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A unified approach to various orthogonalities(*)

CLAUDE BREZINSKI(1)

Annales de la Faculté des Sciences de Toulouse Vol. I, n° 3, 1992

RESUME. 2014 Les polynomes orthogonaux vectoriels de dimension d sont
un cas particulier des polynomes biorthogonaux. On définit d’abord les
polynomes orthogonaux de dimension d = -1. On donne des relations
de recurrence et une formule de type Christoffel-Darboux. Un theoreme
de Shohat-Favard est demontre. Ces polynomes sont, en fait, ceux qui
apparaissent dans les approximants de Laurent-Padé et dans ceux de
Padé en deux points. La liaison avec 1’orthogonalite usuelle est explicitée.
Ensuite, on montre que les polynomes orthogonaux sur le cercle unite sont
un cas particulier des polynomes orthogonaux vectoriels de dimension -1.
Ainsi, puisque les polynomes orthogonaux vectoriels de dimension d = 1
sont les polynomes habituels, plusieurs résultats connus sur diverses
orthogonalités sont retrouves dans un cadre unine et parfois generalises.

ABSTRACT. - Vector orthogonal polynomials of dimension d are a par-
ticular case of biorthogonal polynomials. Vector orthogonal polynomi-
als of dimension d = -1 are first defined. Recurrence relations and a

Christoffel-Darboux-type formula are given. A Shohat-Favard theorem is
proved. These polynomials are, in fact, those appearing in Laurent-Pade
and two-point Padé approximants. The link with usual orthogonality is
explicited. Then it is showed that orthogonal polynomials on the unit
circle are a particular case of vector orthogonal polynomials of dimen-
sion -1. Thus, since vector orthogonal polynomials of dimension d = 1
are the usual ones, many known results about various orthogonalities are
recovered in a unified framework and sometimes generalized.

KEY-WORDS : Orthogonal polynomials, biorthogonality.

AMS ciassiflcation : 42 C 05

( *) Resu le 25 mars 1992
(1) Laboratoire d’Analyse Numerique et d’Optimisation, U.F.R. I.E.E.A. - M3, Uni-

versite des Sciences et Technologies de Lille, 59655 - Villeneuve d’Ascq Cedex
(France)



1. Biorthogonal polynomials

Let Lo, Li,... be linearly independent linear functionals on the space of
complex polynomials and let us set

The number Cij are complex numbers.

Adjacent families of (formal) biorthogonal polynomials with respect to
the family {Li} were defined in [4]. They are given by

where D{2’’~~ is an arbitrary nonzero constant. These polynomials satisfy
the biorthogonality conditions

Assuming that Pt2’~~ has the exact degree k, which is equivalent to the
condition 

, ,

we shall consider in the sequel the monic polynomials ~ ’ that is D~2’~} _
1/ Hi i,j) . . It can be proved that these polynomials are related by the
following recurrence relations



with pJi,j)(x) = 1 and P~2’~~(x) = 0.
As proved in [5], these polynomials can also be represented as a contour

integral. They have applications in many questions of numerical analysis.
Vector orthogonal polynomials of dimension d E IN were introduced by

Van Iseghem [11]. They correspond to the case where the linear functionals
Li are related by

that is

Vector orthogonal polynomials have applications in the simultaneous ap-
proximation of several series by rational functions which generalizes Pade
approximants. When d = 1, the usual formal orthogonal polynomials are
recovered [1]. In that case, if we set Lo(aej) = coj = c~, then

and the determinants ~- are the usual Hankel determinants H{i+j}.
The usual formal orthogonal polynomials are very much related to Pade
approximants as extensively explained in [1].
We shall now study the case d = -1.
We shall prove that the corresponding vector orthogonal polynomials of

dimension -1 satisfy a three-term recurrence relation and a Christoffel-
Darboux-type identity. A Shohat-Favard theorem will be proved. The
link with the usual orthogonality (d = 1) will be explicited and it will be
showed that orthogonal polynomials of dimension -1 generalize the usual
orthogonal polynomials on the unit circle.

Thus various concepts about orthogonality will be recovered in a unified
framework and, sometimes, generalized. Since orthogonal polynomials
of dimension -1 are those which appear in Laurent-Pade and two-point
Pade approximants, they lead to a unified presentation of all these Padé
approximants. The case of vector orthogonal polynomials of dimension -d,
with d > 0, is under consideration.



2. Orthogonality of dimension -1

Let us assume that d = -1 in (6). Replacing i by i + 1, we thus have

That is Cij = and it follows that

Thus, the polynomials P~ only depend on the difference i - j. This

remark must be kept in mind in the sequel.
From (3), we have

Replacing xbyz-)-lin(2) and using (8) gives

Replacing j by j + 1 in (4) and using (8) gives

Replacing j by j + 1 in (5) and using (8) gives

Using alternately (5) and (9) (or (9) and (10)) allows to compute

simultaneously the families } and { P~Z’~+1 ~ } . Similarly, using
alternately (2) and (11) (or (11) and (12)) allows to compute simultaneously
the Such a possibility is much more



difficult to exploit for general biorthogonal polynomials [7]. For polynomials
of dimension -1 the relations (2), (4) and (5) still hold thus providing other
possible recursive schemes.

From the preceding relations, we shall now deduce a three-term recur-
rence relation for the when i and j are fixed.

Thus, to simplify our notations, we shall set in (9)

and in (5)

Thus (5) and (9) now write as

and we obtain

Replacing by its expression from (14), we have

We have thus obtained a three-term recurrence relation for the polynomials
when i and j are fixed. Let us now express Bk+i and Ck+i in terms

of the polynomials involved in (15) alone.
We have



Using (7), this relation writes

Thus, thanks to the biorthogonality conditions (1), we have

For p = i, using (7) again, we obtain

and for p = i z- ~, we have

Due to the biorthogonality conditions ( 1 ), this system reduces to

Let us remark that

We shall set

Obviously and Bk+i, Ce+1 and ak depend on i and j but this

dependence was not indicated for simplicity.
Thus we finally proved the theorem 1.



THEOREM 1. - Vector orthogonal polynomials of dimension -1 satisfy
the three-term recurrence relation

with P-1(X) = 0, Po(x) = 1 and

Let us now give a Christoffel-Darboux-type formula for these polynomi-
als. Let Rk be any polynomial of degree k. We shall define RZ by

where the bar means that all the coemcients are replaced by their conju-
gates.

Let us compute first the quantity

Using ( 13) , we have

Now by ( 14), we obtain



Let us now compute the sum + Using the preceding identity,
we immediately have

Using J-Lk = we thus obtain a ChristofFel-Darboux-type formula.

THEOREM 2

This is the relation given by Bultheel [6, p. 95]. The reason is that, in
fact, these polynomials are, apart a multiplying factor, those used in Padé
and two-point Pade approximants. It is also possible to define polynomials
of the second kind (or associated) and the results of [6] are valid.
We shall now prove a Shohat-Favard type theorem for vector orthog-

onal polynomials of dimension -1, that is the reciprocal of theorem 1

namely that if a family of polynomials satisfies a three-term recurrence
relation of the form given in the theorem 1, then it is a family of vector
orthogonal polynomials of dimension -1 whose moments satisfying

= can be computed.
Let us first remark that the family of linear functionals {Li} is defined

apart a multiplying factor. Indeed if = Cij and if Pk is such
that = 0 for i = 0, ... , k - 1 then we also have = 0 for
i = 0, ... , k - 1 where Li = aLi that is = aCij where a is any
number different from zero. Thus Lo(l) can be set to an arbitrary nonzero
value.

Thus let be a family of polynomials satisfying

with = 0 and Po(x) = 1.
We shall see that, under some assumptions, there exists a family of func-

tionals, uniquely defined apart a multiplying factor, such that 
) and V k, Li(Pk) = 0 for i = 0, ... , k - 1. Thus {Pk} will be the



family of vector orthogonal polynomials of dimension -1 with respect to
the family {Li}.
We have

Since the Li’s are defined apart a multiplying factor, then Lo ( 1 ) is

arbitrary and we shall take Lo(l) = 1 (if we take Lo(l) = 0 then V i,
j, = 0). Thus this first orthogonality condition gives the value of

Now, for i = 0 and 1

For i = 0, LO(P1) = 0 and the preceding relation gives the value of
since Lo(l) and Lo(z) are known.

When i = 1, we first set, following (7), = and =

Thus L1 (xPl ) = Lo(Pl ) and = Lo(Po) are known and the
preceding relation allows to compute the value of L1 (Pl ) if B2 ~ 0. Thus,
since Li(.r) = Lo(l) = 1, we obtain the value of L1(1).

By induction, let us assume that the quantities are known for

i = 0, ..., k - 1 and j = 0, ..., k. We have for i = 0, ..., k

When i = 0, ) = 0 and ) can be computed since is
known for j = 0, ... , ~ .
Now we set = for j = 1, ..., k + 1 and =

for i = 1, ..., le . Thus the right hand side of the preceding relation
is zero for i = 1, ..., k - 1 since = = 0, Li(Pk) = 0 and
L2(xpk-1 ) = Li-1 (pk-1 ) = 0. .

For i = k, = = 0 and = is
known. Thus Lk(Pk) can be computed if B~+1 ~ 0. Since is known

for j = 1, ..., k + 1 then can be obtained from the above formula.

Let us also remark that if B1 = 0 then V i, j, = 0. Thus we

proved the theorem 3.



THEOREM 3. - Let be a family of polynomials satisfying

= (x + - 

, k = 0, 1, ...

with P_1 (x) = 0 and Po(x) = 1.

If Bk+1 ~ 0 for k = 0, 1, ..., then is the family of monic
vector orthogonal polynomials of dimension -1 with respect to a uniquely
determined (apart a multiplying factor) family of linear functionals (Lj)
satisfying = ) u,hose moments Li(xJ) can be computed
and are not all zero.

Remark. - Obviously it is possible to obtain similarly the linear func-
tionals such that

where i and j are fixed non negative integers.

Remark. . - From the expressions of and it is easy to see that

Bk+l is different from zero if and only 0 and 7~ 0. The
condition 0 insures the existence of the vector orthogonal
polynomial Pk. is different from zero if and only if ) 7~ 0.

Defining the functional L_1 by ) = we have =

L _ 1 (Pk). . Again it is easy to see that the condition ~ 0 insures
the existence of the vector orthogonal polynomial Pk+l. The family {Li}
is said to be definite if and only if V k, L k (Pk) =f 0. This condition

insures the existence of all the polynomials {Pk}. In particular, we have

Lo(Po) ) = Lo(l) 7~ 0 and we recover a condition discussed above. The

condition 0 must be compared with the condition for the usual
Shohat-Favard theorem about the ordinary orthogonal polynomials (that is
the vector orthogonal polynomials of dimension d = 1) which is 0

(see [1, p. 155]).
Let us now consider the polynomials

If the polynomials Pk satisfy the recurrence relation of theorem 3, then
we have



that is

with P-i(.r) = 0 and Po(r) = 1.

Thus, by theorem 3, the polynomials Pk (which are no more monic) form
a family of vector orthogonal polynomials of dimension -1. More precisely,
if we set 

-

then the polynomials Uk are monic and they satisfy

with = 0 and = 1.

Let us denote the family of linear functionals such that V k

Thus, from the relations of theorem 1, we have

with = -1/B1 and Mo(Uo) = 1.

Replacing Bk, and Ck+1 by their expressions we obtain relations
between the two families of linear functionals

An open problem is to express the quantities in terms of the
Another open problem is to study if the Christoffel-Darboux

type formula of theorem 2 implies the recurrence relations of the vector
orthogonal polynomials of dimension -1 as is the case with the usual

orthogonal polynomials of dimension d = 1 [2], [3].



3. Orthogonality on the real line

Let us now explain the link with the usual formal orthogonality. We
previously saw that for d = -1:

Thus we have

In both cases, we can define quantities Cij with negative indexes by

since ci3 depends only on the difference i - j.

Let c be the linear functional on the space of complex Laurent polyno-
mials defined by

and by

Orthogonality with respect to c will be called orthogonality on the real
line since it generalizes this case.

Thus, if Rk is any polynomial of degree k, we have

where R’k is defined as above.

It follows that the polynomial satisfies, for p = i, ... , i + k - 1



Thus P~~’~}* is the polynomial of degree k of the family of formal orthogonal
polynomials with respect to c~ ~.

This connection was already pointed out by Bultheel [6, p. 98 fF]. Ho-

wever, our approach, using only linear functionals, seems simpler than his
based on bilinear forms defined on the set of Laurent polynomials.
On the recurrence relations satisfied by these polynomials when some of

the determinants are zero, see Draux [8].
We also see that we have

Thus, if we set

we have

Thus, for any ! and j such that z - j = n + k, is identical to 
the usual orthogonal polynomial of degree k of the family of orthogonal
polynomials with respect to c~) (normalized by the condition P~(0) = 1)
that is V j ~ 0, it holds

This connection can be seen more directly from the determinantal formulae
of the orthogonal polynomials.

4. Orthogonality on the unit circle

We shall now show that orthogonality on the unit circle is a particular
case of vector orthogonality of dimension -1.

Let us assume that c{~~ = ci and that x = 1/x (or, in other words, that
x is on the unit circle) then we have



Conversely, if this relation holds, then it is equivalent to assume that
x = 1/x and the usual orthogonality on the unit circle is recovered [9], [10].
Since our notion generalizes this case, it will be called orthogonality on the
unit circle.

We shall now examine this case in more details.

Let us set

where obviously the coefficients depend on i, j and k.

Thanks to the orthogonality conditions (1), we have ak = 1 and

Thus (17) can be written as

Since c-n = cn, this system is equivalent to

Let us now consider the polynomial

with bk = 1. The orthogonality conditions (1) give



Comparing (18) and (19), we see that both systems are the same and

Thus if we set

we have = 1 and thus

Replacing in (14) gives, for i = j

Taking x = 0, we have

and we finally obtain

which is one of the usual recurrence relations for orthogonal polynomials
on the unit circle when i = j = 0. The other usual recurrence relations for
orthogonal polynomials on the unit circle when i = j = 0 could be recovered
in a similar way from (14) and (15) (see [9], [10]).

Thus, relations (9), (10) and (15) generalize the usual recurrence relations
to adjacent families of orthogonal polynomials on the unit circle.

Using (20) in the Christoffel-Darboux-type formula given in the previous
section leads immediately to the usual corresponding formula for orthogonal
polynomials on the unit circle.
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5. Conclusion

Vector orthogonality of dimension d = -1 seems to be a central notion
since it generalizes orthogonality on the unit circle and the usual notion
of orthogonality which are both recovered as particular cases. Thus, in
particular, it opens the way to a unified presentation of Padé, Laurent-Pade
and two-point Padé approximants.

Because of the numerous applications of orthogonal polynomials, vector
orthogonal polynomials of dimension -1 might also have interesting appli-
cations, but they now remain to be discovered.
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