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Discrete groups, Mumford curves and

Theta functions(*)

MARIUS VAN DER PUT(1)

Annales de la Faculté des Sciences de Toulouse Vol. I, n° 3, 1992

RESUME. - Un groupe discret F, d4fini sur un corps complet par
rapport a une valuation non archimédienne, induit une courbe X. Les
fonctions theta pour r sont a la base de la construction analytique de la
variété de Jacobi de X. A 1’aide des courants sur des arbres et des graphes
et la de cohomologie de r, on développe une théorie des fonctions theta.
Un grand nombre de groupes discrets est calculé en connection avec des
courbes de Shimura et des groupes de quaternions. On donne la relation
entre un probleme d’Abhyankar et les courbes modulaires de Drinfeld.

ABSTRACT. - A discrete group r given over some complete non
archimedean valued field defines a curve X. The theta functions for r

provide an analytic construction for the Jacobian variety of X. A the-
ory of theta functions is developed with the help of currents on trees and
graphs and the cohomology for r. In connection with Shimura curves and
quaternions a great variety of discrete groups is explicity calculed. The
relation between a problem of Abhyankar and Drinfeld’s modular curves
is given.

1. Introduction

This paper is an updated version of the notes of a lecture [P] given
in 1981/82. In [GP], Chapter 6, there is an explicit construction of
the Jacobian variety of a Mumford curve using theta functions for the
corresponding Schottky group r given as certain infinite products. The

lecture gave a translation of these formulas into currents and cohomology for
the group r. This approach is precisely what E.U. Gekeler and M. Reversat
need in their present work [GR] on the Jacobians of Drinfeld modular curves.

( *) Recu le 15 décembre 1992
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The text of [P] is not easily found and the present article can be seen as
the first publication of its content. The opportunity of writing this paper is
used to extend the theory of theta functions to more general groups r than
Schottky groups. In working this out, some new things came to light and
some parts of [GP] are extended:

~ Let n C IP1 denote the set of ordinary points of a discontinouos group r
and suppose that X := rBn is an (afhne or projective) algebraic curve
with compactification i. . Then J~ is a Mumford curve and the map
S2 ---~ X factors over the universal analytic covering of X . Let rtors
denote the subgroup of r generated by the elements of finite order.
Then r/rtors is the Schottky group defining J~.

~ The connection between the discrete groups of quaternions [GP,
Chap. 9] and certain Shimura curves is given. A detailed study is

made of the groups related with the Hamilton quaternions.
~ There are many examples of discrete subgroups r of PG1(2, with

as set of ordinary points the p-adic "upper half plane" :

such that the quotient space is an affine rational curve.

~ A conjecture of S.S. Abhyankar ([Al], [A2]) states that every quasi-p
group ( i. e. a finite group which is generated by its p-Sylov subgroups)
is the Galois group of an unramified covering of the affine line in

characteristic p. Using Drinfeld’s modular curve we will construct

examples of such Galois groups.

2. Invertible functions on SZ, currents on T

The field K is supposed to be complete with respect to a non-archimedean
valuation. Let £ denote a non empty compact subset of and let

n = ~K - ,~ denote the corresponding open analytic subset of IP k. In the
study of 0(0)*, the group of invertible holomorphic functions on Q, one
uses an analytic reduction r : S~ --> SZ with respect to some pure covering of
o by afhnoid subsets.

In formal algebraic terms, one wants to construct a formal scheme SZ

over the valuation ring K~ of K with "generic fibre" S~ and special fibre
SZ ~ l~ equal to H (k denotes the residue field of K). More details on the
terminology can be found in [GP], [PV].



The scheme H over k is locally of finite type. Every (irreducible)
component of H is a projective line over k and the intersection of two

components is either empty or equal to one ordinary double point of S2.
Define the graph T by: the vertices t of T are the components S~t of H and

t2} is an edge if U 03A9t2 ~ 0. In fact, T turns out to be a tree.
The construction of such a reduction starts by choosing a compact subset

M of containing .C such that ,C is the set of limit points of .~t. In
case £ is perfect (i.e. ,C has no isolated points) one can take A4 = £. The
tree T = is constructed in a combinatorical way out of M (see also
[GP, p. 11]) as follows.

Let M(3) denote the set of ordered triples a of distinct points ofM. We
will define an equivalence relation on ~1~.t3~ and the set of vertices of T is
given as the set of equivalence classes [a] E .~t(3~~~, .

The standard reduction R IP~ is given by (zo xl ) H (xo : 
where the point (xo : is normalized by = 1 and
where the bars denote the residues in the residue field k. For a triple
a = (ao, all aoo) E M(3) we denote by ia the unique automorphism ofPk
with = i for i = 0, 1, oo. The reduction Rd := IPi maps
ao, ai a~ to 0, 1, oo E For a, b E .Mt{3} we consider a combination of
the two reductions namely = (Ra, Rb) IPi x IP1. . There are
three cases.

1. The image of Ra,b is one projective line. In this case we call a and b

equivalent. The equivalence class of a is denoted by [a]. .
2. The image of Rd,b consist of two projective lines intersecting in one

point p and this point does not lie in . In this case we call

~ ja~ , ~b~ ~ an edge of T. 
3. As before the image consist of two projective lines intersecting in one

point p, but p lies in . In this case ~a~ ~ ~b~ and ~ ~a~ , ~b~ ~ is
not an edge of T.

One can show that the above defines a locally finite tree T. The set of
(equivalence classes of) half lines in T is bijectively mapped to the set £.

For any edge e = { ~a~, ~b~ ~ the image E := is a finite set and the

complement H(e) of in is an affinoid subset of 03A9. For a vertex

[a] the image A := Ra(£) is finite and the complement SZ ~ ~a~) of R~ 1 (A) in
is again an affinoid subset of 03A9. Now the where e runs in

the set of edges of T, is a pure affinoid covering of fi. Further r1 

is empty if ei and e 2 have no common vertex and the intersection is 



if [a] is the common vertex of the two edges. The reduction r that we are
looking for is the reduction with respect to this pure covering of S~. We
note in passing that each Q(e) and S~ ([a]) can also be seen as an affine
formal scheme over the valuation ring K~ of K. If [a] is a vertex of e then

S~ ([a]) is an open formal subscheme of and the tree above prescribes
the glueing of the affine pieces to a formal scheme H. Finally, the space n
consist of projective lines over k, one line for each vertex of T, and with its
intersection pattern given by the edges of T.

Changing from one compact set ,~t to a bigger one A4* (again with ,C as
its set of limit points) corresponds with a subdivision of the tree All

reductions of H are obtained in this way. Indeed, let an analytic reduction
r : : SZ -~ S~ be given. Take for every irreducible component L of SZ a point
p~ E n with image r(pL) lying only on this component L. Then the set
M :_ ,C U {pL}all L is a compact set with limit points ,C and it can be seen
that M induces the given reduction r.

A special case is the following: Let the field K be locally compact, then
is compact. The space H := is sometimes called the

"upper half space over K ". The corresponding tree T has a canonical
identification with the Bruhat-Tits building of PSI(2, K). The definition of
this building goes as follows: Let K~ denote the valuation ring of K and
let V denote a vector space over K of dimension 2. The vertices of T are

the equivalence classes [M] of the rank two, free K0-submodules ofV. Two
modules Mi, M2 are equivalent if there exists a A E K with Mi = AM2 .
An edge of T is a couple [M2]} such that lVh ~ M2 and M1/M2 is
isomorphic to the residue field of K.

Let G be any locally finite graph. We will use the following notations:

e denotes an oriented edge; its origin and endpoint are written as

e (0) and e (1); the opposite of e is denoted 
~ a current (with values in Z) on G is a map ~u of the oriented edges of
G into Z such that ~c(- e ) = -~c( e ) and such that for every vertex
a of G one has E-~(o)=~C~) = 0.

~ the group of all currents on G is denoted by C(G).

THEOREM 2.1

There exists an exact sequence



Proof. - (Another proof of the statement can be found in [FP, pp. 47,
175, 176].) denotes the algebra of holomorphic functions on SI and
0(n)* is the group of invertible holomorphic functions on H. We will first
describe the map f ~ ; O(SZ)* --~ C(T).

Let to be a vertex of T and let (to, t1 ), ..., (to, ts) denote all oriented
edges of T with origin to. They correspond to the double points di ..., , ds
of n situated on Oto. Now ~to := ... , ds ~) is an afhnoid

subspace of H. Any f E 0(n)* can be multiplied by a constant in K*
such that its supremum norm on equals 1. The reduction f of f is
then a regular function on Oto - ..., and extends uniquely to a
rational function on the projective line The current is defined

by ( (to t 1 ) ) = orddi ( f ) . It is indeed a current since ( (t 1, to ) ) =
- is easily seen to hold and = 0. More

explicitly, one can identify ~to with the affinoid subset

where a2, ..., as E K have absolute value 1 and such that their residues in
the residue field of K are distinct. The invertible function f can be written
as f = (z - a2)~’Z ~ ~ ~ (z - + g) where a ~ 0 is a constant and g is
a function with supremum norm less than 1. Let the points 00, a2, ..., as
correspond to the double points di ..., ds then ti ) ) equals ni for
x 7~ 1 and equals -n2 - -" 2014 ~ for z = 1.

The proof starts with recalling (see [GP, p. 145, corol. 2.5]) that any
bounded holomorphic function on H is constant. Let f E O ( SZ ) * satisfy

= 0. Then f is a function with constant absolute value on Q. So

f E K*. The surjectivity of the map is more dimcult. We will use
the sheaves: O° = holomorphic functions of norm  1; 4°° = holomorphic
functions with norm  1; O°* = the invertible elements = the

holomorphic fuctions with constant absolute value (7~ 0); and their direct
images under the reduction map r : SZ --~ H.

Let the sheaf Q on H be defined by the exact sequence:

From the above it is seen that Q is a skyscraper sheaf with as non zero
stalks Z at the double points of H. Let A(T ) denote the group of maps 
from the oriented edges of T with values in Z satisfying ~u(- e ) _ -~( e ).
One identifies A(T) with by choosing an orientation for every double



point of Q. From (1) one obtains the following exact cohomology sequence
on 0:

The group is trivial as can be seen as follows. Every line bundle on
any (connected) affinoid subset A C IPK is trivial since O(A) is a principal
ideal domain. Hence O*) = Further, write SZ as the union
of connected affinoid subsets On such that On @ for all n. An easy

argument with approximation of functions (see [FP, p. 43, (1.8.6)]) shows
that = 0.

Let IK* I denote the constant sheaf on S2 with the group I as stalks.
Since T is a tree, H 1 (n, = 0. The following exact sequence:

shows now that = . Next consider the exact

sequence:

One can show that + O°°)) = 0 with the same method which
proved that = 0. This implies that = Let

H(T) denote the group of integer valued maps on the set of vertices of T .
Then one can identify H(T) with in the following natural way.

describes the group of isomorphy classes of line bundles on Q.Q 
_

Define H(T) by L H Lint E Pic(03A9t) = Z. One easily verifies
that the map A(T) - H(T) derived from sequence (2) and the identification

= H(T) has the form ~t ~ ~ e , e {o)=t ~( e )) . This

proves the theorem. 0 

Examples 2.1.1

(a) If £ = a2, ... an) is a finite set then the tree has precisely n ends
and C(T) = Suppose for convenience that oo then O(Q)*
consisits of the functions A with = 0 and A E K*.

(b) C(T) can be identified with the group of finite additive measures m
on £ with values in Z and with m(£) = 0. For any oriented edge e one
considers the open and closed subset .C( e )= the set of all half lines starting
at e (0) and containing e . These sets form a basis for the topology of £.
Given a current one defines a measure m on £ by m (.C( e )) = ~u( e ).
This is easily seen to be a bijection between the two groups defined above.



(c) Let a measure m as above be given. Suppose for convenience that

~ ~ ,C. Choose a 03C0 E K with 0  |03C0|  1. For any n > lone

considers a decomposition of ,C into disjoint open and closed subsets ,Ci
( 1  i  s ) each of diameter ~ |03C0|n. Take a point ai E ,Ci for each i.

Put Fn = Then one can show that F = lim Fn exists and
that F E 4(S~)* has an image in C(T) corresponding to the measure m. A
combination of (b) and (c) provides an elementary proof of 2.1.

COROLLARY 2.1.2.- Let denote the space of holomorphic 1-
forms on 03A9 and let C(T, K) denote the group of currents on T with values
in K. Suppose that the characteristic of K is zero. Then there is an exact

sequence:

Proof.- Suppose for convenience that oo E ,C. Let w denote a

holomorphic 1-form on H. The measure m corresponding to cv can be

described as follows. Let U be a compact and open subset of ~C. There

exist finitely many disjoint disks .81, ..., Bn such that their union contains
.C and such that U = (.81 U ... U Bs ) n ,C. Then

A ringdomain such as ~Bi is isomorphic to {2; E K 1}. For a

holomorphic 1-form v on such a ringdomain one can write a Laurent series
= an z’~ dz. The coefficient a_ 1 is by definition the residue of w

with respect to the ringdomain. This term depends only on the chosen
orientation of BE and does not depend on the choice of the variable. The
non trivial part of the statement is that every measure on £ with values in
K and total measure 0 is the image of a holomorphic 1-form. This can be
done in an elementary way as in 2.1.1 part (c). 0

PROPOSITION 2.2

The following sequence is exact:



Proof. - As usual M, M*, Div denote the sheaves of meromorphic
functions, invertible meromorphic functions and divisors. We note that for
any admissible open U the group Div(U) consists of the Z-valued functions
on U with "discrete" support. In this context S C U is called discrete if the
intersection of S with any affinoid subset of U is finite. The sheaf Div is

a skyscraper sheaf and has trivial cohomology. We have proved above that
= 0 and so, the proposition follows from the exact sequence of

sheaves on 0:

One can make the above explicit as follows. Suppose for convenience that
0o E 0 and choose for every A E SZ, ~ ~ oo a point pr(A) such that

Further let pr(oo) be any fixed point of ~C. Then one can verify that for any
divisor D (with discrete support) the infinite product

converges and defines an element of M ( SZ ~ * with divisor D. 0

3. Discrete groups r and their quotients

3.1. Discontinuous groups

Let r C PGI(2, K) be an infinite subgroup. A point p E is called a

limit point of r if there exists a point q E IP1K and a sequence of distinct
elements in of r such that lim in(q) = p. The set of all limit points is

denoted by L. The group r is called discontinuous (or discrete) if G ~ ~ K
and if for every point p the closure of its orbit rp is compact.

If the field K happens to be a local field ( i. e. K is locally compact) then
this condition on Fp is superfluous. Moreover, for a local field K, the group
r is discontinuous if and only if r is discrete as a topological subgroup of



Let r be discrete with set of limit points .C. Then £ is compact and
n = ~C is of the type studied in section 2. One can choose a compact
and r-invariant set M with ,C as its set of limit points. If L is a perfect
set one can take M = ,C. If G is not perfect (in that case ,C consists

of at most two points and the group is called elementary) one can take
M = rpi where pi are points in H. Then r acts discontinuously
on n and this induces an action on H and T.

As we will show later the quotient X := rBH is a 1-dimensional,
connected, non-singular analytic space over K. We are interested in the case
that X is an algebraic curve over K. There are two important examples of
this:

w r is a finitely generated group and hence a finite extension of a Schottky
group and the curve X is projective (see [GP, Chapter 1, (3.1) and
Chapter 3, (2.2)]);

~ K = and r is a subgroup of finite index of the group
acting on H = IPk - In this case X is an affine

curve. For certain congruence subgroups r (and with a more general
field K) the corresponding curve is called Drinfeld modular curve (see
[G2]).

More general, a connected, one-dimensional, non singular analytic space
X is called quasi algebraic if there exists a projective non singular and
connected curve X and a compact subset of X (for the topology on X
induced by the topology of the field K) such that X is isomorphic to 

One might hope that every quotient X is quasi algebraic. There are

however more complicated quotients as shows the example 4.1.

We will assume that r acts without inversions on the tree T (i.e.
for every i E r and edge e of T). In the case that there

are inversions one can change the reduction of H and T by enlarging the
compact and r-invariant set M such that there are no inversions in the
new situation. This condition assures us that the quotient FBT is a (locally
finite) graph. Since F is discontinuous the stabilizer of any vertex and any
edge is a finite group.

According to [S2, pp. 75, 76], the quotient is also a graph of ( finite)
groups. The groups attached to vertices and edges are the stabilizers of the
corresponding vertices and edges of T. Further r is canonical isomorphic
to the fundamental group of this graph of groups. Let rtors denote the

subgroup of r generated by the set of torsion elements ( i. e. the elements of



finite order) of I‘. This subgroup of r is normal and according to [S2, p. 77,
cor. 1], the group r/rtors is isomorphic to the (ordinary) fundamental group
of the graph The topological fundamental group of any connected

(locally finite) graph (finite or not) is a free group. Hence we conclude that
r/rtors is a free group. Let g, 0 ~ g ~ oo, denote the rank of this group.
Note that g is equal to the dimension of the vector space Q. For

convenience we call g the rank of the group F.

3.2. Definition and some properties of X

Let ~r : SZ --~ X denote the canonical map. The Grothendieck topology
of X is given by: a subset A C X is admissible if is admissible.

Similarly, one defines admissible coverings of admissible subsets. For any
affinoid subset B C 0 the set A := x(B) is admissible since 7r’~(~4) ==

is admissible according to the discreteness of the group r. For

any sheaf of abelian groups T on S~ with a r-action cr (i.e. a collection

of isomorphisms cr(~) : : y*T --> T such that = y2 (~(yl )~(y2 ) for
all ;1,;2 E r), one defines a sheaf S = (of abelian groups) on X by
S(A) ) = T(7r"~j4.) . . The functor ~r* is a left exact functor. In particular
the structure sheaf Ox on X is defined as Take a small enough
connected afhnoid (for instance the affinoids occuring in the pure covering
of n) subset B ~ 03A9 with A := ?r(j!3). Then U03B3~0393 03B3B has some connected
component C with as stabilizer the finite subgroup Fo of F. As is easily
seen = yC and = ~(C’)~- . The latter algebra is
an affinoid algebra since it is the ring of invariants of an affinoid algebra
under the action of a finite group. Moreover A is isomorphic to an affinoid
subset of IPK since is isomorphic to This proves that X is a

1-dimensional, connected, non-singular analytic space over K, locally for
the Grothendieck topology isomorphic to 

In case X is a projective curve this means that X is a Mumford curve. In
case X is an affine curve it follows that the corresponding projective curve
X is a Mumford curve. More general, if X happens to be quasi-algebraic
then X = X - .~1~ and X is again a Mumford curve (as one easily verifies).

Let M denote again the sheaf of meromorphic functions on an analytic
space. Then = M x. . Indeed, with the notations A, B, C as above,
Mx (A) is the quotient field of O x (A) and equals the field of invariants of
the quotient field M~ (C) of (C) under the action of the finite group I‘a.

The sheaf of divisors Div on any analytic space is defined by Div(A) is
the group of all Z-valued functions on A with discrete support. In this



context a set S ~ A is called discrete if its intersection with every affinoid
subset of A is finite. One easily sees that 03C00393* Div03A9 ~ Divx and equality
holds if and only if r acts without fixed points on S~.

The pure affinoid covering of SZ by the sets ~2(e), SZ ([a]) gives rise to a
pure covering of the quotient X and a corresponding reduction r X - X .
In fact X = The irreducible components of X are rational curves over
the residue field k of K. The intersection of two components consist of a
finite number of ordinary double points. A component can also have self-
intersection, which means that the rational curve may have a finite number
of ordinary double points. The intersection graph of the components of
X coincides with r~T. The following theorem gives an idea what the
possibilities for the quotients X can be. A surprising feature for groups
of finite rank is that the construction of X = factors over the Schottky
uniformization of the Mumford curve k. .

THEOREM 3.3

Let X = and let g denote the rank of r. Then:

~a~ X is a projective algebraic curve if and only if r is finitely generated.
The genus of X equals g .

(b) X is quasi-algebraic if and only if g is finite. The projective curve X
and the compact subset with X ’‘--’ X - are uniquely determined
by X. . Further X is a Mumford curve of genus g.

(c) X is isomorphic to ~K - .I~ if and only if g = o.
(d) Suppose that g is finite. Put I‘1 := 0393/0393tors and Xl := 

Then Xl can be identified with for some compact set 
The action of I‘1 on Xl extends to an action on The set 
is I‘1 invariant and contains the set of limit points ,C1 of I~1. Put

SZ1 = IP1K -.C1. . Then I‘1 is a Schottky group and and the embedding of
X into the projective curve X is given by X = 03931BX1 C 03931B03A91 =: X .

Suppose that r is finitely generated then X 1 = ~21 and .C1 is empty
if g = 0, ,CI consists of two points if g = 1 and is an infinite, perfect
set if 9 > 1.

(e) X is called algebraic if X is an algebraic curve (either affine or
projective). The following statements are equivalertt:

~1~ X is algebraic.

~,~~ The graph r~T has finitely many ends.



Proof.- Part (a) is proved in [GP, pp. 20, 106~ . We suppose now that
the group F is not finitely generated.

Suppose that g = 0. Then it is easily seen that X satisfies the conditions
of [GP, p. 145, (2.5)]. Hence X is isomorphic to for some compact
subset J1~ 

Let now g be finite. Choose a finite part of the graph r~T containing
all the cycles of the graph. The complement of this finite part consist of
finitely many components which are trees. For every component we apply
[GP, p. 144, (2.4)] and find that the space corresponding to the component
has the form A - NA where A is an affinoid subspace of PK and where

is a compact set. Glueing the finitely many afhnoids A to the affinoid
space corresponding with the chosen finite part yields the complete, non
singular, connected curve X and the compact set such that X ’’-_’ X - 
The uniqueness of the construction is clear. Further the curve X is by
construction locally isomorphic to IPk and therefore a Mumford curve.
Finally it is easily seen that the choosen finite part of rBT is essentially
the graph of the reduction of X. . Hence the genus of i is g.

Suppose that g is infinite and that X can be seen as an analytic subspace
of some projective non singular and connected curve Z. Take a positive
integer n and a finite connected part of the graph rBT with Betti number
b > n. The corresponding affinoid subspace A of X lies in Z. Using a
suitable reduction of Z one can easily see that the genus of Z is at least b.
This is a contradiction and we find that X can not be embedded into any

projective curve. Hence we have proved (a), (b) and (c).
In part (d) we have to show that the action of ri extends to This

is proved in [GP, p. 152]. Hence Fi is a finitely generated, discontinuous
and torsion free subgroup of PGI(2, K). By definition ([GP, p. 6]) this is a
Schottky group. The rest of the statement (d) is more or less obvious.

For part (e) we note that an end in a graph is (the equivalence class of)
a subgraph isomorphic to a half line. We know that X = X - M for some
compact set M. It is easily seen that M is finite if and only if the graph
of some reduction (and hence any reduction) of X has finitely many ends.
From this (e) follows. This proves the theorem. D



4. Examples of discrete groups

4.1. Examples with g = o0

Let r be a Schottky group on more than one generator. Its commutator
subgroup ri = [ r, r ~ ] is a free group on countably many generators and
the set of limit points of ri is perfect and invariant under r. Hence this
set coincides with the set of limit points of r. The quotient I‘1 ~S~ is a one-
dimensional analytic space of "infinite genus" and has no embedding in any
pro jective curve (see also 6.5.2).

One might think that every discrete group of infinite rank lies in a

discrete, finitely generated group. This is not the case as the following
example indicates.

Let K denote a local field. A triple (a, b, q) with a, b E a ~ b and
q E K with 0  1 determines a hyperbolic element 03B3 E PGI(2, K)
given by y (z - - b) = q (z - - b~ , One can easily construct a

sequence of triples ~ (a~, bn, such that the group F generated by
the corresponding hyperbolic elements In is discrete and free on those

generators. Moreover the triples can be chosen in such a way that the
smallest subring R of K such that ;n E PGI(2, R) for all n is not finitely
generated over Z. From the last property it follows that r does not lie in
any finitely generated subgroup of PGI(2, K). .

4.2. S himura curves and group s of quaternions

Shimura curves can be defined, like the modular curves Xo(N), by a
moduli problem. We have to introduce some objects and notations.

1~.,~.1. Quaternian algebras

A quaternion algebra D over a field k is a simple algebra (i.e. there are no
two-sided ideals different from ~0~ and D) with center k and of dimension
4 over k. For a field k wit h char ( k ) ~ 2, D has a over k
such that the multiplication is given by the formulas:

eie2 = e3; e2e1 = -e3 ; eî = a; e2 = b; e5 = -ab with a, b E k*.



Examples
1. k = R. There are two possibilities:

and D = H the skew field of Hamilton quaternions, given by

2. k = There are again two possibilities:

and D = the skew field that one can describe as follows:

with multiplication rules u2 = p; Au = for A E Qp2. One has
written here ~~ for the unique non ramified extension of degree 2 of
Qp and Fr for the action of Frobenius on Qp2.

3. k = Q. Let D be a quaternion algebra over Q and let v be a place of
Q (meaning that v is a prime number or that v = oo). One says that
D is ramified at v if D ~ w is a skew field. The number of ramified
places is finite and even. Moreover, for every finite set S of places
with an even cardinality there exists a unique quaternion algebra over
Q with S as its set of ramified places.The discriminant of a quaternion
algebra D over Q is given by the formula:

where the + sign corresponds with "D is not ramified at 

4. The discriminant of M(2 x 2, Q) is 1. The discriminant of the skew

field IH is - 2 .

Eichler orders

Let D/Q be a quaternion algebra with discriminant d and let 
f > 0, (d, f) = 1. An Eichler order 8 C D of level f is a subring of D, free
of rank 4 as Z-module, such that:

~ for p ~ d, 9 @ Zp is the unique maximal order Zp2 [u] of the skew field
p2[u] ;



. for p f d, 8 @ Zp is conjugated with

We note that "f = 1 " is equivalent to "the Eichler order is maximal". For
d > 0, there exists only one conjugacy class of Eichler orders of level f in
D. For d  0, the Eichler orders of level , f in D form a finite set of classes
under conjugacy.

1~.~.2. The moduli problem

Fix an Eichler order 8 C D with discriminant d > 1 and level f. . One

considers abelian surfaces A with the following additional structure:

1. an injective ringhomomorphism I : 8 -~ End(A);
2. a subgroup B C A[/] ~ = : ~4 2014~ A) such that B is a cyclic

9-module of order f ;

3. the map 03B8  End(A) - End(Lie A) = M(2 x 2) has the property

Here TrD /Q denotes the reduced trace of D. The equality is meant to
hold in the structure sheaf of the base scheme of A.

The data above define a functor on schemes over 7~ ~1 / f] ~ and according to
[D2] there is a coarse moduli scheme Sd, f of finite type and projective over
7~ ~1 / f] J connected with the functor. The curve is called the Shimura
curve.

l~ .,~.3. The uniformizations

Description of the complex Shimura curve Sd,f ~ 
The group 8* C (D ~ IR~* ’‘--’ GL(2,IR) acts on H = ~ - (R. The complex
Shimura curve is isomorphic to 8* ~SZ.

Since d > 1, the quotient is a compact and connected Riemann surface.

Description of the p-adic Shimura curve Sd,f ~ p for p | d

Let D’ denote the quaternion algebra over Q obtained from D by exchanging
p and oo. This means that the discriminant of D’ is d’ = -d/p. Let 8’ C D’



be an order of level f (the conjugacy class of this order is no longer unique).
Define r C GL(2, Qp) by:

The approximation theorem for algebraic groups over Q implies that r is
discrete and co-compact. In particular, the set of ordinary points of r is
n = 1p - IP1(p). The group r acts with inversions on the tree T of H.

Put r+ = {; E r 0 mod 2}, where vp denotes the additive
valuation of ~p. .

Drinfeld’s theorem implies

We have to be more precise and to explain the Frobenius twist occuring in
the statement. For this purpose we introduce the following notations:

e Zp2 = W(F p2) = the ring of integers of ~p2 ;
e Zpoo = W(Fpoo) = the completion of the maximal unramified exten-
sion of Zp;

e Fr denotes the Frobenius action on Zp2 and Zpoo ; further Q is seen as
formal scheme over Zp and 03A9Zp~ is a scalar extension of 03A9;

e the group r acts on 03A9Zp~ by the formula:

in which cv E ~, a E Zpoo, ~y~ = the image of i in PGL(2, Qp) and
= vp(det i).

A precise version of Drinfeld’s theorem is [D2], jRiJ, [JL]

THEOREM . The formal Zp-schemes Sd,j ~ Zp and are

isomorphic.

We observe that the matrix p ~ Id belongs to r+ and so

where [F+] = Id In e Z} is the image of r+ in PGL(2, Qp). The
group = {1)~} acts on [r-~-]Bn by [~] and on Zp2 by Fr. Hence

0 Zp is a Frobenius twist of [r-~-]B~ defined by



In particular

Description of the graph r+ ~T in terms of the arithmetic of 8’
The graph F+BT is the dual graph of the reduction Sd,f ® IFp2 of 
and also the dual graph of the reduction r-t-Bn 0 IFp of r+BSZ seen as
formal scheme over Zp. The tree T is the Bruhat-Tits building of the
group PSI(2, Qp). The isomorphism (D’ ® ’-_‘’ GL(2, ~~) can be
used to give a new description of T: the vertices of T are the classes of
normalized left 8’-ideals of D’. A left 8’-ideal M is called normalized if
M ~ Zl = 8’ @ Zl for every prime number I # p. Two normalized ideals
M1, M2 are equivalent if Ml = for some m. Further {[M1],[M2]}
is an edge if the order of M1/M2 is p2. The group r = (03B8’[1/p])* acts
on normalized ideals by multiplication on the right. The set (rBT)o, the
vertices of (rBT), is a finite set and its cardinal is the class number h
of ()’. Then (r+BT)o = ..., Xh , Xf, ..., X~~ and w operates by
w(Xi) = Xi; w2 = id. Every edge y E has a certain length
t(y) > 1. Let a denote the double point corresponding with y. Then the
local ring of a has the form Zp~ [X, Y]/(XY - One easily sees that
the order of the stabilizer of any edge of T, with image y, in the group r+
is equal to l(y). There are formulas of Eichler for the numbers hand 

1~.,~..~. and Hamilton quaternions

For the choice d = 2p with p > 2 a prime number and f = 1, the algebra
D’ is H , the skew field of Hamilton quaternions over Q. The class number of
IH is 1 and its maximal order (unique up to conjugation) will be denoted by
H. A base of this order as Z-module is {p = 1/2 (1-~el-f-e2-~-e3), el, e2, e3}.
For any commutative ring with unit R we write H(R) for The group
r, defined above, is . This group has been studied in [GP, ch. 9]
in some detail. At the time [GP] was written the authors were not aware of
the connection with the Shimura curves.

Let us start by investigating the tree T. A (fractional) left H-ideal M in
- H~(Q) is normalized if and only = H (Z . Every left ideal
in H is principal (see [HW]) and it follows that every class of normalized left
ideals has uniquely the form [Hu] where u E H is an element with norm a
power of p and such that u is not divisible by p. Such an element u lies in r
and as a consequence r has only one orbit on the vertices of T and [r+] has
two orbits. The edges of T starting in [H] are the pairs { ~H~, ~Hu~ } where u



runs in the set of elements of H with norm p. The quotients H/Hu are the
non trivial left ideals of the algebra H/pH = H (~ p ) ’’-_’ M ( 2 x Their

number is of course p + 1 and this is in accordance with 7*4 ( p) = 8 (p + 1);
~H* = 24 and an easy calculation like [HW, Theorem 371]. The stabilizer
of [H] in r or r+ is the group H*. The edges of [r+]BT are the orbits of
the p + 1 edges above under the action of H* by right multiplication. In

order to understand this action we introduce a curve P over Z canonically
attached to the situation.

P is the set of isotropic lines in the Z-module V generated by {el, e2, e3~
(this is the orthoplement of the vector 1 E H), with respect to the

quadratic form induced by H. Hence P is the subspace of IP2 given by the
homogeneous equation x i -f - ~ 2 -f- x 3 = 0. The curve is the projective line
over Qp since P has points with coordinates in in IFp. The groups ~I‘~ and
[r+] act by conjugation on V. Let SO(3) denote the affine algebraic group,
defined over Z of the orthogonal automorphisms of V with determinant 1

and let H*/Z denote the quotient of H* by its centralizer Z, seen as an
affine algebraic group over Z.

An explicit calculation of the map between the affine rings of the two
affine group schemes over Z proves that the morphism H* /Z -~ SO (3),
defined by the action of H* on V, is an isomorphism over 7~ ~1/2~. In

particular H*/Z(71~1/2p~) is equal to SO(3, 7L~1/2p~). Further ’’-_’

.44 is a subgroup of index 2 in SO(3, 7L) "--J 54 and H*/Z(7~~1/2~) is mapped
bijectively to SO(3, Z) = SO(3, 71~1/2~). Hence = 

has index 2 in SO (3, = SO (3, 7L~1/2p~) .
The groups [r] and [r+] act on PQp . The space of ordinary points for

this action is Q = PQF - P(Qp). Every edge { [H] , [Hu]} as above induces
the isotropic line (Hu/Hp) n V ® One finds in this way a bijection
between the edges above and the points of P(IFp). The group H* or better
the quotient H*/~~1~ ’--" A4 acts on V and V 0 IFp as the subgroup of
index two of the group 54 of all symmetries with determinant 1 of the cube.
The structure of the orbits of the action of A4 on depends on p mod
12. The genus g of the curves S2p,1 and ~r+~~5~ is equal to the number
of orbits minus one. For p = 3 there is only one orbit and g = 0. For

p > 3 we tabulate g and the number of edges y with l(y) = 2, 3. The stable
reduction of the curve ~I‘+~ ~S~ mod p has two components, both isomorphic
to the projective line over Fp. The two components meet in g + 1 double
points; the numbers I have the same meaning for the local equation at the
double points as in 4.2.3. The table also gives ~I‘+~ BT as graph of groups and



according to [S2] gives the structure of the group [r+], since the stabilizers
of the two vertices are isomorphic to A4. The curve S2p,1 has a very
similar structure.

We note that the curve has features in commun with Xo(p). The
table of the reduction mod p of the latter curve is:

!~ ..~. 5. A zoo of quaternion groups

It is interesting to consider other groups of quaternions. The group
is called A in [GP, ch. 9]. For the genus of the corresponding

curve (or the rank of A) there is the formula:

where ~~ (p) = 1 for p - 1 mod k and otherwise 0 (and k = 3, 4). Further
7*3 (p) denotes the number of representations of P as sum of three squares.
This formula can be obtained as follows. The genus of ABQ is equal to the
genus of its reduction = The latter space has only
one irreducible component because A acts transitively on (the vertices of
T) = (the irreducible components of H 0 IFp). Further, a double point of
n ~ IFp disappears in @ IF p) if and only if the corresponding edge of T
admits an inversion in A. In particular, the edge ~ ~H~, ~Hu~ } corresponds
to a disappearing double point if and only if u can be chosen such that



u2 = -p. This amounts to u = xlel + x2e2 + x3e3 with Xl, x2, x3 E Z;
~ x2 = p and the first non zero xi is positive. This explains the first

part (p + 1 ) /24 - r3 ~p) /4g of the formula. The last part follows from an
examination of what happens for the fixed points of the elements of A4.
We note that the degree two map ~I‘+~~SZ --~ is ramified in r3(p)/12
points. For the first 50 primes we give the values of the rank of A. This

table extends and corrects [GP, p. 268].

The group A lies as normal subgroup of index 2 in the group

This group acts with inversions on T and its subgroup A+ = (A E .t1 ~
- vp(det A) = 0 mod 2} of index 2 acts without inversions on T. The quotient

graph A+BT has two vertices. The edges of the quotient graph are the orbits
of P(Fp) under the action of the stabilizer of one of the vertices. This

stabilizer is the group H(7L~1/2~~*/~~2n~. The last group is isomorphic
with 54 and acts on the space V ® IFp as the group of symmetries with
determinant 1 of the cube. From this description one can calculate the data
of the quotient graph and the genus of the corresponding curve. For p > 3
we have tabulated the results (see next page).

The calculation of the rank of A can in principle be done with the
method that gave the rank of A. The formula reads:



where b2 (p_~ = 1 if p_- 1, 3 mod 8 and otherwise =0. We note that the degree
two map ~1+BS~ -~ ABH is ramified in (r3(p) + r3(Zp)~/24 points. Another
calculation is the following. As we have seen before SO (3, 7L ~1 /2p~ ~ .
The congruence subgroup

has no elements of finite order since a matrix of the form Id + 3A and

A ~ 0 can not have finite order. The SO(3, IF3) is surjective since
64 = H ~7L~1/2J~ *~~~2’~’2~ -> SO(3,IF3) is an isomorphism. It follows that

A(3) acts transitively on the vertices of T. Hence A(3) is a free group of rank
(p-f-1 ~ / 2. The group S4 acts by conjugation on l1 (3~ ~b ® ~ and the rank of 1~
is equal to the number of trivial representations present in the representation
above. For the rank of A one finds the following algorithm : the number of
solutions in integers q, xl, x2, x3 with q > 0; 0  xl  x2  x3 of

where b = 2, 4 for p - 2, 1 mod 3. For the first 50 primes, the non zero
values of the rank of A are:



Let A denote any discontinuous group acting on H. The ramification

index eq of at a point q is the order of the stabilizer of

any Q with image q. The point q is called ramified if eq > 1. For

the groups [r+], A = [r], A+, A a calculation shows that the number of
ramified points is even.

No ramification occurs only for [r-)-] with p - 1 mod 12 and for ~1.+ with
p - 1 mod 24. In these cases the rank of the group must be at least 2, since
otherwise impossible unramified coverings of the rational or elliptic curve
ABn would occur.

Two ramification points occur for [F-~-] with p = 7 mod 12, for A+ with
p - 13, 17, 19 mod 24 and for A = [r] with p = 7 mod 24. Again the rank
of these groups must be different from 0. Rank 1 occurs for [r+] with p = 7,
for A+ with p = 13, 17, 19 and for A = [r] with p - 7 mod 24 or p = 13, 37.
Let A be a rank one example with only two ramification points for the map

= E with E some elliptic curve. The algebraic fundamental
group of E - {a, b~ is the (pro-finite) completion of a free group on three
generators, this group maps surjectively to the completion of A.

More surprising is the application of (3.3) to groups 0 as above having
rank 1 (and any number of ramified points). The quotient of the "upper half
plane" 03A9 by 0394tors is isomorphic to P1Qp - {0,

We note that 03A9 ~ IP1Qp - {0, ~} is ramified above the points of at
least two A/Ators = (q)-orbits. Here q E K* with 0  1 acts on

PQ - {0, ~} by multiplication. For a subgroup N of finite index in 0394tors

the quotient {0, ~}) is (in contrast with the complex modular

situation) in general not an affine curve. As an example one can take for N
the kernel of the map Ators -> SO(3, lF3). The group N has no torsion and
can not be finitely generated since Ators is not finitely generated. Hence N is
a free group on countably many generators and the quotient of IP1Qp - {0, oo}
by N is a curve of "infinite genus". It seems unlikely that a more faithful
p-adic analogue of the PS1(2,Z) action on the complex upper half space
exists.



4.3. Abhyankar’s conjecture

For a function field over a finite field and a given place of the function
field one can construct Drinfeld modules of rank 2 and a Drinfeld modular
curve. For the general situation we refer to [Gl]. We will restrict our
attention to the function field K = IFq(t) with q a power of the prime p and
with "t = oo" as choosen place.

The completion of this field is the field of formal Laurent series K =
IFq((t-1 )). The upper half space SZ is again defined as We

consider the group r := acting as a discontinuous group on 03A9.
This group acts without inversions on the tree of Q and according to J.-P.
Serre [S2, p. 118], the quotient graph is a half line. Using 3.3 one sees that

is isomorphic to A1K The same holds for the group F(l) := ;

an explicite calculation of the quotient is made in [GP, ch. 10]. Let f denote
a polynomial in Fq[t] and let r( f) denote the congruence subgroup defined
by r(,f ~ = ker (I‘(1) --~ The compactification 
of the quotient is a Drinfeld modular curve.

Because subgroups of finite index of will give examples for
the conjecture of S.S. Abhyankar, we give some results concerning r. By
[S2, pp. 118, 121], one has

and a similar statement holds for Sl ( 2, ~ ) .
Using this one finds for 2 that the commutator subgroup of r is

r(l) := . For q = 2 one has that = IF 2 ~t~ . It can be shown
that is isomorphic to the affine line over and that the
canonical map to is the division by a lattice 

Further r ( 1 ) is equal to its commutator subgroup except for q = 2, 3.
In the case of q = 3 one has that = and it can be shown that
the canonical map = SZ/I‘(1) = A1 is division by a
IF3[t]-lattice of rank one.

From now on we assume that the characteristic is not 2 and that q > 3.
For convenience we write also I‘ ( 1 ) for the group . The set
of points of n with a non trivial stabilizer form one orbit where

vo is a point in F q2 - IFq. The stabilizer of ~o is a cyclic group of order
(q + 1 ) /2. The map f : S~ -~ "--’ A1 can be normalized such that
f(o) = 0. Hence f is only ramified above 0 and the points above 0 have



cyclic ramification of order ( q + 1)/2. For a subgroup A C r(l) of finite
index, which contains no elliptic elements of r(l), the canonical map of the
affine curves

has cyclic ramification of order (q + 1) / 2 at the points above 0 and there is
wild ramification above oo. In order to construct examples for

ABHYANKAR’S CONJECTURE

Every quasi p-group ~i.e. a finite group generated by its p-Sylov sub-

groups) is the Galois group of an unramified covering of the affine line in
characteristic p (over some algebraically closed field).

We have to remove the cyclic ramification above. This is done by an
analytic version of Abhyankar’s lemma.

Define the analytic space SZ* to be the normalisation of

Since f has a zero of order (q + 1)/2 at each point of the orbit 
the map g : SZ* -~ SZ is unramified of degree (q + 1)/2 and g becomes a
cyclic covering after a quadratic unramified field extension of K . An easy
calculation with the reductions modulo (t-1 ) shows that Q* is connected

and that the irreducible components of its reduction have positive genus.
Hence SZ* is a curve of "infinite genus" in the terminology of 4.1. The action

of r(l) on n lifts in an obvious way to H*. The morphism

has degree (q + 1) /2 and is ramified only above 0 (and above oo ) . It follows

that is isomorphic to A1 and we have obtained the following result.

PROPOSITION 4.3.1. For every subgroup ~ C r(1) of finite index, the
morphism

O~S~* -~ ’’" A1 is unramified. .
K



Examples and Remarks 4.3. Z

Choose A = r( f ). The proposition gives a Galois covering of the affine
line over K with group by a (potentially) cyclic covering
of X (r ( f ) ) of degree (q + 1 ) / 2. In particular for f = t one finds P Sl (2, IFq )
as Galois group and the genus of the corresponding curve is ( (q - 1 ) /2 ) 2.
Looking at the reduction modulo (~-1 ) one also finds the same group as
Galois group of a covering of the affine line over IFq . This covering could
have been obtained more easily by applying Abhyankar’s lemma (in order
to remove the tame ramification) to the map

Comparing the above with the quotient of 
q 
by a Borel subgroup of

PSI(2, IFq) one finds the covering of degree q + 1 of the projective line by
itself given by x ~ + 1~/x~ . Apparently, is the Galois

group of this equation.

5. Cohomology for a discrete group r

THEOREM 5.1

~a~ Let T be a sheaf on SZ provided with a r-action. Suppose that T has
trivial cohomology on Q . Then the canonical map a : H1 (X, -~

injective.

(b) The map a is an isomorphism if X has an admissible covering by
connected affinoids A such that for a connected component B of ~r-1 A
with (finite ) stabilizer ro the group H1 T(B)) is 0.

~c~ The condition in (b) are satisfied in the following cases:

1) r is a Schottky group (and all T~.
~ T(U) is a ~-module for all U.

Proof . Let £ E H1 (X, be given as a 1-cocycle (~i,~~ of a covering
of X by affinoids ~Ai~. Then, after refining the covering ~A2~, there are
elements fi E such that = on n For

03B3 E r one can glue the sections 03B3fi - fi to an element c(;) E T(SZ) and
clearly 03B3 ~ c(;) is a 1-cocycle for H1 (r, (03A9)). If this cocycle happens to
be trivial then one easily sees that £ = 0. This proves the first statement.



Let c(;) represent an element of H1 (r, (03A9)). Choose a covering
of X by connected affinoids with the property of the statement.
Write 1r-I(Ai) as a disjoint union yB2 where BZ is a connected

affinoid set with finite stabilizer r i. Then we consider the image ci of c in
H1 (r, . The r module is induced by the ri module

T(Bi). . According to exercice p. 125~ , one has that H 1 ( r, ?-( ~t-1 A2 ) ) is
isomorphic to HI(ri, T (BZ )) . The latter group is supposed to be 0 and this
yields elements Ii E satisfying c(,) = f2 on The

elements fi - Ij E T (~-1 (Ai n are r-invariant. The image £ of the
1-cocycle ( f2 - in the element which is mapped onto c.

Finally, a finite group acting on a Q vector space has trivial cohomology
according to [Sl, proposition 4, p. 138].

COROLLARY 5.2

Suppose that the quotient X is quasi algebraic. Then the genus of X is
equal to the dimension of the ~-vector space Q.

Proof. - The statement is already proven in (3.3). We will now give
another proof using r cohomology.

Apply theorem (5.1) to the sheaf T = Q03A9, the constant sheaf on 03A9

with stalk Q and obvious r-action. Then 7r;T = ~X and so Q) =

Hom(r, Q). By X we denote the curve satisfying X = X - £. As remarked
before, X is a Mumford curve of some genus g, and as a consequence X has a
uniformization by a Schottky group free of rank g. Applying the theorem for
this uniformization and the constant sheaf Q one finds g = dim H1 (X, , ~).
Using the fact that any subset A - of PK, where A is affinoid and

M is compact has trivial cohomology for any constant sheaf one finds
= Q). This proves the statement. 0

Remark. . - The result above has been proved in [GP, ch. 8, section 4]
for finitely generated discontinuous groups. For other groups, U.E. Gekeler
[G2] has given a proof.

COROLLARY 5.3

MX) -~ H1 (r, M(SZ)*) is an isomorphism.

Further H1 (X, Mg) = 0 for every quasi algebraic curve X .



Proof. - Let B denote a connected component of with finite

stabilizer ro where A is any connected affinoid of X. Then ro is the

Galois group of the field extension M(~4) -~ M(B). Hilbert 90 proves
then H1 (ro, M(B~*~ = 0. Apply now theorem (5.1) for the first statement.

Suppose that X is quasi algebraic. From the exact sequence of sheaves

one obtains a surjective map H1 (X, O* ) -~ H1 (X, M*). Hence the latter
group will be 0 if we can show that every line bundle L on X has a non trivial

meromorphic section. We think that this is the case for any connected, non
singular, one-dimensional analytic space. The proof for a quasi analytic X
is very easy. Let the embedding X ~  be given. The line bundle L on X
extends to a line bundle L on X. Indeed, any line bundle on an analytic set
of the form A - M, with A an affinoid subset of the projective line and 
compact, is trivial and hence extends to A.

By GAGA the line bundle L is algebraic and has a non zero rational
section above i. . The restriction of this section to X is a non zero

meromorphic section of L.

DEFINITION 5.4

A (meromorphic) automorphic function for r is an element f E 
such that (y* = c(y) E K* holds for every 03B3 E I‘. . The homomorphism
y ~--> is called the automorphy factor. The element f is called a theta
functionfor r if f E O(SZ)* .

COROLLARY 5.5

Suppose that X = tBSZ is quasi algebraic. For every homomorphism
c E ) there exists a automorphic function f with automorphy
factor c. This f is unique upto an element of M(X )* .

Proof. - - Define the group Q by the exact sequence

After taking invariants under r one finds the exact sequence:

The statement follows now from corollary 5.3 and the observation that Qr is
equal to the group of automorphic functions modulo the constant functions.



6. Theta functions for a Schottky group

In this section we assume that the group r is a Schottky group of rank
g. For convenience we take K to be algebraically closed. This enables us

to identify any reduced algebraic (or analytic) variety over K with its set
of points over K.

Let ..., denote free generators for the group. As in 3.1 one defines

£, Q, T and X := rBn. The curve X is a Mumford curve of genus g and
G := rBT is a finite graph with Betti number g. Cohomology for such a
group can be calculated as follows: Let M denote a r-module. One forms

the complex

Then Mf = M) = ker(d) and M) = coker(d) and

The sequence of 2.1 induces an exact sequence

The term H 1 (r, O (SZ ~ * } equals according to 5.1. The elements
of the last group represent (equivalence classes of) analytic line bundles on
X. By GAGA analytic line bundles are algebraic and hence the group is
equal to Pic(X).
Let 0(r) denote the group of theta functions for the group r. Then by
definition, one has the following exact sequence:

For any locally finite graph G we denote by A(G) the group of functions 
on the oriented edges of G with values in 2, satisfying ~c(- e ~ _ -~c( e ).
Let H(G) denote the group of all functions on the vertices of G with values
in Z and let d : A(G) ~ H(G) be given by _ ~ e ~o}=~ ~c( e ~.
Clearly ker(d) = C(G), the group of currents on G.



LEMMA 6.1

Let G be a finite, connected graph. There exists an exact sequence

and there exists a canonical isomorphism 03C01 (G) ab C(G) .

Proof. - The lemma is well known. The map 03C6 is given =

f(a). The non trivial part is to prove that ker 03C6 C im d. Let G*

denote a maximal subtree of G, then

is exact; A(G*) can be seen as subgroup of A(G); Z~ where

g is the number of edges of G not belonging to G* and H(G* ) = H(G).
This proves the first statement of the lemma.

Let i be a closed path in G. One can describe, by a sequence of oriented
edges {e1, ... satisfying e i ( 1 ) = e Z+1 ( 0 ) for i = 1, ... n - 1
and where = e 1(0). One associates to i the current given by:

One easily sees that is a current only depending on the homology class
of 03B3 and that = + . In order to see that the resulting map
~1 --~ C(G) is an isomorphism, one uses again the maximal subtree
G*. ..., ... , - e g ~ denote the set of oriented edges
belonging to G and not to G*. For every C in this set, one constructs
the closed path = ~ e , , f 1, ... where ~ f 1, ... is the
shortest path in G* from e (1) to e (0). Then {~y( e 1 ), ... , ~( e g) } is a
free basis of ~rl (G)ab and the = ~c,y( e i ) have the property = ~i ~~ .
Let  be any current of G. Then  =  - 03A3gi=1 (ei) i satisfies ju( e i ) = 0
for all i. Hence  is also a current for G* and so ju = 0. This shows that
~1 ^--’ C( G).



LEMMA 6.2

Let G be an infinite (locally finite) tree and let E denote the collection

of the ends of G. This set has a natural topology as 0-dimensional compact
space. The group of currents C(G) on G can be identified as the group of
finite additive measures m on E with values in 7L and satisfying m(E) = 0.
The following sequence is exact:

Proof . For the surjectivity of d one needs a combinatorical argument.
Let V E H(G), choose a vertex a of G. We try to find f ~ A(G) with
df = V. An edge e is called finite if one of the two components of the

graph G - ~e~ is finite. Consider the e with e (0) = a. For a finite

e the values of f on the finite component corresponding to e is uniquely
determined. For the infinite e with e (0) = a we choose values 1(7’) such
that at df(a) = V (a). Now we proceed with the same method applied to
the vertices e (1), where e are the infinite edges with e (0) = a. This

proces gives the desired f . The second part of the statement is analoguous
to 2.1.1.

LEMMA 6.3

~1~ C(T)r = C(r~T) and is canonical isomorphic to 
= Z and the map -~ 

coincides with the degree map Pic(X) -~ 7l.

(3) There is a canonical exact sequence:

Proof. - ~1~ follows form 6.1. For (2) we consider the exact sequence of
r modules:

The modules A~T ~ and H (T ) are induced r modules and the cohomology
sequence reads:

According to 6.1 the last group is isomorphic to Z. The last part of (2) is
easily verified. Part (3) follows from (1) and (2) applied to the sequence:



THEOREM 6.4

Let ., .> denote the bilinear form on 0393ab with values in K* derived from
c in 6.3.3.

r1~ ( ~ , ~ ~ is symmetric.

(2 ) ( . , . ) := -log I ( ~ , ~ ~ I is a real bilinear, symmetric and positive
definite form.

(3) The isomorphism of the groups

is an isomorphism of analytic varieties.

Proof. - (1) Let v, w E r with images v, iv E 0393ab and let uu, E O(I‘)
denote an element which has the same image as w in . Then

(w, v~ = In [GP, p. 190~, the symmetry of this expression is
proved by using an explicit formula for uw. Suppose that oo E 11 then

where a E H is a point not lying in the r-orbit of oo. It is not difficult to see
that Uw is indeed the element of 0(r) with image w E C(rBT) normalized
by = 1. By considering uw and similar expressions as functions
of two variables z, a, the symmetry comes out. We do not know how to
translate this trick in terms of r-cohomology.

(2) The form ( . , . ) will be given explicitely in terms of the graph rBT
and a function h on its edges, given by h(e) = - log |03C0e|, where 03C0e is defined
as the element appearing in the local equation (xy - above the double

point corresponding to e.

Let Pot(T) denote the group of potentials on T, i. e. the real functions
V on the vertices of T such that the expression dV E A(T ), given by the

is actually a current on T. The exact sequence of F-modules 2.1 has a

morphism to the exact sequence of r-modules:



given by taking - log ) . . ~. . This shows that ( ~ , ~ ) is derived from the

cohomology sequence:

Let  denote a current of T and let po denote a fixed vertex of T. A potential
V with can easily be given by integration as follows: let q denote a
vertex and ..., denote the shortest path from po to q. Then

For 03B3 E r we denote by Vy the potential with is equal to the current
E C’(T’) corresponding to y. One finds:

where {1, ..., is the shortest path from po to 03B32p0. Since is I‘-

invariant one can consider this formula as an expression in and replace
po and e i by their images in rBT. Hence:

where ~ , f 1, ..., , f n ~ is the path in rBT corresponding to ii . Moreover

This gives finally the formula:

and proves (2).



(3) can be proved as follows. Let T denote the algebraic torus over K
with character group On T there is a canonical analytic structure.
One considers the line bundle

with r-action given by y(a, t, w) = (03B3(t)a,t,03B3(03C9)), where 03B3 denotes the

image of , in rdb. Dividing by the r-action one finds a line bundle

L --~ T x X. . Using the universal property of the Poincaré bundle P on
x X (this property remains valid in the category of analytic spaces)

one finds an analytic morphism T --~ This morphism coincides
with the map on the K valued points Pico(X) of 6.3.3.
The morphism is surjective and its kernel A := is discrete in T since

the form is positive definite. Therefore the quotient T/A has a natural
structure as analytic variety. This variety is then isomorphic to 
We note that the symmetry of ( . , . ) and the fact that ( . , . ) is positive
definite also proves that the analytic torus T/A is an abelian variety (see
[FP, ch. 6]). In our situation this is obvious.

Remarks 6.5

(1) In the case of a field K with a discrete valuation, it is natural to

normalize - log ) . ) I to be the additive valuation of K. The edges e
of the graph rBT are then given a weight h( e) E IN and one finds
in 6.4 certain positive definite quadratic forms over the integers.
One can ask if all positive definite quadratic forms occur in this

way. For g = 1, 2 (and probably 3) one finds all such forms. For

g > 3 there are more positive definite quadratic forms than those
constructed with Schottky groups. They do occur for principally
polarized abelian varieties over K having a multiplicative reduction.
Hence the question above is related to the non surjectivity of the
Torelli map for g > 3. This theme is worked out in [G].

(2) We use again the notations I‘, SZ, X, T as above. Fix a point 
and let xo E X be its image. Normalize the theta functions uy by

= 1. The map 03A9 03C6 T, is given by 03C6(03C9) = u,y (w ) .
After dividing out the action of r one finds the usual immersion
X --~ Pico(X) which sends .ro to 0 E Pic~(X). The preimage of
X C Pic~ (X ) in T is an analytic covering of X with group r ab. This
preimage coincides with the image of the map ~. From this we draw
the conclusion that § induces a closed immersion of the curve with
"infinite genus" (see 4.1) into T.



7. Theta functions for general groups

It is again convenient to worke over an algebraically closed field K. Let
r denote a discontinuous group. We will assume that its rank g is finite and
that r is not a finite group. We will use the following notations.

. The set of limit points of r is the set ,C; S~ = T is the tree T (,C* ),
where ,C* is a compact, r-invariant set having ,C as set of limit points
choosen such that r acts without inversions on T; Y is the graph rBT;
X = 0(r) is the group of theta functions for r i.e. the invertible
functions f on 03A9 with (y * E K* for all 03B3 E F.

e rtors is the normal subgroup of r generated by the elements of finite
order; according to 3.3 Qtors := pl-M and Ttors := rtorsBT
is a tree for IP1 - M corresponding to some r-invariant set having
JI~ as its set of limit points.

e Fi = r/rtors is a Schottky group (if g > 0) according to (3.3);
the set of limit points of ri is ,C1; this set is contained in M and

Hi := M; the tree Ti is the tree T(.C1~*), where ,C1~* is
choosen to be a r-invariant set contained in and having ,C1 as its
set of limit points. X := riBni and according to 3.3 X ~  and the
complement of X in X is a compact set; further 0(ri) is the group of
theta functions (defined on Hi) for the group I‘1. Let YI denote the
graph riBTi. ~

The aim of this section is to describe the uniformization of the Jacobian
variety Jac(X) = PicO(X) of X in terms of the theta functions for r. We
note that 0(ri) c 0(r) and that, according to section 6, this uniformization
is given by the exact sequence:

Further r := = torsion subgroup} and the symmetric
bilinear form F x r -~ K* is the essential part of the uniformization.
In locating 0(ri) as subgroup of 0(F) there are two obstructions: the

possible torsion in F and the possibility that X is not a complete curve.
The first obstruction is responsible for subgroups of finite index, the second
obstruction is overcome by the method of [GR] of considering currents (et
cetera) with compact support.



The natural inj ection O(Otors)* -; ~ ~ ~ ) * induces an injection

This leads to defining natural maps A(Ttors) --> A(T); H(Ttors) -~ H(T) as
follows.

Let m(e) denote the order of the stabilizer in r tors of any edge f of

T lying above the edge C of Ttors. And let m(a) denote the order of
the stabilizer of any vertex b of T lying above the vertex a of Ttors. For

9 E A(Ttors), the image G E A(T) is given by G( f) = where

e E Ttors is the image of f. . The map H (Ttors ) --> H (T ) is defined

in a similar way. For d E H(Ttors), the image D E H(T) is given by
D(b) = m(a)d(a) where b has image a in Ttors.

One obtains in this way an injection of the exact sequence 0 2014~

C(Ttors) --~ A(Ttors) --~ H(Ttors) into the exact sequence 0 -~ C(T) -~
A(T ) -> H(T). . The exact sequence 0 --> C (Y ) -~ A(Y ) -> H (Y ) is ob-

tained from the first sequence by taking the invariants under the action of
the group Fi . As a consequence 0 -> C(Y) - A(Y) -> H(Y) is mapped
injectively in the exact sequence 0 -~ H(T)f. In par-
ticular C(Y) is a submodule of C(T)r.

Let C(Y)c’ denote the subgroups of elements with finite
support in the corresponding groups. The homology groups of the graph Y
with coefficients in Z is given by the exact sequence:

Of course Ho (Y, 7l ~ = 7L and = Hl (Y, Z) = r ’’_-’ 7L9 since Y is
obtained from the tree Ttors = 0393torsBT by dividing out the free action of
the group Fi .

Let Yc denote the finite subgraph of Y supporting all the currents 
By definition = C(Yc) and one can identify the exact sequence
0 -i with the sequence 0 - 

H(Yc).
Let C(T)~ denote the subgroup consisting of the currents which

have a finite support modulo the action of f. Similarly, one defines

C A(T)r and C H(T)r , .

One can identify ~4(T)~ with A(Yc)’ := the group of alternating functions
f on the oriented edges of Yc such that E for every



edge. In the same way, H(T~~ can be identified with := the

group of functions f on the vertices of Yc such that ,f (a~ E (l/m(a))Z
for every vertex a. Put := = the group of alternating
functions f on the edges of Yc such that f(C) E and

similarly := . There is an obvious boundary map
d" : A(Y~ )" -i H(Yc)" and an exact sequence of complexes:

This induces an exact sequence

PROPOSITION 7.1

~1~ The graph Y~ is a subdivision of the graph Yl.

(2) The image of 4(I‘1 is the subgroup of finite index oo C (Y) e =
C 

(3) The quotient is equal to ker d~~ .

Proof.- First some generalities. Let M1 C M2 denote compact
subsets of ~1. Then there is a canonical injective map from the set of
vertices of to the set of vertices of T(.~t2 ). An edge of the first tree
need not be an edge of the second tree. Let S denote the subtree of the

second tree spanned by the vertices of the first tree. One has: a vertex s
of T(,~t2 ) lies in S if and only if s lies on the shortest path between two
vertices Hence S is a subdivision Further S = 

if and only if the sets Mi and M2 have the same set of limit points.

We apply this to ,C1 ~* C M* and we divide by the action of I‘1. Then
the subdivision I‘1 ~S of Yl is a sub graph of Y, this subgraph is the support
ofC(Y)e and hence equal to Y~. This proves (1).
We note further that 0(rl)IK* = C(Yl ) (according to 6.3) and so

C(Yl ) = The rest of the proposition follows easily with the help
of the exact sequences above.



Remarks 7.2

The map I‘ -~ 0(r) can be made explicit by using infinite products. Take
w E r and assume for the sake of the formula that oo and let a E ~ be
a point not lying in the r-orbit of oo. Then the expression

is easily seen to belong to 4 ( S~ ) * , to be independent of the choice of a and
to have as current the image of w in C (T) r. In particular does only
depend on the image w of w in I‘ and we can write = The map
w H u, is the desired explicit map.

COROLLARY 7.3

~1~ f E O(I‘) belongs to O(I‘1 ) if and only if the current of f belongs
to and the automorphy factor of f is trivial on the torsion

elements of 0393ab.

~,~~ There is an injective map ---~ K*).
(3) If the characteristic of K is p ~ 0 then the finite group C (T) ~ 

has no p-torsion.

Proof. - The "only if ’ part of ( 1 ) is trivial. Let f satisfy the conditions
above. Since f is 0393tors-invariant, f can be seen as an invertible function
on 0393torsB03A9 = M. It follows that the current  of f on T satisfies
~u( e ) E m(e)Z (where e is mapped onto e E Ttors). Hence ~ E C(Yc)
and f E O(rl ). The other statements follow at once from (1).

COROLLARY 7.4

~1~ The injective maps

have a cokernel isomorphic to 03A0x~XZ/Zex, where ex denotes the
order of the stabilizer of any point c~ E ~ with image x.

(2) If X is an algebraic curve then the analytic cohomology group
coincides with the algebraic cohomology group

Further Oan(X)* = 



Proof. - ( 1 ) Consider the exact sequence of r-modules:

and its cohomology sequence, using 5.3:

The injective map

has clearly cokernel 03A0x~XZ/Zex. Comparing this with the exact sequence

one finds that the injective map H1 (X, OX ) --~ H1 (r, has the same

cokernel.

(2) If X happens to be complete, this is of course a consequence of GAGA.
Suppose now that X is an affine curve with compactification X. . The map

OX ) --~ OX is surjective since any analytic line bundle on
X has an extension to an analytic, and hence algebraic, line bundle on X. .
Suppose that the (algebraic) line bundle L on X is trivial as analytic line
bundle on X. . Then L has a nowhere vanishing analytic section f above X. .
Take a point q E X - X, a local parameter z at q and a local generator
e of L at q. Then f = ( ~ ~ _ ~ anzn)e and this infinite sum converges
and has no zeros for 0 é. It follows that the infinite sum can only
have finitely many negative terms. Hence the analytic section f extends
to a meromorphic analytic section of L on all of X. . Such a section is by
GAGA a rational section of L with its poles and zeros in X - X. . Hence

the restriction to X of L as algebraic line bundle is also trivial. The second
statement of (2) has a similar proof.

Remarks and Examples 7.5

(1) Suppose that X is an affine algebraic curve. Comparing the I‘1-
cohomology of the two exact sequences



one finds an exact sequence

This sequence is easily seen to be identical with

Further the group is a subgroup (possibly of finite

index) An interesting question is whether the group
Divo(X - X~/~, is finite for groups of arithmetic type. In [G2] it

is shown that this group is finite for any congruence subgroup of
.

(2) Put A = [r+] and p = 13 (see 4.2.4). Then X = X, all e~ = 1,
= 7l2 ~ and = ker d~~ ^-_’ 71/371. Apparently,

the map K*) of 7.3.2 is here a

bijection.

(3) Put A = [r+] and p = 23. In this case Ators is an interesting group.
It is the amalgam of countably many copies of A4 and the quotient
0394torsB03A9 = IP1 - {0, ~}.
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