TRAN NGOC GIAO

Removable singularities and Liouville-type property of analytic multivalued functions

Annales de la faculté des sciences de Toulouse 6^e série, tome 1, n° 2 (1992), p. 261-268

http://www.numdam.org/item?id=AFST_1992_6_1_2_261_0

© Université Paul Sabatier, 1992, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Removable singularities and Liouville-type property of analytic multivalued functions

TRAN NGOC GIAO⁽¹⁾

RÉSUMÉ. — Le but de cet article est l'étude du prolongement des fonctions analytiques à valeurs multiples. Nous obtenons l'équivalence entre une propriété du genre Liouville et les ensembles pour lesquels on peut prolonger ces fonctions.

ABSTRACT. — The purpose of this note is to study removable singularities for analytic multivalued functions. Moreover, the equivalence between Liouville-type properties and removable singularities results is proved.

Introduction

Let X a complex space. By $F_c(X)$ we denote the hyperspace of nonempty compact subsets of X.

As in [8] we say that an upper semi-continuous multivalued function $K: X \to F_c(Y)$, where X and Y are complex spaces, is analytic if for every open subset W of X and every plurisubharmonic function ψ on a neighbourhood of $\Gamma_K \upharpoonright_W$, the graph of K on W, the function

$$arphi(x) = \supig\{\psi(x,y) \mid y \in K(x)ig\}$$

is plurisubharmonic on W.

Analytic multivalued functions (for short: A.M.V. functions) have been investigated by several authors, in particular by Slodkowski [8, 9] and Ransford [5, 6, 7].

⁽¹⁾ Department of Mathematics, Pedagogical University of Vinh, Vietnam

In [7], Ransford has proved that every A.M.V. function

$$K: D \to F_c(V) \,,$$

where $D = \{z \in \mathbb{C} \mid |z| < 1\}$, $D^* = D \setminus \{0\}$ and V is either D or $D_{rs} = \{z \in \mathbb{C} \mid r < |z| < s\}$, 0 < r < s, can be extended analytically to D.

This note considers a removable-singularity result for A.M.V. functions. Moreover, the equivalence between a Liouville-type property and extendibility of A.M.V. functions is proved.

1. Removable-singularities for analytic multivalued functions

An A.M.V. function $K: G \to F_c(Y)$ is said to be locally compact if for every $x \in X$ there exists a neighbourhood U of x such that $K(U \cap G)$ is relatively compact in Y, where G is an open subset of X.

THEOREM 1.1.— Let G be an open set in \mathbb{C}^n , S a closed subset of G, Y is a Stein space. Then every A.M.V. function $K: G \setminus S \to F_c(Y)$ can be extended analytically to G if one of the following conditions is satisfied

- a) $S = H \cap (G \setminus U)$, where H is an analytic set in G, U is an open subset of G such that U meets every component of H;
- b) S is a set of zero (2n-2)-Hausdorff measure in G;
- c) S is a pluripolar set in G and K is locally compact.

We first need the following, which is a generalization of the important result of Wermer [10].

LEMMA 1.2. Let A be a uniform algebra with Shilov boundary ∂_A^0 and U an open subset of \mathbb{C} . Let $h: U \to A$ be a holomorphic map. Then for every $f \in A$ such that $\sigma(f) \setminus f(\partial_A^0) \subset U$, where $\sigma(f)$ is the spectrum of f, the form

$$K(\lambda) = ig\{\widehat{h}(\lambda,w) = \widehat{h(\lambda)}(w) \mid w \in \widehat{f}^{-1}(\lambda)ig\}$$

defines an A.M.V. function on $\sigma(f) \setminus f(\partial_A^0)$.

Proof. — This is basically Slodkowski's argument [8]. It is enough to show that $K(\lambda)$ satisfies condition (ii) of [8, theorem 3], i.e. for every

polynomial $p(\lambda)$ and for every $a, b \in \mathbb{C}$ the function $\lambda \to \max |f_{\lambda}(K(\lambda))|$, where $f_{\lambda}(z) = (z - \lambda a - b)^{-1} \exp(p(\lambda))$, has local maximum property in $G = \{\lambda \in \sigma(f) \setminus \widehat{f}(\partial_A^0) \mid a\lambda + b \notin K(\lambda)\}$. Let D be a disc such that $cl D \subset G$. Put $N = \widehat{f}^{-1}(D) \subset M_A$, where M_A is maximal ideal space of A, and let B denote the uniform closure of $A \upharpoonright_{clN}$ on clN and the form $k = (h(y) - af - b)^{-1} \exp(p(f))$, where $a, b \in \mathbb{C}$ and p is a polynomial, defines an element of B. Denote

$$f_{\lambda}(z) = \left(z - \lambda a - b\right)^{-1} \exp\left(p(\lambda)\right).$$

For $\lambda_* \in D$, we have

$$egin{aligned} \max f_{\lambda_*}ig(K(\lambda_*)ig) &= \maxig|\widehat{k}\widehat{f}^{-1}(\lambda_*)ig| \ &\leq \maxig|\widehat{k}ig| ig|_N(ext{by Rossi's local maximum principle}ig) \ &\leq \maxig\{\maxig|\widehat{k}ig(\widehat{f}^{-1}(\lambda_*)ig| \ ig| \lambda\in\partial Dig\} \ &= \maxig\{\maxig|f_\lambdaig(K(\lambda)ig| \ ig| \lambda\in\partial Dig\} \ . \end{aligned}$$

Thus the function $\lambda \to \max |f_\lambda(K(\lambda))|$ has the local maximum property.

The lemma is proved. \Box

LEMMA 1.3 (Slodkowski's theorem [9]). — Let G be a bounded planar domain and $K : G \to F_c(\mathbb{C}^k)$ be an A.M.V. function such that $\sup \max_{x \in G} |K(x)| < \infty$. Then there exists a uniform algebra A and functions f, $g_1, \ldots, g_k \in A$ such that

i) $\widehat{f}(M_A) \setminus \widehat{f}(\partial_A^0) = G$, where \widehat{f} denotes the Gelfand transformation of f, M_A and ∂_A^0 are the maximal ideal space and the Shilov boundary respectively of A.

$$ii) \ \widehat{g}ig(\widehat{f}^{-1}(x)ig) = K(x) \ for \ every \ x \in G, \ where \ \widehat{g} = (\widehat{g}_1, \dots, \widehat{g}_k).$$

LEMMA 1.4. — Let $K : G \to F_c(Y)$ be an upper semi-continuous multivalued function, where G is an open subset of \mathbb{C}^n and Y an analytic set in \mathbb{C}^k . If $K : F \to F_c(\mathbb{C}^k)$ is analytic, then $K : G \to F_c(Y)$ is also analytic.

Proof.— We can assume that n = 1. Given φ a plurisubharmonic function on a neighborhood W of $\Gamma_K \upharpoonright_U$, where U is an open subset of G, consider the plurisubharmonic function $\tilde{\varphi}(z, w) = \varphi(z, \hat{g}(w))$ on

 $(\operatorname{id} \times \widehat{g})^{-1}(W)$, where f, g, A are constructed as in lemma 1.3. By [3] we have

$$\widehat{arphi}(z,w) = \lim \max \left\{ c_j^n \log \lvert \widehat{h}_j^n(z,w)
vert
ight\}$$

for all $(z, w) \in (\operatorname{id} \times \widehat{g})^{-1}(W)$, where h_j^n are holomorphic maps from U into A.

Since $(\operatorname{id} \times \widehat{g})$ is continuous and W is open, it implies that

$$\overline{(\mathrm{id}\times\widehat{g})^{-1}(W)} \subset (\mathrm{id}\times\widehat{g})^{-1}(\overline{W}) \Rightarrow$$
$$\partial(\mathrm{id}\times\widehat{g})^{-1}(W) \cup (\mathrm{id}\times\widehat{g})^{-1}(W) \subset (\mathrm{id}\times\widehat{g})^{-1}(W) \cup (\mathrm{id}\times\widehat{g})^{-1}(\partial W) \Rightarrow$$
$$\partial(\mathrm{id}\times\widehat{g})^{-1}(W) \subset (\mathrm{id}\times\widehat{g})^{-1}(\partial W).$$

By lemma 1.2, the multivalued function

$$L(z) = \left\{\widehat{h}_j^n(z,w) \mid w \in \widehat{f}^{-1}(z)\right\}$$

is analytic on $\sigma(f) \setminus \widehat{f}(\partial_A^0)$. On the other hand $\widehat{f}^{-1}(\partial G) \supset \partial_A^0$, by Rossi's local maximum principle we have

$$\max |\widehat{h}_{j}^{n}(z,w)|_{\partial (\operatorname{id} \times \widehat{g})^{-1}(W)} = \max |\widehat{h}_{j}^{n}(z,w)|_{(\operatorname{id} \times \widehat{g})^{-1}(\partial W)}.$$

Since for every sequence of upper semi-continuous function ψ_n , $\psi = \lim \psi_n$ point-wise, $\lim \max (\psi_n \upharpoonright_F) = \max (\psi \upharpoonright_F)$ on every compact subset F[8], and since $(\operatorname{id} \times \widehat{g})^{-1}(\partial W) \supset (\operatorname{id} \times \widehat{g})^{-1}(W)$, it follows that the function γ given by

$$egin{aligned} &\gamma(z) = \maxig\{arphi(z,y) \mid y \in K(z) = \widehat{g}\widehat{f}^{-1}(z)ig\} \ &= \maxig\{\widetilde{arphi}(z,y) \mid w \in \widehat{f}^{-1}(z)ig\} \end{aligned}$$

is plurisubharmonic on U. Hence the multivalued function $K : G \to F_c(Y)$ is analytic.

Proof of theorem 1.1

Without loss of generality we may assume that Y is an analytic set in \mathbb{C}^k . Then the function

$$heta(x) = \supig\{||y|| \mid y \in K(x)ig\}$$

is plurisubharmonic on $G_0 = G \setminus S$, where S satisfies one of the conditions a) or b) or c) of the theorem. By [4], θ can be extended to a plurisubharmonic function on C. This implies that for every $x_0 \in S$ there exists a neighbourhood U of x_0 such that $K(U \cap G_0)$ is relatively compact. Define a upper semi-continuous extension of K by

$$\widehat{K}(x) = \left\{ egin{array}{ll} K(x) & ext{for } x \in G_0 \ \left\{ y \in Y \; \Big| \; \exists \; \left\{ (x_n, y_n)
ight\} \subset \Gamma_K \, , \; (x_n, y_n)
ightarrow (x, y)
ight\} & ext{for } x \in S. \end{array}
ight.$$

We prove that \widehat{K} is analytic at every $x_0 \in S$. Let G' be an open ball around $x_0, G' \subset G$. It suffices to show that $\widehat{K} \upharpoonright_{L \cap G'}$ is analytic for every complex line L in \mathbb{C}^n . Using the Slodkowski theorem we can find a uniform algebra A and $f, g_1, \ldots, g_k \in A$ such that

i) $\widehat{g}\widehat{f}^{-1}(x) = \widehat{K}(x)$ for all $x \in L \cap (G' \setminus S)$;

We have to prove that $f(\partial^0_A) \cap (L \setminus G') = \emptyset$.

Suppose the contrary. Then there exists a complex line L in \mathbb{C}^n such that $f(\partial_A^0) \cap (L \cap G') \neq \emptyset$. Since \widehat{K} is analytic on $G' \setminus S$, it follows that $\widehat{f}(\partial_A^0) \cap (L \cap (G' \setminus S)) = \emptyset$. Hence there exists $w_0 \in \partial_A^0$ such that $\widehat{f}(w_0) = x_0$. Since G' is open and set of peak points of A is dense in ∂_A^0 , we may assume that w_0 is a peak point. Hence there exists $h \in A$ such that $|\widehat{h}(w_0)| = 1$ and $|\widehat{h}(w)| < 1$ for $w \in M_A \setminus \{w_0\}$.

Consider the plurisubharmonic function

$$arphi(x) = \log \max \left| \widehat{h} \widehat{f}^{-1}(x)
ight| \quad ext{on} \quad G' \setminus S \, .$$

Then φ is plurisubharmonic on $G' \cap L$. Since

$$\log \max ig| \widehat{h} \widehat{f}^{-1}(x) ig| \leq 0 = \log \max ig| \widehat{h} \widehat{f}^{-1}(x_0) ig|$$

for every $x \in G'$, it follows that $\varphi = \text{constant}$, which is impossible.

Thus
$$f(\partial_A^0) \cap (G' \cap L) = \emptyset$$
.

Theorem 1.1 is proved. \Box

2. Liouville-type property for analytic mulivalued functions

In the section we study the relation between a Liouville-type property and removable singularities of A.M.V. functions with values in convex domains.

THEOREM 2.1. — Let D be a convex domain in \mathbb{C}^n . Then the following conditions are equivalent

- a) for every A.M.V. function $K : \mathbb{C} \to F_c(D)$, the multivalued function $\widehat{K} : \mathbb{C} \to F_c(D)$ given by $\widehat{K}(x) = \widehat{K(x)}$, where $\widehat{K(x)}$ is polynomial convex hull of K(x), is constant;
- b) every A.M.V. function $K : \Delta^* \to F_c(D)$ can be extended analytically on Δ , where Δ is the unit disc, $\Delta^* = \Delta \setminus \{0\}$;
- c) every A.M.V. function $L : \Delta \setminus S \to F_c(D)$ can be extended analyticaly on Δ , where S is a polar set in Δ .

To prove the theorem we shall use the hyperboliticity of convex domains. In [1] Bath proved that a convex domain D is hyperbolic if and only if D does not contain complex lines (i.e. every holomorphic map $h : \mathbb{C} \to D$ is constant).

Proof of theorem 2.1 Consider the condition:

$$D$$
 is hyperbolic (1)

We shall prove that a) \Leftrightarrow (1) \Rightarrow c) \Rightarrow b) \Rightarrow (1).

We first write

$$D = \bigcap_{\alpha \in I} \left\{ \operatorname{Re} x_{\alpha}^* < \varepsilon_{\alpha} \right\},$$

where $\{x_{\alpha}^{*}\}\$ are linear forms on \mathbb{C}^{n} . Without loss of generality we may assume that $0 \in D$. Then $\varepsilon_{\alpha} > 0$ for all α .

Let $\{x_{\alpha_1}^*, \ldots, x_{\alpha_p}^*\}$ be a maximal linearly independent system of $\{x_{\alpha}^*\}$. Take $\theta_{\alpha} : H_{\alpha} \to \Delta$, where $H_{\alpha} = \{z \in \mathbb{C} : \operatorname{Re} z < \varepsilon_{\alpha}\}$, is a biholomorphism. Define a holomorphic map

$$\gamma: D_1 o \Delta^p, \quad ext{where} \quad D_1 = igcap_{j=1}^p \{\operatorname{Re} x^*_{lpha_j}\}$$

by

$$\gamma(x) = \left(heta_{\alpha_1}(x^*_{\alpha_1}(x)), \ldots, \, heta_{\alpha_p}(x^*_{\alpha_p}(x))
ight) \, .$$

Obviously, γ is a biholomorphism if and only if $\bigcap_{j=1}^{p} \operatorname{Ker} x_{\alpha_{j}}^{*} = \{0\}$ or, equivalently, D_{1} does not contain C.

a) \Rightarrow (1) Because every holomorphic map $h : \mathbb{C} \to D$ is an A.M.V. function and $\widehat{h(z)} = h(z)$, from a) we have h = const, thus D is hyperbolic.

(1) \Rightarrow a) Let $K : \mathbb{C} \to F_c(D)$ be an A.M.V. function. Suppose $\widehat{K}(z_1) \neq \widehat{K}(z_2)$ for two points $z_1, z_2 \in \mathbb{C}$. Take a plurisubharmonic function φ on Δ^p such that

$$\supig\{arphi(y)\mid y\in\gamma\widehat{K}(z_1)ig\}
eq\supig\{arphi(y)\mid y\in\gamma\widehat{K}(z_2)ig\}$$
 .

Since K is analytic, the function

$$egin{aligned} \widetilde{arphi}(z) &= \supig\{arphi(y) \mid y \in \gamma K(z)ig\} \ &= \supig\{arphi(y) \mid y \in \widehat{\gamma K}(z)ig\} \ &= \supig\{arphi(y) \mid y \in \gamma \widehat{K}(z)ig\} \end{aligned}$$

is subharmonic on \mathbb{C} . On the other hand, since $\gamma \widehat{K}(z) \subset \Delta^p$ for all $z \in \mathbb{C}$, $\widetilde{\varphi}$ is bounded on \mathbb{C} . This is impossible because of the subharmonicity of $\widetilde{\varphi}$ and of the relation $\widetilde{\varphi}(z_1) \neq \widetilde{\varphi}(z_2)$.

(1) \Rightarrow c) By the hypothesis, D and hence D_1 is hyperbolic. By theorem 1.1, γL and hence L can be extended to an A.M.V. function $\tilde{L} : \Delta \rightarrow F_c(D_1)$. It remains to show that $\tilde{L}(z_0) \subset D$ for every $z_0 \in S$.

Let $\alpha \in I$ and $\widetilde{x_{\alpha}^*L}$ be an extension of x_{α}^*L with values in $F_c(H_{\alpha})$.

Assume that $\widehat{\widetilde{x_{\alpha}^{*}L}}(z_{0}) \neq \widehat{x_{\alpha}^{*}L}(z_{0})$ for $z_{0} \in S$. Take a plurisubharmonic function φ on \mathbb{C} such that $\varphi_{1}(z_{0}) \neq \varphi_{2}(z_{0})$, where

$$arphi_1(z) = \supig\{arphi(y) \mid y \in \widehat{\widetilde{x^*_lpha L}}(z)ig\} = \supig\{arphi(y) \mid y \in \widetilde{x^*_lpha L}(z)ig\}$$

and

$$arphi_2(z) = \supig\{arphi(y) \mid y \in \widehat{x^*_lpha} \widetilde{ ilde{L}}(z)ig\} = \supig\{arphi(y) \mid y \in x^*_lpha \widetilde{ ilde{L}}(z)ig\}$$

for $z \in \mathbb{C}$.

Since φ_1 and φ_2 are plurisubharmonic on Δ and $\varphi_1 = \varphi_2$ on $\Delta \setminus \{z_0\}$ we have $\varphi_1(z_0) = \varphi_2(z_0)$. This is impossible because of the choice of φ . thus, Re $x^*_{\alpha}(z) < \varepsilon_{\alpha}$ for all $z \in \tilde{L}(z_0)$ and for all $\alpha \in I$. Hence $\tilde{L}(z_0) \subset D$.

c) \Rightarrow b) Obvious.

b) \Rightarrow (1) By [1], it suffices to show that every holomorphic map $\beta : \mathbb{C} \to D$ is constant. By the hypothesis, β can be extended to an A.M.V. function $\widehat{\beta}$ on $\mathbb{C}P^1$. By the normality of $\mathbb{C}P^1$, it follows that $\widehat{\beta}$ is holomorphic on $\mathbb{C}P^1$ [2]. Since $\widehat{\beta} : \mathbb{C}P^1 \to D$ is holomorphic on the compact space $\mathbb{C}P^1$, it implies that $\widehat{\beta}$ and hence β is constant.

The theorem is proved. \Box

Acknowledgement

The author would like to thank Prof. Dr. N.V. Khue for helpful advice and encouragement.

References

- BARTH (T.J.). Convex domains kobayashi hyperbolicity, Proc. Amer. Math. Soc., 79 (1980) pp. 556-558.
- FISCHER (G.). Complex Analytic Geometry, Springer-Verlag Lecture Note in Math., Berlin, 538 (1976).
- [3] GAMELIN (T.W) and SIBONY (N.). Subharmonicity for uniform, J. of Funct. Anal., 35 (1980) pp. 64-108.
- [4] HARVEY (R.) and POLKING (J.). Extending Analytic Objects, Comm. on Pur. and Appl. Math., 28 (1975) pp. 701-727.
- [5] RANSFORD (T.J.). Analytic multivaled functions, Essay presented to Trimity College Research Fellowship Competition, Cambridge University (1983).
- [6] RANSFORD (T.J.). Open mapping, inversion and implicit theorems for analytic multivalued functions, Proc. London Math. Soc., (3) 50 (1984) pp. 537-562.
- [7] RANSFORD (T.J.). On the range of an analytic multivalued function, Pacif. J. Math., 123 (1986) pp. 425-439.
- [8] SLODKOWSKI (Z.). Analytic set-valued functions and spectra, Math. Ann., 256 (1981) pp. 363-386.
- [9] SLODKOWSKI (Z.). Analytic set-valued selection and it's applications to the Corona theorem, to polynomial hulls and joint spectra, Trans. Amer. Math. Soc., 294 (1986) pp. 367-377.
- [10] WERNER (J.). Subharmonicity and hulls, Pacif. J. Math., 58 (1975) pp. 283-290.