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Porosity and continuous,
nowhere differentiable functions(*)

VALERIU ANISIU(1)

Annales de la Faculte des Sciences de Toulouse Vol. II, nO 1, 1993

Dans l’espace de Banach C( 0 , 1 ~ des fonctions contenues
sur ( 0 , 1 ], les fonctions nulle part differentiables sont typiques non
seulement dans le sens de la catégorie de Baire, mais aussi dans le sens plus
restrictif, en utilisant la porosité. Les resultats sont ensuite generalises,
en remplacant la différentiabilité par la diflerentiabilite approximative.

ABSTRACT. - In the Banach space C[ 0, 1 ~ ] of all continuous functions
on ( 0 , 1 ~, the nowhere differentiable functions are typical not only in
the Baire category sense but also in a stronger sense, using porosity.
The results also hold when differentiability is replaced with approximate
differentiability.

1. Introduction

S. Banach [1] and S. Mazurkiewicz [6] showed that in the Banach space
C[ 0 1] of all continuous functions on [0, 1 ~, endowed with the sup-norm,
the set of nowhere differentiable functions is a residual ( i. e. a complement
of a meager set). The first example of a nowhere differentiable function was
constructed by Weierstrass in 1873, but even recently, such functions with
further properties are exhibited (M. Hata [4], [5]).

The notion of a set of r-porosity, defined by L. Zajicek in the general
context of metric spaces, allows sometimes to improve results concerning
meager sets.

(*) Reçu le 5 j anvier 1993
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Let (X, d) be a metric space, A a subset of X and x E X. For R > 0 we
denote .S(c, R) the open ball with center a~ and radius R and define:

We say that A is porous at x if p(x, A) > 0. It is easily seen that A is porous
at x if and only if there exists p > 0 such that for each c > 0, there exist R,
0  R ~ ~ and z ~ X with

The set A is said to be porous if it is porous at all its points. Finally, A
is said to be r-porous if it is a union of countably many porous sets.

It is proved in [7] that any u-porous set is of the first category (meager)
and if X is an euclidean space, it has Lebesgue measure zero, but in any
Banach space there exist meager sets which are not r-porous.

Let be a property for the points of X.

We say that P is generic with respect to porosity (or p-generic) if the set
of the points that do not possess this property is ~-porous. In this case, we
shall also say that a p-typical element of X has the property P.

2. Nowhere differentiable continuous functions

We need the following simple lemma, similar with that of Evans [2].

LEMMA 2.1.2014 For each a > 0 there ezists a function ud : ~ --~ IR,

1/ a-Lipschitzian and having the period 2a such that:

a) 0  ud(t)  1 = E IR;

b) for each t E IR, there ezists an interval C ( a/8 , a ~, having the
lengtha/8 so that for h E Ia(t):



Proof . Define

Then ua is evidently 2a-periodic, 1/a-Lipschitzian and satisfies a). It is

sufhcient to check b) for t E ~ [0, 2a).
1ft E ~ 0 , 3a/4~ U ~ a, 7a/4) take = ~ a/8 , a/4 ] and if t E ~ 3a/4 , a~ U

[ 7a/4 2a) take I a ( t) = ~ 7a/8 , a ~ .
The conclusion follows after some simple computations. 0

THEOREM 2.2. - In the Ba.nach space C~ 0 , 1 ~ of all real continuous
functions on ~ 0 , 1 ~, , endowed with the sup-norm, a p-typical function has at
no point finite one-sided derivatives. Moreover, for such a function ~, one
has 

, ,

Proof. - For n E IN , n > 2, denote

It is clear that U°° 2 An contains all the functions x E C[0 , 1 ~ ] for which
there exists [0,1) such that

In particular, if ac has a finite right derivative at a point t 6 [0,1) then
x E An. The case of the left derivatives can be handled in a similar

manner, or can be reduced to the previous one using the mapping t -; 1- t.



So, it is sufficient to prove that for a fixed n 2: 2, the set An is porous.

Let x be an arbitrary element in An and e > 0. Using the uniform
continuity of z, there exists 5 > 0 such that for t’, t~~ E ~ 0 , 1 ~, ~t~ - 
we have

For this a > 0, take ~o
the function constructed in lemma 2.1, restricted to [0, 1].
We have then ud E C [0 , 1], ~ua~ ( = 1 and

where Ia(t) C ~ a/8 , a ~, length Ia(t) = a/8.
Denote u = 75 ~ua, z = x + u. We shall show that

In fact, for y E B (z, E}, t E ~ 0 , 1 - 1 l n and h E Ia(t), we have:

Hence y ~ An and (*) holds.

Because ~x - z~ = 75 ~, we have

whence An is porous. ~



Remark 2.3. - There are many different notions of porosity ( cf. L. Za-
jicek [12]). For example, T. Zamfirescu [13] uses a slightly different one: the
set A is said to be a-porous (0  a  1) if for each ae E X and ~ > 0 there
exists z E E) such that

It follows from (**) that An is 1/76-porous.
Let us mention that, the value of a in our setting is not significant for

a 03C3-porous set, because a theorem of Zajicek [11] states that there exists
a countable decomposition which has a uniform porosity arbitrarly closed
to 1/2.

Note also that, as the referee pointed out, the proof of the theorem 2.2
also gives that the exceptional set is 03C3-very porous (in terminology of [12]).

The theorem 2.2 says nothing about the possibility that the typical
function x has an infinite, even bilateral, derivative at some points. To
treat this aspect, we need the following lemma.

LEMMA 2.4. - For each a > 0, there ezists a function ud : ~ -~ !R,
1/a-Lipschitzian and having the period 7a such that:

a) i  1 = I , t E IR;
b) For each t E IR, there exists and interval Ia(t) C [a, 6a], having the

length a/10 such that for h E Ia(t):

Proof . Define



Then a) is obvious and to check b) it is suficient to consider t E ~ [ 0, 7a) and
take: i 

, ~ _ u _ _ ~ ,~ . r .. v r ~ . v

THEOREM 2.5. - In the Banach space C[ 0 , 1 ~, a p-typical function has
at no point a finite or infinite two-sided derivative.

Moreover, for such a function lY, on has:

Proof . For n E IN, n > 3, denote

The set U Bn) contains all the functions x E C~ 0 , ’ ~ for which
there exists t E (0,1) such that

It is sufficient to prove that for a fixed n 2: 3, the set An is porous (the case
of Bn being similar).



Let x be an arbitrary element in An obtained from

the uniform continuity of a*, like in the proof of the theorem 2.2, choose
a > 0 such that

Take ua the function constructed in the lemma 2.4, restricted to [0, 1 ],

We shall show that:

In fact, for y E B (z, ~), t E [ 1 /n , 1 - and t~ E Ia(t), we have:

Hence y ~ An and because = 400 c, we obtain

therefore An is porous. 0

Remark 2.6. - The question if a p-typical function in C[ 0 1 ~ has at no
point a finite or infinite one-sided derivative, has a negative answer. In fact,
even if such functions exist, the first example was constructed by Besicovitch
(see also [3], [4]), they do not form a residual in C~ 0 , 1 ~, cf. S. Saks [8],
and a fortiori they are not p-typical.

Note however that J. Maly (5~ constructed a nonvoid compact subset in
C[ 0, 1 ~ where the functions with no (finite or infinite) one-sided derivatives
form a residual. Maly’s construction does not use the existence of the
Besicovitch-type functions.



3. The case of approximate derivatives

The preceding theorems can be improved, replacing the differentiability,
with approximate differentiability, as did Evans [2] in the case of Baire

category results.

Recall that if  denotes the Lebesgue measure in R and A ç IR is

measurable then the right lower density of A at t E IR is defined (see [9],
[10]) as:

If x is a measurable function then:

Similarly the approximate right lower limit is defined. Then the approxi-
mate right limit is the common value of these two extreme limits should they
be the same. The approximate left limit and the approximate derivative are
defined in the standard manner.

THEOREM 3.1.2014 In the Banach space C[ 0 , 1 ], , a p-typical function has
at no point a finite one-sided approzimate derivative.

Moreover, for such a function x, one has:

Proof . For n E IN, n > 2, denote for 7/8  c  1,



then x E An

It is then sufficient to prove that for each n 2: 2 (fixed), the set An is
porous.

Let x be an arbitrary element in An and c > 0. Taking a, ua, u, z as
in the proof of the theorem 2.2, we have for y E B(z, ~), t E ~ 0 , 1 - 1/n ~,
s E Ia(t):

Therefore

and we obtain

and so, y ~ An.

Hence, like in the proof of the theorem 2.2:

Remarks 3.2

a) Using a similar method, the theorem 2.5 may be improved, substituing
the derivative with the approximate derivative and the extreme limits
with the approximate extreme limits.

b) M. J. Evans [2] proved that in C[0, 1] the functions for which

are typical. This result can also be extended to a p-typical one, using
the lemma in [2] and the above method.

Note that in [2] a continuous function satisfying (***) is first cons-
tructed.
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