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Smoothness effect and decay
on a class of non linear evolution equation

JAIME E. MUÑOZ RIVERA(1)

Annales de la Faculté des Sciences de Toulouse Vol I, nO 2, 1992

RÉSUMÉ. 2014 Nous nous proposons dans ce travail de prouver l’existence

de solutions du système Utt + M II A1/2u(t) I~ 2 Au + Aut = 0, avec les
conditions initiales u(0) = uo E D(A), ut(0) = ui E H, qui décroissent
uniformément quand t -~ +00 et ont la propriété de regularisation des
conditions initiales, c’est-à-dire si uo E D(A) et ui E H alors la solution
du système satisfait u E C2 (] 0 , T ~ D(Ak)) V l~ E IN.
ABSTRACT. - Our aim in this paper is to prove the existence of solution

for system utt + M ( !!~~u(~) ) = 0, with initial data u(0) =
UO, = u in D ( A) and H respectively, which decay uniformly as time
goes to infinity and has the smoothness effect property on the initial data
uo and that is if uo and ui belong to D(A) and H respectively then
the corresponding solution satisfies u E C2 (] 0 , T’~ ; D(Ak)) ~d k E IN.
KEY - WORDS: Existence, smoothness effect, asymptotic behaviour.

1. Introduction

Several authors have studied the existence of solutions for the semilinear

wave equation given by

utt - M II ~u(~) il 2 Du = 0 , , u(0) = uo , ut(0) = ui (1.1)

but until now is not proved the existence of global solution when the initial
data is taken in the usual Sobolev’s spaces, in this direction all the literature
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concerning this equation is about the existence of local solution. Moreover
when the initial data uo and 1~1 are taken in and respectively
it is not known the existence even for local weak solutions. The existence
of global solutions is proved only for analytical initial data, see for example
the work of Berstein [2], Pohozaev [6], and Arosio &#x26; Spagnolo [1].

In order to obtain global solution for a class of equations relative to (1.1),
several authors ([7], [8], [9] to name but a few) have considered damping
terms as A2u, Aut or which gives strong estimates resulting in the
convergence of the nonlinear term, showing in this way global existence
results. In Nishihara [9], for example, the author studies the equation

~ + M + Aut = 0, , u(0) = uo , ut(0) = ui (1.2)

and proved the existence and uniqueness of global solution satisfying

when H is a Hilbert space and the following hypotheses hold.

HI .2014 A is a positive selfadjoint operator of H such that D(A) has
compact imbedding in H. .

H2 .2014 M is c no;negative 

H3 .2014 uo and ui are given in D(A) and D(A1~2~ ) respectively.
Other weaker dissipative mechanism was studied by Ikehata and Okazawa

[3], the authors introduce the friccional damping term ut and show, by using
the Yosida’s aproximation method together with compactness arguments,
the existence of global solution provided the initial data is small enough.
This case is different to others studied in [7], [8] and [9] because the

compactness method is not enough to obtain global solutions for large data
when considered the friccional damping ut.

Concerning the asymptotic behaviour Nishihara [9] proves when M(s) =
sand uo and ui are given in D(A3/2), that the solution u(t) satisfies the



following decay properties.

where +00 when E -~ 0.

This rate of decay was improved in Matos and Pereira [6], by removing f
in the above inequalities. It is not possible to prove the exponential decay
(as is expected when hypothesis H1 holds) because M(0) = 0, that is, the
equation is degenerate. In this direction Nishihara [10] shows that the rate
obtained in [6] is optimal, that is

On the other hand, when M(s) > mo > 0, Nishihara [9] pointed out that
the exponential decay holds, latter Zuazua [12] proved the exponential decay
for a general class of hyperbolic equations with damping terms.

To the best of my knowledge there is no result concerning the smoothness
effect for equation (1.2).

In this paper we will discuss about some properties which the damping
term Aut produces on the solution of equation (1.2), such as global existence,
regularity, decay and also the smoothness effect property on the initial data,
this means that the solution of (1.2) satisfies u E C2 (~ 0 , D(A°° ))
where = no matter the regularity of the initial data
have, whenever they are taken in a suitable space (in D(A) x H for example)
in order to obtain the existence result. Smoothness effect is not expected
for any non negative continuous function M; in fact if uo is such that

= 0, then the function t H u(t) = uo is the solution of

(1.2) when ui = 0, therefore we have no smoothness effect in this case.
In section 2 we will prove that the smoothness effect holds for any non

negative continuous function satisfying > 0. Existence as

well as regularity result are also proved in this section.

Finally in section 3 we will prove that the solution of equation (1.2)
decays uniformly as time goes to infinity.



2. Existence and regularity

Let M : [ 0 , -~ ~ [ 0 , [ be a non negative continuous function and
A satisfying H1. By a weak solution of system (1.2) we mean a function

u ( 0 , ~ [ ~ D(A1/2)

satisfying

for any w in 

It is well known that there exists sequences i~IN and i~IN of

eigenfunctions and eigenvalues of A such that E is an orthonormal
set and Ai  ~12  ~ ~ ~  Ài -~ oo as i -~ oo. Let us denote by

If uo and ui belongs to D(A) and H respectively we have that the following
convergence holds

Finally by Vm we will denote the space generated by the first m eigenvectors.
In this conditions there exists a local solution on some interval

[ 0, Tm ~, for the ordinary differential equation given by

for any wand Vm and = 
.

Moreover if M is locally Lipschitz this solution is unique.



THEOREM 2.1 (Existence). - Let M be a non negative locally Lipschitz
function. If uo E D(A) and ul E H then there exist a unique global weak
solution of ~1.~~ in the sence of ~,~.1~ satisfying

Moreover the identity

holds for any t > 0, where E is given by

and

Proo, f - In order to facilitate our analysis we will denote by

Taking w = in (2.2) and integrating the expresion result we have

for t E ~ 0 Tm ~. Taking instead of w in (2.2) we obtain

Substitution of

in (2.6) yields



for t E [0, Tm [. From relation (2.7) we obtain

so we have

By using (2.5) in the above inequality we obtain

for t E [0, Tm [. Let’s take w = Au(m) in (2.2) then it follows

Integration in time yields

which implies that



From (2.5) and (2.9) we conclude that the interval ~ 0 Tm ~ can be
extended to the whole interval [ 0, -t-oo [. Moreover we have that

is bounded in L2([0,T]; ; D(A1/2)~ (2.10)
is bounded in ([ 0, T~ ; D(A)~ . (2.11~

For any T > 0. From Lions-Aubin’s theorem (see [4] p. 58, th 5.1) we
conclude that there exists a subsequence (which we still denoting in the
same way) satisfying

Since t H is bounded in T ~ ), by the last convergence
and the Lebesgue’s dominated convergence theorem we have that

- strongly in 

so is a Cauchy sequence in L2 ( ~ 0, T ~ ) therefore, for
any E > 0, there exists N > 0, such that

Our next goal is to prove that and are Cauchy sequences in
C(~ 0 , T ~ D(A)) and C(~ 0 , T ~ H) respectively. In order to prove this

fact let us take m and  any positive natural numbers such that m and

let us define = 0 for Jl  i G m. In this conditions we can conclude

that both and are aproximation solutions of system (1.2) in Vm.
Let us denote by U(m) the Cauchy difference given by

JT~) _ ,

Since and are Cauchy sequences in D(A) and H respectively,
then there exist N > 0, such that



On the other hand, from (2.2) we have that satisfies

Since u(m) is bounded in H so is I~~’’’z~, taking w = in (2.14) and
using (2.12) we have

from where it follows

Integrating the above inequality and applying the relation

for A1~2U{’’’’z~ instead of w, we obtain

For some positive constant C depending only on the initial data. Applying
Gronwall’s inequality and relation (2.13) we conclude that is a Cauchy
sequence, then we have

strongly in ~([0, , T ~ ; D A1 /2
-+ Ut strongly in C ( 0 , T ~ ; H .



Taking w = in relation (2.14) and applying the same above
reasoning we conclude that u(m) is a Cauchy sequence in C([0, T]; ; D(A))
then

-; ~u strongly in C(~ 0 , , T ~ ; D(A)) .

From the uniform convergence follows that u and ut satisfies the initial
conditions therefore u is a weak solution of equation (1.2). By using the
same method as in [9] we conclude the uniqueness. Finally since identity

(2.5) holds for any m E IN , by the strong convergence of 

easily follows that the energy identity (2.4) holds for any positive value of t.
The proof is now complete. 0

Remark 2.1. - It is well known that for any v E H the following
properties holds

Therefore if u denotes the solution of (1.2) in the sence of theorem 2.1 we
have

It is not difficult to prove that the convergence of the above series is

uniformly on bounded set of R+.
From now on gi(t) = ( u ( t ~ , and = where u is the

solution of (1.2). Since and are Cauchy sequences in Hand D ( A)
respectively we conclude that there exists 03C3 > 0 satisfying

In this conditions we will define as

Mo = sup~M(s); s E [0, r]} .
Let us denote by the following function



Finally by u we will denote the solution of (1.2) or its restriction over any
subinterval of 0 , oo [.
We will conclude the smoothness effect property of u by studing the

behaviour of the functions gi defined above.

LEMMA 2.1. - Under the hypotheses of theorem Z.1 and for any i > I,
where I is such that .1I > 16 Mo, the following inequality holds

Hi(t)  HZ(0) for any t > 0 . (2.15)

Proof . For simplicity we will denote by a(t) = M (I A1/2u(t) (I 2 , then
projecting equation (1.2) on IR wi we have

+ -~- ai9i(t) = 0 (2.16)

multiplying equation (2.16) by gZ (t ) we obtain

From where it follows

Let us denote by = By (2.16) we have that

Multiplying equation (2.18) by 2Mo and adding the product result to

inequality (2.17), for 16 Mo we have



In particular

multiplying by this inequality by e-it and integrating in time, the result
follows. 0

In order to conclude the regularity result let us introduce the following
space

W(a,b) = u E b]; ut E L2 (~ a ~ b> ; D(~’~))
where a and ,Q are positive real numbers, this space with the norm

is a Hilbert space (see ~5~ ). The following lemma will play and important
role in the sequel

LEMMA 2.2. - With the above notations we have

W(a, b) C C ~[ a , b~ ; D(A(«+~~I2)~
and

Moreover if ,Q > a then for any E > 0 we have

W(a, b) C b ; 

and

Proof. - Since there exist an extension operator P defined in W(a, b)
into W(R), we can suppose that a = 2014~ and b = (see Lions [5]). Since
the space is dense in W(R) (where 03B3 = it is

sufficient to prove that for any u in relation (2.20) holds.
First note that the function t ~ (u(t~ belongs to L2 (IR) for any i E IN,
then by using the Fourier transform



we have

taking 03C3 = 03BB03B2-03B1i  we have

summing up from 1 to m letting m --~ oo, (2.20) follows. Finally let us
suppose that ,Q > a and a, b E IR from (2.20) we obtain that

since

Aplication of (2.20) yields



where C2 = C ~C(b - a~ -~-1~ . Applying (2.20) for ,Q + 2-2 (a - ~C3~ instead of
a we have

where C3 = - a) + 1~ . . Repeating this process n times we conclude

where G‘n = a) + 1]. . Finally taking E > 0, there exist n such
that 2-n(,~3 - a)  E, so we have

r~-I-2 n(a-~~ >~-Ea

then the result follows. 0

Remark 2.2. - Let I be any natural number, and v1, v2 in L 2 ( a, b ] ; H)
and L°° ( a, b ] ; H) respectively such that

where C is a positive constant which does not depend on m. Then it follows
that

v1 ~ L2 ([ a , b ] ; ; D(Al)) and v2 E L°° ([ a , b] ; D(Al)) .

In fact since



By hypoteses on vi and v2 the second member of the last inequality is
bounded then there exist a positive constant Ci which does not depend on
m such that

Letting oo and using remark 2.1 our assertion follows. 0

COROLLARY 2.1. - Let M be a non negative continuous function and
.~ > 1. If uo E and ~ul E D~A~-1~2~, then the solution of equation
(1.2) satisfies

u E C t~ U , +°° ~ ; n ([ 4 ~ ~°° ~ 

and

ut E Ct~ 0 ~ +00]; D(A~ 1~2~1 +~ ~ ~ D~A.e 1/2~~ .

Proof. - Multiplying relation (2.15) by a2~ and integrating in time the
product result we obtain

Let us denote by I the first natural number for which we have

03BBI ~ 16 M0.

Then summing up the above inequality fomr I to m we have

For some positive constant G‘. Since u, ut E L°° ( [ 0 , T ]; H) remark 2.2
implies

ut E LZ ([ ~ , Z’] ; D(A~~~ and u E L°’° ([ 0 , T ~ ; D(A~)~ .



B y lemma 2.2 we have u E . Finally ( 1.2 ) yields
utt E L 2 ( ~ o , T ~ ; D ( A~-1 ) ) and since ut ~ L 2 ( ~ o , T ~ D(Al)) from lemma
2.2 the result follows. 0

In order to prove the smoothness effect we will define the auxiliarity
function as

In this conditions we have

LEMMA 2.3. - Under the hypotheses of theorem ,~.1 and M E CI , such
that > 0, there exist C > 0 and r~ > 0 for which the following
inequality holds

+  + , d ~ E n~

for any i > I, where aI > 32 M0.

Proof. - Differentiating in time equation (2.16) we obtain

Multiplying (2.21) by we have

but the inequalities

and

holds for any t > 0; therefore using the fact that a~t)  Mo we conclude
that

Let us denote by = gi (t ) g2’ (t ) . Differentiating 03C8i and using (2.21) we
obtain



Multiplying equation (2.23) by 4Mo and adding up the relation result to
inequality (2.22) we obtain

32
For A~ ~ 2014 Mo, 

we have that

From (2.19) we conclude that

On the other hand, since a(0 = > 0 there exist r~ > 0 for

which we have

Taking C = where r = 8 ( 1 + 16 M20)~a’ ~2~/{a(0)M0} and
II a’ i) ~ - sup I a~(t~ ( 2 ; t E ~ U , T ~ we have

then

multiplying by and intregrating in time, the result follows. 0



Our next goal is to prove that for any 03B4 > 0, small enough, the solution
u of equation (1.2) satisfies the following property

,~(~) ? ut(S) E D(A°°) 

which together with corollary 2.1 implies that the solution of equation (2.2)
with initial datum given by u(b ), ut (b satisfies

u E G‘1 ~~b ~ z’~ 
that implies, by the uniqueness and the arbitrary choose of b, that the
solution u satisfies the smoothness effect property.

LEMMA 2.4. - Under the hypotheses and notations of lemma ,~.3 let us

suppose that

u E ~ ’~~ 

for 0  b  r~ and s a positive real number. In this conditions we have

u~ and utt E (~ ~ , r~ ~ .

Proof. - It is easy to see that

Recalling the definition of Jj and Hi we have

therefore

From lemma 2.2 and lemma 2.3 we have



Denoting by

inequalities (2.24) and (2.25) yields

On the other hand the hypotheses on u implies that there exist a constant
C which does not depend on m satisfying

Therefore multiplying inequality (2.25) and (2.26) by summing up the
product result from I to m and using remark 2.2 we obtain

ut and utt E L°° ~~ b , ~? ~ ; D~As ~~ ,

as requerided. []
Now we are in condition to prove the main result of this paper.

THEOREM 2.2. - Under the hypotheses of lemma 2.3, the solution u of
(1.2) satisfies

u E C2 t~ 0, ~ .

Proof. - We will prove that u E C2 ~~ b , T ; for any natural
number n. In fact since u E C~~ 0 , , T ~ ; D~A~~, from lemma 2.4 we conclude
that

ut, utt E L°° ([ b , ~] ; D(A))

from where it follows that

utt = -a(t)Au - Aut E ([03B4, ~] ; D(A)) for 03B4  t  ~

which is equivalent to



Denoting by

we have that

therefore it follows that

On the other hand since

w E L°° (~ b , r~ ~ D(A)) (2.28)

from (2.27), (2.28) and the second part of lemma 2.2 we conclude that

vEC’(~~?~~;D(~2 2 lE))~ ,
for a small e > 0. That is, we have that

,u E ~-‘(~b ! ~~ ; D(A2 2 lE)) . .

Repeating this reasoning, from lemma 2.4, we obtain that

a utt E L°° (~ ~ , ~I ~ ~ ~(A2 2 1E)) ~
by (1.2) we have that

and

therefore we have that

From (2.28), (2.29), and the second part of lemma 2.1, we obtain

U E [ ~ ~ D(~3 2 lE 4 1 El~ .



Repeating this reasoning n -~- 1 times we conclude that

u E ~‘(~b , n~ ,

where

By lemma 2.4, we obtain that

, utt ~ L~ ([ 03B4 , ~]; D(An+2-03C1)) ,

then by using the first part of lemma 2.1, we conclude that

u E ~ J ~ D(An+1 ~~ .

From corollary 2.1 and for the uniqueness of solutions, we conclude that

u E C1 (~ b , +oo ~ ; 

and from (1.2), we obtain that u E C2 (~ b , +00 [; as requerided. 0

3. Asymtotic Behaviour

In this section we will prove that the solution of equation (1.2) decay
uniformly to zero as time goes to infinity. The method we use here is based
on the construction of a Liapunov functional which its derivativee is negative
proporcional to a power of itself, therefore an uniformly decay holds.

First of all we will prove the following lemma.

LEMMA 3.1.2014 Let f be a C1 function satisfying

where c, C and ,Q are positives constants. Then there exist T > 0 for which
we have

f(t)  C(1 -~- t)-’~ , V t > T .



Proof. - Multiplying the condition on f by e~t and integrating by part
the product result yields

Since the function 03C3 H + 03C3)-03B2-1 is non decreasing for 03C3 ~

((Q + 1 ) /c~ - 1 we have that

From this inequality our result follows. 0

THEOREM 3.1. - Under the hypotheses of theorem 2.1 and M a C1-non

negative monotonic function satisfying

there exist a positive constant C satisfying

Proof . Let us multiply equation (1.2) by ut then we have

Let us define the auxiliarity function p as

differentiating p and using (1.2), we obtain



From (3.4), (3.5) and é small enough we have

From this inequality we conclude that E E On the other hand from

(3.4) it follows that 
.

Integration in time implies that there exist a positive constant C satisfying

E(t) :S C~1-~- t)w .

Here C will denote a generic constant which does not depend on é. Since

M is a increasing function the last inequality implies that I --> 0

as t -~ oo. Then by hypothesis on M we conclude that there exist N > 0
such that

then it follows that

~E(t) + a+1 
 CE(t) . (3.7)

Multiplying (3.6) by C and (3.7) by E and adding the products results, we
have

From where it follows that

On the other hand taking E small enough we have that there exist a
positive constant c such that



From (3.8) and (3.9), (3.1) follows. Since M E C1, we can differentiate
equation (1.2) and multiplying by utt the equation result for t > 0, we have

Since

sustitution in (3.10) yields

Using (3.1) for t > 11T N big enough, we have

Using the above decay result, lemma 3.1 and since

we obtain (3.3). Finally multiplying (1.2) by ut we have that
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from where it follows

using the above decay rates we obtain (3.2). Then our result follows. D
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