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Removable singularities and Liouville-type property
of analytic multivalued functions

TrAN Ncoc Graofl)

RESUME. — Le but de cet article est 1'étude du prolongement des
fonctions analytiques & valeurs multiples. Nous obtenons 'équivalence
entre une propriété du genre Liouville et les ensembles pour lesquels on
peut prolonger ces fonctions.

ABSTRACT. — The purpose of this note is to study removable singulari-
ties for analytic multivalued functions. Moreover, the equivalence between
Liouville-type properties and removable singularities results is proved.

Introduction

Let X a complex space. By F.(X) we denote the hyperspace of non-
empty compact subsets of X.

As in [8] we say that an upper semi-continuous multivalued function
K : X — F,Y), where X and Y are complex spaces, is analytic if for
every open subset W of X and every plurisubharmonic function % on a
neighbourhood of I'g [y, the graph of K on W, the function

po(z) = sup{k/i(??,y) ly € K(m)}

is plurisubharmonic on W.

Analytic multivalued functions (for short: A.M.V. functions) have been
investigated by several authors, in particular by Slodkowski [8, 9] and
Ransford [5, 6, 7.
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In [7], Ransford has proved that every A.M.V. function
K :D— F(V),

where D = {z€C||z|]<1}, D* = D\ {0} and V is either D or
D,, = {z eCr<|zl< s}, 0 < r < s, can be extended analytically to
D.

This note considers a removable-singularity result for A.M.V. functions.
Moreover, the equivalence between a Liouville-type property and extendibil-
ity of A.M.V. functions is proved.

1. Removable-singularities for analytic multivalued functions

An A.M.V. function K : G — F.(Y) is said to be locally compact if for
every z € X there exists a neighbourhood U of z such that K(U N G) is
relatively compact in Y, where G is an open subset of X.

THEOREM 1.1.— Let G be an open set in €™, S a closed subset of G,
Y is a Stein space. Then every A.M.V. function K : G\ S — F¢(Y') can be
eztended analytically to G if one of the following conditions is satisfied

a) S = HN(G\U), where H is an analytic set in G, U is an open subset
of G such that U meets every component of H;

b) S is a set of zero (2n — 2)-Hausdorff measure in G,
¢) S is a pluripolar set in G and K is locally compact.

We first need the following, which is a generalization of the important
result of Wermer [10].

LEMMA 1.2.— Let A be a uniform algebra with Shilov boundary 391 and
U an open subset of €. Let h: U — A be a holomorphic map. Then for
every f € A such that o(f) \ f(Bg) C U, where o(f) is the spectrum of f,
the form

E(3) = {R(Aw) = A(N)(w) |w e FH )}
defines an A.M.V. function on o(f)\ £(89).

Proof . — This is basically Slodkowski’s argument [8]. It is enough to
show that K(A) satisfies condition (ii) of [8, theorem 3], i.e. for every
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polynomial p(A) and for every a, b € C the function A — max |f>\ (K(/\)) \,
where fi(z) = (z — Aa — b)~!exp(p(A)), has local maximum property
in G = {Aeo(f)\F(8)) |ar+bg K(A)}. Let D be a disc such that

~

cdlD C G. Put N = f~1(D) C My, where M, is maximal ideal space of
A, and let B denote the uniform closure of Al x on clV and the form
k= (h(y) —af — b)_1 exp(p(f)), where a, b € € and p is a polynomial,
defines an element of B. Denote

) =(z= - b)_—1 exp(p(})) .

For A, € D, we have

|Tn (by Rossi’s local maximum principle)
< mu{mulg(f_l(k.)‘ ‘ A€ 3D}

= max{max‘f;(K(A)} ) A€ BD} .

Thus the function A — max ‘f)‘ (K(/\)) ‘ has the local maximum property.

The lemma is proved. O

LEMMA 1.3 (Slodkowski’s theorem [9]).— Let G be a bounded pla-
nar domain and K : G — F.(C*) be an A.M.V. function such that
sup ma.xzegiK(:c)I < co. Then there ezists a uniform algebra A and func-
tions f, g1,..-,9r € A such that

i) )?(MA) \ ]?(82) = G, where f denotes the Gelfand transformation
of f, M4 and 8?4 are the mazimal ideal space and the Shilov boundary
respectively of A.

it) §(f_1(w)) = K(z) for every x € G, where 3 = (G1,...,0%)-

LEMMA 1.4.— Let K : G — F.(Y) be an upper semi-continuous
multivalued function, where G is an open subset of € and Y an analytic
set in €F. If K : F — F.(C*) is analytic, then K : G — F,(Y) is also
analytic.

Proof.— We can assume that » = 1. Given ¢ a plurisubharmonic
function on a neighborthood W of T'g [y, where U is an open subset
of G, consider the plurisubharmonic function &(z,w) = ¢(z,§(w)) on
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(id xg)~1(W), where f, g, A are constructed as in lemma 1.3. By [3] we
have

#(z, w) = lim max {c;’ Iogiﬁy(z, w) ‘}
for all (z,w) € (id x§) ™} (W), where h7 are holomorphic maps from U into
A.
Since (id x§) is continuous and W is open, it implies that
(id xg) "1 (W) C (id x3) " (W) =
a(id xg)~ (W) U (id xg)~H(W) C (id xg) (W) U (id xg) "1 (aW) =
a(id xg)~1(W) ¢ (id xg)~H(oW).

By lemma 1.2, the multivalued function
L(z) = {R}(z,w) |w € f}(2)}

is analytic on o(f) \ f(@g) On the other hand F~1(8G) D 89, by Rossi’s
local maximum principle we have

max”?‘?(z’ w) ‘E)(id Xg)~L(W) = m“iﬁy(z’ w”(id xg)~1(8W) "

Since for every sequence of upper semi-continuous function ¥,, ¥ =
lim ¢, point-wise, lim max (¥, [F) = max (¢ [F) on every compact subset F'
[8], and since (id x§)~1(8W) D (id x§)~}(W), it follows that the function
v given by R

7(2) = max{e(z,y) [y € K(2) =3/ (=)}

= max{@(z,y) | w e F1(2)}

is plurisubharmonic on U. Hence the multivalued function K : G — F.(Y)
is analytic.

Proof of theorem 1.1

Without loss of generality we may assume that Y is an analytic set in
C*. Then the function

8(z) = sup{|lull | y € K(2)}

is plurisubharmonic on Gg = G\ S, where S satisfies one of the conditions
a) or b) or c) of the theorem. By [4], # can be extended to a plurisubhar-
monic function on C. This implies that for every zg € S there exists a
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neighbourhood U of zg such that K(U N Gy) is relatively compact. Define
a upper semi-continuous extension of K by

7 K(z) for z € Go
(x) B { {y €Y \ 3 {(I”’y”)} CTk, (17113/11) - (ﬂ:,y)} forz € S.

We prove that K is analytic at every zo € S. Let G’ be an open ball
around zg, G' C G. It suffices to show that I?anG' is analytic for every
complex line L in €". Using the Slodkowski theorem we can find a uniform
algebra A and f, g1,...,9% € A such that

i) §f 1(z) = K(z) forall z € LN (G'\ S);
ii) f(ag) = B(Lﬂ (G'\ 5)).
We have to prove that f(89)N(L\G') = 0.

Suppose the contrary. Then there exists a complex line L in €™ such
that f(ag) N(LNG') # 0. Since K is analytic on G'\ S, it follows that

~

f(ag)ﬂ(Lﬁ(G’\S)) = 0. Hence there exists wg € 89 such that f(wo) = zo.
Since G' is open and set of peak points of A is dense in 891, we may assume
that wo is a peak point. Hence there exists h € A such that (f;(wo)l =1
and |71(w)‘ < 1for we My \ {wo}-

Consider the plurisubharmonic function
(z) = log ma,x|71f_1(a:)| on G'\S.
Then ¢ is plurisubharmonic on G’ N L. Since
log mu'ﬁf’l(z)‘ <0= logma.xiﬁf"l(mo)l

for every z € G', it follows that ¢ = constant, which is impossible.
Thus £(8%4)N(G'nL)=0.
Theorem 1.1 is proved. O

2. Liouville-type property for analytic mulivalued functions

In the section we study the relation between a Liouville-type property and
removable singularities of A.M.V. functions with values in convex domains.
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THEOREM 2.1.— Let D be a convezx domain in C". Then the following
conditions are equivalent

a) for every A.M.V. function K : € — F.(D), the multivalued function
K : € — F.(D) given by I?(a:) = K(z), where K(z) is polynomial
convez hull of K(z), is constant;

b) every A.M.V. function K : A* — F,(D) can be extended analytically
on A, where A is the unit disc, A* = A\ {0};

¢) every A M.V. function L : A\ S — F¢(D) can be extended analyticaly
on A, where S is a polar set in A.

To prove the theorem we shall use the hyperboliticity of convex domains.
In [1] Bath proved that a convex domain D is hyperbolic if and only if D
does not contain complex lines (i.e. every holomorphic map h: € — D is
constant).

Proof of theorem 2.1

Consider the condition:
D is hyperbolic (1)

We shall prove that a) < (1) = ¢) = b) = (1).
We first write
D= ﬂ {Rez}, <ea},
a€l
where {z}} are linear forms on €". Without loss of generality we may
assume that 0 € D. Then ¢, > 0 for all a.

Let {z%,,...,25,} be a maximal linearly independent system of {zg}.

Take 6o : Hy — A, where Hy = {z € €: Rez < ¢4}, is a biholomorphism.
Define a holomorphic map

p
v:D; — AP, where D; = ﬂ{Rem;j}
Jj=1
by
Y(2) = (8aq (25, (2)), -+, by (25, (2)) ) -

Obviously, v is a biholomorphism if and only if ﬂ§=1 Kerzy, = {0} or,
equivalently, D; does not contain C.

- 266 —



Removable singularities for analytic multivalued functions

a) = (1) Because every holomorphic map h : € — Dis an A.M.V. function
and h(z) = h(z), from a) we have h = const, thus D is hyperbolic.

(1) = a) Let K : € — F¢(D) be an A.M.V. function. Suppose
K(z1) # K(z3) for two points z1, 23 € €. Take a plurisubharmonic function
» on AP such that

sup{e(y) | y € vR(21)} # sup{e(y) | y € 7K (22)} .
Since K is analytic, the function

3(z) = sup{e(y) | y € 7K ()}
=sup{p(y) | y € 7K (2)}
=sup{p(y) |y € 7K (2)}

is subharmonic on €. On the other hand, since 7I?(z) C AP forall z € C,
@ is bounded on €. This is impossible because of the subharmonicity of ¢
and of the relation &(z1) # $(22).

(1) = ¢) By the hypothesis, D and hence D; is hyperbolic. By theo-
rem 1.1, vL and hence L can be extended to an A.M.V. function L:A—
F.(D;). It remains to show that L(zo) C D for every zp € S.

Let « € I and 131 be an extension of z, L with values in F.(Hg).

— —

Assume that aﬂ(zo) # w;z(zo) for zg € S. Take a plurisubharmonic
function ¢ on € such that ¢;(z0) # ¥2(20), where

¢1(2) = sup{e(y) | y € =} L( )} =sup{e(y) | y € z5L(2)}
and

p2(2) = sup{o(v) | v € 25 L(2)} = sup{e() | y € 25 L(2)}

for z € €.

Since ¢ and 5 are plurisubharmonic on A and ¢; = ¢ on A\ {zo} we
have ¢1(2z0) = ¥2(20). This is impossible because of the choice of . thus,
Rez!(z) < eq for all z € L(zg) and for all o € I. Hence L(20) C D.
¢) = b) Obvious.
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b) = (1) By [1], it suffices to show that every holomorphic map 3: € — D
1s constant. By the hypothesis, 3 can be extended to an A.M.V. function
,@ on CPl, By the normality of CP1, it follows that ,3 is holomorphic on
CP! [2). Smce ﬂ CP! — D is holomorphic on the compact space CP1L, it
implies that ﬂ and hence 3 is constant.

The theorem is proved. O
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