, ds \leq \text{const} \|\delta\|_{L^2} \|\gamma'\|_{L^4}^2 \]

by (2.4.1) and (2.5.4), we have
\[
\left| \int_0^1 (a(s, \gamma) \gamma', \delta') \, ds \right| \leq \\
\leq \left[\|\alpha\|_{L^2} + \text{const} \|\gamma'\|_{L^2} \left(1 + \|\gamma'\|_{L^1} + \|\alpha\|_{L^2} + \|\gamma'\|_{L^2}^2 \right) + \\
\text{const} \|\delta\|_{L^2} \right] \leq \\
\leq \left[(1 + \text{const} \|\gamma'\|_{L^2}) \|\alpha\|_{L^2} + \\
+ \text{const} \|\gamma'\|_{L^2} \left(1 + \|\gamma'\|_{L^1} + \|\gamma'\|_{L^2}^2 \right) + \text{const} \right] \|\delta\|_{L^2}.
\]

So, we can conclude that
\[a(s, \gamma) \gamma' \in W^{1,2}(0, 1; \mathbb{R}^n). \]

Moreover, by (2.4.1), we deduce that
\[\left| \frac{d}{ds} (a(s, \gamma) \gamma') \right| \leq \text{const} \left(1 + |\alpha| + |\gamma'|^2 \right) \quad \text{a.e. in } [0, 1[. \]

It remains to prove that \(\gamma' \in W^{1,2}(0, 1; \mathbb{R}^n) \). By hypothesis (1.1), we have
\[
\nu^2 \frac{|\gamma'(s_2) - \gamma'(s_1)|^2}{|s_2 - s_1|} \leq \\
\leq \frac{|a(s_1, \gamma(s_1)) (\gamma'(s_2) - \gamma'(s_1))|^2}{|s_2 - s_1|} = \frac{\mathcal{N}}{|s_2 - s_1|} \leq \\
\leq 2 \frac{|a(s_2, \gamma(s_2)) \gamma'(s_2) - a(s_1, \gamma(s_1)) \gamma'(s_1)|^2}{|s_2 - s_1|} + \\
+ 2 \frac{|a(s_2, \gamma(s_2)) - a(s_1, \gamma(s_1))| \gamma'(s_2)^2}{|s_2 - s_1|}. \tag{2.5.6}
\]

where
\[\mathcal{N} = |a(s_2, \gamma(s_2)) \gamma'(s_2) - a(s_1, \gamma(s_1)) \gamma'(s_1) + \\
- [a(s_2, \gamma(s_2)) - a(s_1, \gamma(s_1))] \gamma'(s_2)^2|. \]
Since $a(y), a(s, y)y' \in W^{1,2}(0,1; \mathbb{R}^n)$ and $y' \in L^{\infty}(0,1; \mathbb{R}^n)$, we deduce that

$$y' \in W^{1,2}(0,1; \mathbb{R}^n)$$

and

$$|y''| \leq \frac{1}{\nu} \left(\left| \frac{d}{ds} \left(a(s, y) \gamma' \right) \right| + \left| \frac{d}{ds} \left(a(s, y) \right) \right| \right) \leq \text{const} \left(1 + |\alpha| + |\gamma'|^2 \right) \text{ a.e. in }]0,1[.$$

If we set

$$\tilde{\gamma}(s) = \begin{cases}
\gamma(s + \frac{1}{2}) & 0 \leq s \leq \frac{1}{2} \\
\gamma(s - \frac{1}{2}) & \frac{1}{2} \leq s \leq 1
\end{cases}$$

it turns out that $\tilde{\gamma}$ also satisfies (2.4.1) with a, V and α substituted by other suitable maps. It follows that

$$\tilde{\gamma} \in W^{2,2}(0,1; \mathbb{R}^n),$$

hence

$$\gamma'_+(0) = \gamma'_-(1).$$

Since $\partial^- I_M(\gamma(s))$ is a closed convex cone, to prove ii) is equivalent to prove that a.e. $\forall \eta \in (\partial^- I_M(\gamma(s)))^-$

$$\left(\alpha + \frac{d}{ds} \left(a(s, y) \gamma' \right) + \nabla_q V(s, \gamma) - \frac{1}{2} \frac{\partial a(s, y)}{\partial q}(\gamma', \gamma'), \eta \right) \leq 0.$$

Let us define the following functions:

$$\delta_n(s) = \rho_n(s - s_0)\eta, \quad \forall n \in \mathbb{N}$$

where

$$\begin{cases}
s_0 \in]0,1[\text{ is a Lebesgue point for } \alpha \text{ and for } \frac{d}{ds} (a(s, y)\gamma'); \\
\eta \in (\partial^- I_M(\gamma(s_0)))^-; \\
\rho_n \in C_0^\infty(\mathbb{R}), \quad \rho_n \geq 0, \quad \int_0^1 \rho_n \, ds = 1 \quad \text{and} \quad \text{supt } \rho_n \subset \left[-\frac{1}{n}, \frac{1}{n} \right].
\end{cases}$$
Clearly, $\delta_n \in W^{1,2}_0(0, 1; \mathbb{R}^n)$ and then by (2.4.1) we get
\[
- \left(\eta, \int_0^1 \rho_n(s_0 - s) \frac{d}{ds} (a(s, \gamma) \gamma') ds \right) \geq
\geq \int_0^1 \rho_n(s_0 - s)(\alpha(s), P_\gamma \eta)(s) ds +
- \text{const} \int_0^1 \rho_n(s_0 - s) |\eta - P_\gamma \eta| |\gamma'| ds +
- \text{const} \int_0^1 \rho_n(s_0 - s) |\eta - P_\gamma \eta| |\gamma'|^2 ds +
+ \int_0^1 \rho_n(s_0 - s)(\nabla_q V(s, \gamma), P_\gamma \eta)(s) ds +
- \frac{1}{2} \int_0^1 \rho_n(s_0 - s) \left(\frac{\partial a(s, \gamma)}{\partial q} (P_\gamma \eta) \gamma', \gamma' \right) ds. \tag{2.5.7}
\]

By proposition 1.13, $P_\gamma \delta$ is continuous at s_0, hence passing to the limit as $s \to s_0$ in (2.5.7), we obtain
\[
- \left(\eta, \frac{d}{ds} (a(s_0, \gamma(s_0)) \gamma'(s_0)) \right) \geq
\geq (\alpha(s_0), (P_\gamma \eta)(s_0)) - \text{const} |\eta - P_\gamma \eta|(s_0) |\gamma'|^2(s_0) +
- \text{const} |\eta - P_\gamma \eta|(s_0) |\gamma'|(s_0) + (\nabla_q V(s_0, \gamma(s_0)), P_\gamma \eta)(s_0) +
- \frac{1}{2} \left(\frac{\partial a(s_0, \gamma(s_0))}{\partial q} (P_\gamma \eta)(s_0) \gamma'(s_0), \gamma'(s_0) \right) =
= (\alpha(s_0), \eta(s_0)) + (\nabla_q V(s_0, \gamma(s_0)), P_\gamma \eta)(s_0) +
- \frac{1}{2} \left(\frac{\partial a(s_0, \gamma(s_0))}{\partial q} (P_\gamma \eta)(s_0) \gamma'(s_0), \gamma'(s_0) \right) \text{ a.e. in }]0, 1[. \ Square
\]

Finally, we are able to prove theorem 2.1.

Proof of theorem 2.1
As a direct consequence of lemmas 2.4 and 2.5, we get
\[
\gamma \in W^{2,2}(0, 1; \mathbb{R}^n), \quad \gamma'_+(0) = \gamma'_-(1)
\]
and
\[
|\gamma''(s)| \leq \text{const} \left(1 + |\alpha(s)| + |\gamma'(s)|^2 \right) \text{ a.e. in }]0, 1[.
\]

- 54 -
If $0 \in \partial^+ f(\gamma)$, it is evident that

$$\gamma'' \in L^\infty(0, 1; \mathbb{R}^n). \quad \square$$

Now, let us prove two properties of f.

Theorem 2.6. The functional $f : L^2(0, 1; \mathbb{R}^n) \to \mathbb{R} \cup \{\pm \infty\}$ is lower semicontinuous and there exists a continuous function $\theta : \mathbb{R} \to \mathbb{R}$ such that

$$f(\gamma + \delta) - f(\gamma) - \int_0^1 (\alpha, \delta) \, ds \geq -\theta(f(\gamma)) \left(1 + \|\alpha\|_{L^2}^2 \right) \|\delta\|_{L^2}^2$$

whenever $\gamma, \gamma + \delta \in X$ and $\alpha \in \partial^+ f(\gamma)$.

In particular, f has a φ-monotone subdifferential of order two.

Proof. Let us take a sequence $\{\gamma_n\}_n \subset X$ such that

$$\lim_{n} \gamma_n = \gamma \text{ in } L^2(0, 1; \mathbb{R}^n) \text{ and } f(\gamma_n) \leq c.$$

In order to prove that f is lower semicontinuous, it is enough to prove that $f(\gamma) \leq c$. Since,

$$\frac{1}{2} \int_0^1 (a(s, \gamma_n)\gamma_n', \gamma_n') \, ds - \int_0^1 V(s, \gamma_n) \, ds \leq c$$

and by hypothesis (1.1)

$$\int_0^1 (a(s, \gamma_n)\gamma_n', \gamma_n') \, ds \geq \nu \int_0^1 |\gamma_n'|^2 \, ds$$

we can deduce that $\{\gamma_n\}_n$ is bounded in $L^2(0, 1; \mathbb{R}^n)$ and thus, by the compactness of M, γ_n weakly converges to γ in $W^{1,2}(0, 1; \mathbb{R}^n)$. Besides, L is continuous in the three variables and convex in the third one, so it is weakly lower semicontinuous in $W^{1,2}(0, 1; \mathbb{R}^n)$. This implies

$$\frac{1}{2} \int_0^1 (a(s, \gamma)\gamma', \gamma') \, ds - \int_0^1 V(s, \gamma) \, ds \leq \liminf_{n} \frac{1}{2} \int_0^1 (a(s, \gamma_n)\gamma_n', \gamma_n') \, ds - \int_0^1 V(s, \gamma_n) \, ds \leq c.$$

Moreover, $\{\gamma_n\}_n$ converges uniformly to γ. Since M is closed, then $\gamma \in X$.

- 55 -
Now, let us take \(\gamma \in X \cap W^{2,2}(0, 1; \mathbb{R}^n) \), with \(\gamma_+(0) = \gamma'_+(0) = 1 \) and \(\alpha \in \partial f(\gamma) \). Let \(\delta \in W^{1,2}(0, 1; \mathbb{R}^n) \) with \(\delta(0) = \delta(1) \) be such that \(\gamma + \delta \in X \). Then, by Taylor’s formula, we have:

\[
f(\gamma + \delta) - f(\gamma) - \int_0^1 (\alpha, \delta) \, ds =
\]

\[
= \frac{1}{2} \int_0^1 \left(a(s, \gamma + \delta)(\gamma' + \delta'), (\gamma' + \delta') \right) \, ds - \frac{1}{2} \int_0^1 (a(s, \gamma)\gamma', \gamma') \, ds +
\]

\[
- \int_0^1 V(s, \gamma + \delta) \, ds + \int_0^1 V(s, \gamma) \, ds - \int_0^1 (\alpha, \delta) \, ds =
\]

\[
= \frac{1}{2} \int_0^1 \left(\frac{\partial a(s, \gamma)}{\partial q}(\delta)\gamma', \gamma' \right) \, ds - \int_0^1 \left(\nabla_q V(s, \gamma), \delta \right) \, ds +
\]

\[
+ \int_0^1 \left(a(s, \gamma)\gamma', \delta' \right) \, ds - \int_0^1 (\alpha, \delta) \, ds +
\]

\[
+ \frac{1}{4} \int_0^1 \left(\frac{\partial^2 a(s, \gamma)}{\partial q^2}(\delta)^2 \gamma', \gamma' \right) \, ds - \frac{1}{2} \int_0^1 \left(\nabla_{qq} V(s, \gamma) \delta, \delta \right) \, ds +
\]

\[
+ \frac{1}{4} \int_0^1 \left(\frac{\partial a(s, \gamma)}{\partial q}(\delta), \delta' \right) \, ds + \frac{1}{4} \int_0^1 \left(a(s, \gamma)\delta', \delta' \right) \, ds
\]

where \(\tilde{\gamma} = \gamma + t\delta \) for some \(t = t(s) \in]0, 1[\). Reordering terms, by hypothesis (1.1), we get:

\[
f(\gamma + \delta) - f(\gamma) - \int_0^1 (\alpha, \delta) \, ds \geq
\]

\[
\geq \frac{1}{2} \int_0^1 \left(\frac{\partial a(s, \gamma)}{\partial q}(\gamma', \gamma') - \nabla_q V(s, \gamma) - \frac{d}{ds} (a(s, \gamma)\gamma') - \alpha, \delta \right) \, ds +
\]

\[
- \left(\frac{1}{4} \left\| \frac{\partial^2 a(s, \gamma)}{\partial q^2} \right\|_{L_\infty} \| \gamma' \|^2_{L_2} + \frac{1}{2} \left\| \nabla_{qq} V(s, \gamma) \right\|_{L_\infty} \| \delta \|^2_{L_\infty} \right) +
\]

\[
- \frac{1}{4} \left\| \frac{\partial a(s, \gamma)}{\partial q} \right\|_{L_\infty} \| \delta \|_{L_2} \| \delta' \|_{L^2} + \frac{\nu}{2} \| \delta' \|^2_{L_2}.
\]

Thus, by \(p \)-convexity of \(M \), we get:

\[
f(\gamma + \delta) - f(\gamma) - \int_0^1 (\alpha, \delta) \, ds \geq
\]

\[
\geq - \left(\frac{1}{2} \left\| \frac{\partial a(s, \gamma)}{\partial q} \right\|_{L_\infty} \| \gamma' \|_{L_2} + \| \nabla_q V(s, \gamma) \| +
\]

\[
+ \left\| \frac{d}{ds} (a(s, \gamma)) \gamma' + a(s, \gamma)\gamma'' \right\|_{L_1} + \| a \|_{L_1} \right) \| \delta \|_{L_\infty} +
\]

- 56 -
Using the interpolation inequality:

\[\| \delta \|_{L^\infty}^2 \leq \| \delta \|_{L^2}^2 + 2 \| \delta \|_{L^2} \| \delta' \|_{L^2} \]

we obtain:

\[
 f(\gamma + \delta) - f(\gamma) - \int_0^1 (\alpha, \delta) \, ds \geq \\
 \geq -\text{const} \left(\| \gamma'' \|_{L^1} + \| \alpha \|_{L^1} \right) \left(\| \delta \|_{L^2}^2 + 2 \| \delta \|_{L^2} \| \delta' \|_{L^2} \right) + \\
 -\text{const} \| \gamma' \|_{L^2} \left(\| \delta \|_{L^2}^2 + 2 \| \delta \|_{L^2} \| \delta' \|_{L^2} \right) + \\
 -\text{const} \left(\| \delta \|_{L^2} \| \delta' \|_{L^2} + \| \delta \|_{L^2}^{1/2} \| \delta' \|_{L^2}^{3/2} \right) + \frac{\nu}{2} \| \delta' \|_{L^2}^2.
\]

Thus, by theorem 2.1 and hypothesis 1.1, we are able to conclude that:

\[
 f(\gamma + \delta) - f(\gamma) - \int_0^1 (\alpha, \delta) \, ds \geq -\theta(f(\gamma)) \left(1 + \| \alpha \|_2^2 \right) \| \delta \|_{L^2}^2. \quad \Box
\]

Theorem 2.7. — Let us consider \(\alpha \in L^2(0,1;\mathbb{R}^n) \) and \(\gamma \in X \cap W^{2,2}(0,1;\mathbb{R}^n) \) with \(\gamma^+(0) = \gamma^-(1) \). Then \(\alpha \in \partial^- f(\gamma) \) if and only if

\[
 \alpha(s) + \frac{d}{ds} (a(s, \gamma) \gamma') + \nabla_q V(s, \gamma) - \frac{1}{2} \frac{\partial a(s, \gamma)}{\partial q} (\gamma', \gamma') \in \partial^- I_M(\gamma(s)) \text{ a.e.}
\]

Proof. — If \(\alpha \in \partial^- f(\gamma) \), we have the thesis by lemmas 2.4 and 2.5. Viceversa, if

\[
 \alpha(s) + \frac{d}{ds} (a(s, \gamma) \gamma') + \nabla_q V(s, \gamma) - \frac{1}{2} \frac{\partial a(s, \gamma)}{\partial q} (\gamma', \gamma') \in \partial^- I_M(\gamma(s)) \text{ a.e.}
\]

the proof of theorem 2.6 shows that \(\alpha \in \partial^- f(\gamma) \). \(\Box \)

Finally, we can state the already quoted characterization.
THEOREM 2.8. — Let us consider \(\gamma \in X \). Then \(0 \in \partial^- f(\gamma) \) if and only if \(\gamma \in W^{2,\infty}, \gamma'_+(0) = \gamma'_-(1) \) and

\[
\alpha(s) + \frac{d}{ds} (a(s, \gamma) \gamma') + \nabla_q V(s, \gamma) - \frac{1}{2} \frac{\partial a(s, \gamma)}{\partial q} (\gamma', \gamma') \in \partial^- I_M(\gamma(s)) \text{ a.e.}
\]

Proof. — If \(0 \in \partial^- f(\gamma) \), from theorem 2.1 \(\gamma \in W^{2,\infty}(0, 1; \mathbb{R}^n) \) and \(\gamma^+(0) = \gamma^-(1) \). Moreover from theorem 2.7

\[
\alpha(s) + \frac{d}{ds} (a(s, \gamma) \gamma') + \nabla_q V(s, \gamma) - \frac{1}{2} \frac{\partial a(s, \gamma)}{\partial q} (\gamma', \gamma') \in \partial^- I_M(\gamma(s)) \text{ a.e.}
\]

Viceversa, it is enough to apply theorem 2.7 with \(\alpha = 0 \). \(\square \)

3. The category of the space of the admissible paths

After theorem 2.8, our goal is to prove the existence of infinitely many lower critical points for \(f \) on \(X \) by means to theorem 1.7. Therefore, let us investigate the topological properties of \(X \).

If \(Y \) is a topological space, we will denote by \(\Lambda(Y) \) the free loop space of \(Y \).

Let us recall that in [5], using results contained in [12], [13] and in [19], it is proved the following theorem.

THEOREM 3.1. — (see theorem 3.3 in [5]) Let \(A \) be an open subset of \(\mathbb{R}^n \), connected and non-contractible in itself. Moreover, let us suppose that either

i) \(\pi_1(A) \) has infinitely many conjugacy classes

or

ii) \(\pi_1(A) \) has a finite number of elements.

Then \(\text{cat } \Lambda(A) = +\infty \).

Now, let us consider \(X \) endowed with the \(W^{1,2} \)-topology and the space

\[
\Lambda(M) = \{ \gamma \mid [0, 1] \rightarrow M, \gamma \text{ is continuous and } \gamma(0) = \gamma(1) \}
\]

endowed with the uniform topology.
THEOREM 3.2. — (see theorem 4.5 in [4]) The inclusion map \(i : X \to \Lambda(M) \) is a homotopy equivalence.

Now, we are able to evaluate the category of \(X \).

THEOREM 3.3. — Let \(M \subset \mathbb{R}^n \) be a connected, non-contractible in itself, compact \(p \)-convex set. Let us suppose that either

i) \(\pi_1(M) \) has infinitely many conjugacy classes

or

ii) \(\pi_1(M) \) has a finite number of elements.

Then \(\text{cat}(X) = +\infty \).

Proof. — Let us consider \(A \), the open subset of \(\mathbb{R}^n \) defined in Remark 1.10. Clearly, \(M \) is a deformation retract of it. Then, \(A \) is homotopically equivalent to \(M \) and \(\Lambda(A) \) is homotopically equivalent to \(\Lambda(M) \). By applying theorems 3.1 and 3.2, the proof is over. □

Finally, we are able to prove the main theorem.

Proof of theorem 1.4

We want to apply theorem 1.7. Let us consider the functional \(f \) defined in section 2. By hypothesis (1.1) and theorem 2.6, \(f \) is a lower semicontinuous function, bounded below and it has a \(\varphi \)-monotone subdifferential of order two.

Moreover, let us observe that \(D(f) = X \) and that \(d^* \) induces the \(W^{1,2} \)-topology on \(X \). By theorem 3.3, \(\text{cat}(D(f), d^*) = +\infty \).

Now, we will consider a sequence \(\{\gamma_h\}_h \subset D(\partial^- f) \) with \(\sup_h f(\gamma_h) < +\infty \) and \(\lim_h \text{grad}^+ f(\gamma_h) = 0 \). Since \(M \) is compact, \(\{\gamma_h\}_h \) is bounded in \(L^2(0, 1; \mathbb{R}^n) \). But also \(\{\gamma'_h\}_h \) is bounded in \(L^2(0, 1; \mathbb{R}^n) \). Thus, by Rellich's theorem, \(\{\gamma_h\}_h \) has a subsequence converging in \(L^2(0, 1; \mathbb{R}^n) \).

So, applying theorem 1.7 and theorem 2.8, the thesis follows. □

References

