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Jumping nonlinearities for fourth order B.V.P.(*)

MARTA GARCÍA-HUIDOBRO(1) and RAÚL MANÁSEVICH(2)

Annales de la Faculte des Sciences de Toulouse Vol. II, n° 1, 1993

RESUME. - Dans cet article, nous étudions le probleme avec conditions
aux bords

ou I = i2 ~, il  i2 et J = , j2 ~, jl  j2 sont deux sous-ensembles
arbitraires de {0,1, 2, 3} tels que la premiere valeur propre du probleme
linéaire associé

est strictement positive. Soit 03C61 une fonction propre non negative corres-
pondant a Ai . On suppose H(t) = h( t) - s03C61 (t), s E IR+. . Alors sous la
condition que f "croise" les k premieres valeurs propres de (L), on montre
l’existence d’au moins 2k solutions du probleme (P) pour s suffisamment
grand et positif.

ABSTRACT. - In this paper we study the boundary value problem

where I = ~il , i2 ~, ii  i2 and J = ~ jl , j~ ~, j1  j2 are two arbitrary
sets of integers from ~0,1, 2, 3~ which are such that the associated linear
eigenvalue problem

satisfies al > 0. Let ~i be a nonnegative eigenfunction corresponding to
03BB1. Suppose H(t) = h(t) - E IR+. Then, under the assumption
that f "jumps" over the first k eigenvalues of problem (L), we prove the
existence of at least 2k solutions to problem (P) for large positive s.
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1. Introduction

In this paper we consider the boundary value problem

where I = i2~, il  i2 and J = ~2~~ 31  j2 are two arbitrary
but fixed sets of integers from ~0, 1, 2, 3}, H e C[0, T], and f E C1(R)
satisfies that the limits

exist as finite real numbers. In (1.1)-(1.2~ and from now on, u~~~ _
J~ EIN. .

We associate to ( 1.1 )- ( 1.2 ~ the eigenvalue problem

It is known, see [4], that the eigenvalues of this problem form an infinite
increasing sequence {03BBi}~i=1 ~ IRo with no finite accumulation points. We
will assume the sets I and J to be such that A = 0 is not an eigenvalue of

(1.4). A necessary and sufficient condition for this to hold will be given in
section 2.

Let ~i be an eigenfunction corresponding to the first eigenvalue Ai of

(1.4). We will consider the case when function H in (1.1) is of the form

Also, we will assume that A- > 0 and that the interval (.1_ , a+ ) contains
exactly the first k eigenvalues of problem (1.4). That is, we will assume
that

for some k E IN . Under these conditions, we will prove in section 4 that
for large values of the parameter 8 in (1.5), the boundary value problem
( 1.1 ~-( 1.2 ~ has at least 2k solutions.



A nonlinearity , f satisfying (1.3) is known in the literature as a jumping
nonlinearity.

Boundary value problems with jumping nonlinearities have been studied
mainly for the second order case under Dirichlet and Neumann boundary
conditions, see for example [6], ~(7~, [8] and [9]. In [5], some results for n-th
order equations with a jumping nonlinearity were obtained.

In this paper we are dealing with an important extension of the results
in [5] for the fourth order case. To make this point clear, let us consider the
boundary value problem

where H e C[0, T] and f E C1 (IR ~ satisfies that the limits

exist and are finite. Also, let the integers ro and r in (1.7) be such that
0  rp  r  3. This last condition ensures that A = 0 is not an eigenvalue
of the associated linear problem

Setting H(t) = + h(t), it follows from ~5~ that (1.71 has at least 2k
solutions for large values of s when the interval (A-~, a_ ), A-  0, contains
the first k eigenvalues of (1.9).

The purpose of the present paper is to treat all the remaining open cases
for the fourth order case, for which the corresponding linear problem does
not have A = 0 as an eigenvalue and the nonlinearity ,f jumps over the first
k eigenvalues. These cases are represented by (1.1)-(1.2), and they form a
class of twenty boundary value problems, ten of which are nonselfadjoint.

Let I ~ = ~i3, i4 ~, i3  i4 and T ~ = ~,~3, ,?4 ~ ~ ~3  .~4 be, respectively,
the complementary sets of I and J with respect to ~0,1, 2, 3~ and set



I* _ {3 - i4 , 3 - i3~ and J* = {3 - j4 , 3 - ,j3~. It can be easily verified
that the adjoint problem to (1.4) is

This adjoint problem will play a fundamental role in the proof of some of
our intermediate results.

For s > 0, let us make the substitution u = s y in ( 1.1 ~- ( 1.2 ~ . For s large,
and because of conditions (1.3) and (1.5), the resulting problem could be
studied by considering the limiting equation as s --~ o0

or its linearised version

where as usual, y+ = 0~ and y = y+ - y-, together with the
boundary conditions (1.2). For some technical reasons that will become

clear later, it will be convenient to consider a slight modification of 

namely, the boundary value problem

whete zn is a constant multiple of ~1 ~n, a positive eigenfunction correspond-
ing to the first eigenvalue of (1.4) with T replaced by T -~-1 /n, n E IN.

The problem of searching solutions to (1.12) or to ( 1.1 ~- ( 1.2 ~ can be
thought as a two parameter dependant initial value problem. Thus, in
section 2, after listing down some known facts concerning the linear problem
(1.4) and its corresponding adjoint, we will prove some results concerning
(1.12) and its related initial value problem. These results will make it

possible to work with a one parameter boundary value problem and thus,
to use shooting techniques to prove our multiplicity result. In section 3 we
first prove the existence of two specific solutions to (1.1~-(1.2) and then use
the results of section 2 to prove some basic lemmas that will be used in

section 4 to prove our main multiplicity result.



Finally, we want to remark that our results will still hold true if we

replace the differential operator Lu - in (1.1) by the general fourth
order disconjugate linear differential operator.

2. Preliminary results

We begin this section with a summary of the properties of the solutions
to the linear problem (1.4) that we will use.
A direct computation shows that a necessary and sufficient condition that

A = 0 is not an eigenvalue of (1.4) is that the elements of I ~ and J satisfy

Similarly,  = 0 is not an eigenvalue of the adjoint problem (1.10) if and
o nly if

Henceforth in this paper we assume that (2.1) and (2.2) are satisfied. In

fact, it is not difficult to show that (2.1) holds if and only if (2.2) holds.
It is known that the eigenvalues of (1.4) (resp. (1.10)) are simple. Mo-

reover, an eigenfunction (resp. ~z ) corresponding to the i-th eigenvalue
.iZ (resp. has exactly i - 1 zeros on (0, T), all of which are simple. In

particular, ~1 (resp. ~i ) can be taken strictly positive on (0, T). Also, the
only derivatives of ~i (resp. which vanish at the endpoints 0 or T are
those appearing in (1.2).

The following proposition may be proved by induction on m.

PROPOSITION 2.1.2014 The sequence of eigenvalues ~~1?.,z ~n°-1 of ~1.l~~ and
1 10 satisfy = I~~ for ever m E ’N .

The following three results are particular cases of the more general case
studied by Elias in [2] and [3]. .

PROPOSITION 2.2. - Let S(u) denote the number of changes of sign of
u on (0, T). . Then, for i = 1, 2, 3,

where denotes the number of boundary conditions imposed to ~?.,.z in
(1.2) among ~,..,z, ~~, . . . , ~~m 1~ . Moreover, these changes of sign are the
only zeros of ~{~~ and they are all simple.



PROPOSITION 2.3. - The eigenvalues Am, m e IN of (I./ ), regarded as
functions of the endpoint T, are continuous and strictly decreasing.

PROPOSITION 2.4. - Ifi = (11 , 12), J = (ji , j2) are two sets of different
integers such that ik  ik, and ik  jk for k = 1, 2 and at least one of these

inequalities is strict, then Am > Am for all m e IN and if only one of the
inequalities is strict, then Am+i > Am > Am where Am , m e IN denotes the
m-th eigenvalue of (I./) with I and J replaced by I and J.

Let us consider now the semilineat boundary value problem

where y+ = max~y, 0~, y- = y+ - y and

for some k E IN. Then, problem (2.4~-(2.5) has the two trivial solutions

It is clear that yi is strictly positive on (0, T), y2 is strictly negative on (0, T)
and that these are the only solutions of (2.4)-(2.5) which do not change sign
on (0, T).

By means of the substitution

we see that y is a solution to (2.5) if and only if w is a solution to

where g(~~ _ ~1+~+ - ~_ ~- . . Next, let us consider the Initial Value Problem

where x E C(IR). . We recall that I U {i3, i4} = {0,1, 2, 3}. Let w( . , c, d) be
the solution to this problem.



PROPOSITION 2.5. Given any to > 0 and any c E IR, there ezists a

unique d E IR such that Z.cn~~ ~ c, d) = 0 .

Proof. - Let the real numbers cl, c2, dl, d~ be such that cl > c2 and
dl > d2, with at least one of the inequalities being strict. On setting
wi(t) := w(t, cZ, dZ), i = 1, 2, we see that w = w2 satisfies the initial
value problem

From our assumptions on cj and di, there exists 5 > 0 such that w(t) > 0
for t E (0, Suppose there exists tl > 0 such that w(t) > 0 for t E (0, tl ~
and = o. Since g is an increasing function, we see from the first of
(2.12) that > 0 for t E (o, tl ) and thus an application of Taylor’s
Theorem yields

implying the contradiction > 0. Hence, w(t) > 0 for every t > 0.

Similarly,

Now, for fixed to > 0 and c E IR, consider the sequences ~cvn } °° 1 and
defined by w~ = n) and vn = c, -n). By

setting i = j2 in (2.14), we obtain that



implying that

Hence, from the continuity of solutions to (2.11) on the initial conditions
and from (2.13)-(2.14), there exists a unique d E IR such that

Hence the proposition. D

The following corollary is a direct consequence of (2.14).

COROLLARY 2.6. - Let to > 0 be fixed. Then, the unique real number d

given by proposition 2.5 is a uniformly continuous decreasing function of c.

In what follows we will denote by w ( ~ , x, c) the solution of (2.11) which
satisfies the conditions = 0, i E I, ~,ut23 ~ ~0) = c and w~~2 ~ (T) = 0.

Let denote a positive eigenfunction corresponding to the first eigen-
value 03BB1,n of (1.4) with 0 , T] replaced by [0, T ] and set

where n is chosen large enough, say n > nl (see proposition 2.3), to have

Let ae(t) = in (2.11). From now on, we will refer to problem
(2.11) with x replaced by zn as (2.11)n. Set c) - iv( ~ zn, c) and

w( . ,c) = w ( ~ c). . Clearly, oo, iv~2~ ( ~ c) converges, uniformly on
bounded intervals, to iv~2~ ( . , c) for i = 0, 1, 2, 3.
We will now construct two different solutions to (2.11)~. To this effect,

we first prove the following lemma.

LEMMA 2.7. - For any m G IN and ~1 G every nontrivial

solution y(t, ~) of

is such that y~~1 ~ has ezactly m zeros on (0, T), all of which are simple. In
particular, it follows that any nontrivial solution of (2.20) with ~_ = ~+ is

such that ~ has ezactly k zeros on (0, T) and that these zeros are simple.



Proof. - Suppose on the contrary that there exist mo E IN and .1o E
such that y~~l ~ ( ~ , a~ has less than mo zeros on (0, T), and

consider the set

A _ ~ ~ ~ , a~ has at least

mo zeros on (o, T) , a , 
From proposition 2.2 above, and since i3 and ji  j2, we obtain that

~~~1 ~ o+ 1 has exactly mo simple zeros on (0,T) and therefore E A.

Also, from our assumption, A is bounded below by Ao and inf A = A*.

We claim that y{~1 ~ ( ~ , a* ) , has exactly mo - 1 zeros on (0, T) and
~l* ~ = 0. Indeed, if y~~l ~ ( ~ , .~* ~ has less than mo zeros on (0, T),

then yt~l ~ ( ~ , .1* + E) would have less than mo zeros on (0,T) for all small
enough E > 0. Also, if y{~1 ~ ( ~ , A*) has more than mo - 1 zeros on (0,T),
then for sufficiently small E > 0, ~(~)(., , a* - E~ would have at least mo zeros
on (0, T). Since both alternatives contradict the definition of A*, our claim
follows and A* = Àmo. Since Ao E (03BBm0, 03BBm0 +1 ) this is also a contradiction.
Therefore, y~~l ~ ( ~ , ao ) has at least mo zeros on (0,T). A similar reasoning
shows that y{~1 ~ ( . , can have at most mo zeros on (0,T) and the lemma
follows. 0

PROPOSITION 2.8.2014 For each n E IN, there exist two real numbers
0 and  0, such that the solution of equation

~Z.11~~, is such that iv~~l ~( has ezactly k zeros on ( 0, T) and all of
these zeros are simple.

Proof. - Let En > 0 be such that the solution y( ~ , a+) of (2.20) for
which y~~3 ~ ( 0 ~ = 1 satisfies

Then, the functions

satisfy equation (2.11)~ on [0, T], = 0 for t 6 7, = e~,

w(i3)-k,n(0) = -~n and w(j2)±k,n(T) = 0. Thus w±k,n(t) = wn(t,c±k,n) forW 
-k,n 

0 - -En an w:l:k,n - o. us w:l:k,n t - Wn t, c:l:k,n lor

i 6 [0, T], where = Q

Consider now the problem



The conditions on A+ and A- imply that the solution w( - , c) of this problem
satisfies w{~1 ~ (T, c~ ~ 0. Actually, under the additional assumption that

A+ > A 2, we have the following result.

THEOREM 2.9. - Let A-  Ai and a+ > h2 . Then the solution w( - , c~,
c E ~-1,1~ of problem ~,~.2,~~ is such that:

i) zv{~1 ~( - 1) changes sign exactly once on (0, T);
ii) } ( - , -1) does not change sign on (0, T~ .

Remark. - From the point of view of our multiplicity result, the as-

sumption A+ > A2 is not a restrictive one, as it will be seen later.

Proof. - Let ~i be the positive eigenfunction corresponding to the first
eigenvalue = Ai of (1.10), and multiply equation (2.22) by ~1. We see
then that w satisfies the equation

Since A-  Ai  ~+, G(t) > 0 for every t > 0 and therefore, evaluating
at t = T and observing that the left hand side of (2.23) can be written in
the two ways

we obtain that

A direct computation shows that (-l)~ ~~ ~(T)  0 for all possible
choices of j1, and therefore, we have that  0, and we conclude
that the number of sign changes of tt/~)(’ c) is odd when c = 1 and it is
even when c = 20141.

We will now show the same holds true for the number of sign changes of

w( ,c). This is clearly true if ~i = 0. 0, let 7= I, J = (0, j2 ), and
denote by Ai the first eigenvalue of (1.4) with I, J replaced by 7, J. From



proposition 2.4, we have that Ai  Ai  A2 and therefore, on multiplying
equation (2.22) by ~i, the positive eigenfunction corresponding to the first
eigenvalue of (1.10) with I*, J* replaced by I*, J*, we obtain that

Since ~1"‘(T) > 0, (2.26) implies that w(T)  0.

Now, for t E (0, T~, let w = on (2.23~. Then v satisfies the differential
equation 

-

Since from proposition 2.2 the function (~i~~ 2 - 2~i ~i~~ is strictly positive
on (0, T), we conclude that if v~(t) > 0 for t E (a,,C~~, then

Now, let c = 1 and suppose that t~(’, 1) changes sign at three different
points on (0, T). Then, since ~i(t) > 0 for every t E (0, T), so does v at
the same three points. Let us denote these points by ti, i = 1, 2, 3 with
0  t1  t2  t3  T, and assume that v(t)  0 for t E (tl, t2) and v(t) > 0
for t E (~2, Then, it follows the existence of an interval (a, !Q) C (tl, t2)
such that v"(a) > 0, v"(,Ci)  0 and v’(t) > 0 for t E (a, ~Q) contradicting
(2.28). . Thus, w( ,1 ) changes sign exactly once on ( 0, T) . .

For the case c = -1, the same argument as above shows that w(t, -1 )  0
for t E (0, T) when the integers it, i2 are nonconsecutive. Indeed, in this
case, either v(0) = 0 or v’(0) = 0 and it follows from (2.28) that z.v( ~ , -1)
changes sign at most once on (0,T). Thus, we conclude from (2.25) and
(2.26) that in fact w(t, -1)  0 for every t E (0, T). When i2 = i1 + 1, this
result follows by considering the solution Wj, j E ~0, 1, 2, 3} of the linear
problem

It can be easily verified that the function zj,k := wk satisfies the
first of (2.29) and does not change sign on (o, Also, 0

and z{~} (T) _ for every choice of the integers j, 1~ E 0 1, 2, 3 .
Therefore, since wo(t)  0 for every t E ( 0, T ~ and wo (T ) > 0, by using a



boot strap argument, we conclude that w3 (t)  0 for t E (0, T). Finally, an
application of Rolle’s Theorem and the boundary conditions = 0,
i E , i2 ~ and z.cJ{~2 ~ (T ~ = 0 yield the result of the theorem. D

COROLLARY 2.10. - Under the assumptions of theorem 2.9, there exists
two real numbers cl > 0 and co  0 such that the solutions w~( ~ 
i = 0, 1 of ~~.11~n satisfy:

i) (j1)n(., c1) changes sign exactly once on (0, T);

it) )(., c0) does not change sign on (0, T).

Proof. - The corollary follows easily from the fact that the solution

wn~~ ( - , c) of

converges in C4 ~ 0 , T + (1/n)~ to the solution w( . , c) of (2.22) as b goes to
o+. a

We finish this section with a result concerning the multiplicity of the
zeros of a solution to (2.11)n. Since its proof is very similar to that of
Lemma 3.3 in ~5~, we will omit it.

PROPOSITION 2.11. - If c ~ 0, then t~e solution wn( ~ , c) of (~.~l~n and
its derivatives may have only simple zeros on (0, T). .

3. Basic lemmas

Let n E IN, n > nl and consider the family of boundary value problems

Herein we will refer to (3.1)oo-(3.2)oo when speaking of the limiting problem
(1.1)-(1.2) wit h H satisfying condition (1.5).

Let Wn be the Banach space of functions f E C3 ~ 4 , T+ (1/~)] 
( f E C3~ 0 , T]) which satisfy (3.2)n ((3.2)oo) provided with the usual norm,
and let



Our first result in this section is similar to the corresponding one in ~6~, and
thus we will only sketch the proof.

LEMMA 3.1. There exists ~0 > 0 such that for any E E (0, co],
there exists an so > 0 such that for s > so, the boundary value problem
~3.1~~-~3.~~n possesses a unique nonnegative solution and a unique
nonpositive solution satisfying

Moreover, there exists no E IN such that for n > no, neither eo nor so
depend on n, and for s > so,

where y1 is the function defined in ~~. ?’~.

Proof . The proof is based on the Banach Fixed Point Theorem applied
to each of the mappings

where Gn (t, T~ is the Green’s function corresponding to the problem

In a first step, the positive numbers and are determined by
the requirement that the restriction be a contraction for
~ E (0, and s > and in a second step, so,n is determined by the
requirement that for S 2: SO,n and for all e E (0, Fn,s C

(Here, for f E Wn, = 9 E Wn II 9 -  r
We will show that there exists no 2: nl such that for n > no, eo,n and

so,n may be taken independent of n.



Indeed, Let Mi be a uniform upper bound for I on

[0, M2 be such that i f j(~) - a+ I  M2 for £ E ~ 0 , oo).
Also, let 03B4 > 0 be such that 5  T/2, and 5  1/9 Ml M2. Now set

mo = and choose > 0 such that if

u E (yl ), then u(t) > 0 on (0, T) and u(t) > mo/2 on ~ b/2 T - b/2 ~.
Let no E IN be such that

Then, if n 2: no, and w E Wn is such that

we have, by setting

that un E Woo and

for i = 0, 1, 2, 3. Therefore,

which implies that un(t) > 0 for all t E (0,T) and > mo/2 for
t E ~ b~2 ~ T _ b~2 ~.



Hence, w(t) > 0 for every t E ~0 , T + (1/n~~ and w(t) > mo/2 for all

Let us set ~o = Since f ~(~~ = a+, there exists R > 0
such that

Now, for 6- E (0, choose so > 0 such that

and such that for s > so,

Then ~~ depends only on e and h, and it can be easily verified
that for each n 2: no and S 2: so, is a contraction and

C Thus, the existence of a unique solution un,~
to (3.1)n-(3.2)n satisfying the first of (3.4) follows by setting = 

where zn,s is the unique fixed point of in 

The existence of is proved similarly. 0

Let v = su - in ~3.1)n, go = f - g, and consider the boundary value
problem

For d E IR, let wn( ~ c, d) be the solution to (2.11)n, and denote by
v~~~( ~ c, d) the solution to (3.14)n which satisfy - 0, i E 1,
v~23 ~ (o) = c, vt24 ~(o) = d.

It can be easily verified that there exists some constant Mo > 0

independent of sand n, such that for i = 0, 1, 2, 3 and t E [ 0 , T -~ (1/n) ] , ,

Now let Co and cl be as in corollary 2.10, set eg = max{-c0 , c1} and let
do > 0 be such that for every n ~ no and (c) ~ cQ,



Let also the constant Mi be such that

and choose so such that for

and n > no, it holds that

Then, for s > s~, n > no, ~c)  c~ and do, i --_ 1, 2, we have

On setting dl = d2, = = 1, 2 in (3.21), we conclude that for
each c E ~ [2014c~ , c~], (3.14)n-(3.15~ has at least one solution Also, from

(2.13) and the identity

we obtain that for every n ~ no and s ~ sl ,

Let now be as in proposition 2.8.

LEMMA 3.2. There exists s2 > sl, such that for all n > no and

s > s2 any solution of (3.14)n-(3.15) with c = satisfies that its j1-th
order derivative has exactly k zeros on ~ 0 , T ~, all of which are simple and
contained on (0, T ) .



Proof . 
- Let ~ E (0 , ] be such that if v E C3[0 , T + (1/n) ] satisfies

p~ i E ~~ v~~a)(T~ - 0 and Ilv - ~, c s [o,fi+(1/~)l I  E, ’

then has exactly k zeros on [0 , T ], all of them simple. Let s2 > sl be
chosen so that any solution to (3.14~~ with c = satisfies (3.23) for

and (3.19)-(3.20) are satisfied for e = ~. Let vn,s denote any such a solution,
and for s ~ s2 define the function

Then, it can be easily verified by using Gronwall’s Lemma, that

and the result follows from the choice 

For co and cl as in corollary 2.10, the following results can be proved
similarly.

LEMMA 3.3. - There exists s3 > s2 such that for s > s3 any solution of
problem ~3.Il~~n-~3.5~ is such that: ’

i) for c = co, its j1-th order derivative is strictly negative in (0 , T +
(1/n~~ ~

it) for c = cl, its order derivative has exactly one zero on (0 , T +
(1/n~~ and this zero is simple.

LEMMA 3.4. - There exists s4 > s3 such that for s > s4 and c in compact
intervals not containing 0, any solution of ~3.ll~~n-~3.5~ and its derivatives
may have only simple zeros on (0 T + (1/n~~ .



4. The multiplicity result

We are now in a position to prove our multiplicity result. As we

mentioned before, this will be done by using shooting techniques. To this

end, for s > s4 and j = 1, 2, ..., ~, we define the sets

Pj,n = {x > 0 any solution to (3.14)n-(3.15) is such
that its j1-th order derivative has at (4.1)
least j zeros on (0, T) for each c E , x ~ ~

and

Nj,n = ~ x  0 any solution to (3.14)n-(3.15) is such
’ that its ji-th order derivative has at (4.2)
least j zeros on (0, T) for each c ~ ~ x ; c._~~n ~ ~.

From lemma 3.2, both sets are nonempty for all j. Also, from lemma 3.3,
is bounded for j = 2, ... , J~ and is bounded for j = 1, 2, ... , k so

that we can set

We will first prove the following result.

LEMMA 4.1.2014 Any solution to (3.14)n-(3.15) with c = 
satisfies the boundary conditions (1.2).

Proof . We will prove that any such a solution has at most ~ 2014 1 simple
zeros on (0, T) and at least j zeros on (0, T]. Indeed, suppose for example
that has more than j -1 zeros on (0, T). Then, due to the fact that the

zeros are simple as well as to the continuous dependence of 
on t and on c (the latter one being uniform with respect to t E [0, T]),
we conclude that any solution of (3.14)n-(3.15) with c = + g will

satisfy that its j1-th order derivative has at least j zeros on (0 , T) for every
sufficiently small g > 0 in contradiction with the definition of A similar

argument shows that has at least j zeros on (0, T] and we conclude

that v~~l ~ (T) = 0 and vt~~~ has exactly j - 1 zeros on (0, T). D



Now, since 0   ci for j = 2, ... , ~ and 0 > c_~!~ > co for

,j = 1, 2, ... , ~, we may assume, by considering subsequences if necessary,
that the sequences and ~ C_~~n } ~ no are convergent. Let us set

We will now state and prove our main result.

THEOREM 4.2. Let f E C1 (R~ satisfy condition ~1.3~ and suppose that
for some k E IN, ,

Then, for any h E C~ 0 , T ~, there exists s* > 0 such that for s > s*, the
boundary value problem

has at least 21~ distinct solutions.

Proof . Let us first consider the case k = 1. . In this case, we set s* = so
and we have that the functions and given by lemma 3.1 are two
different solutions to (B.V.P.) and our assertion follows.

Let now k > 1. Letting s* = s4, it is clear that the solutions 

j = 2, 3, ... , ~ and j = 1, 2, ... , k of (3.14)~-(3.15) with c = c~ and
c = respectively, satisfy the boundary conditions (1.2), and that their
j1-th order derivative can have at most j - 1 zeros on (0, T). We will show
that in fact they have exactly j - 1 zeros on (0, T). Suppose for example
that ~"~ has less than j-1 zeros on (0, T). Then at least one of the zeros of
the jl-th order derivative of a solution of (3.14)n-(3.15) with c = 
is leaving the interval (0, T) through one of its endpoints as n - ~. Thus,
the number of derivatives of which vanish at that endpoint is at least

3, in contradiction with proposition 2.10. Similarly, v~31 ~ has exactly j - 1
zeros on (0, T) and the theorem follows by setting 

and = ~
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