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Lagrange Schwarzian derivative
and symplectic Sturm theory(*)

VALENTIN OVSIENKO(1)

Annales de la Faculté des Sciences de Toulouse Vol. II, nO 1, 1993

RESUME. - Nous proposons ici deux constructions dans l’espace linéai-
re symplectique qui peuvent être considerees comme les analogues de
birapport et derivee de Schwarz classiques. Le birapport symplectique
est 1’invariant unique de quatre sous-espaces lagrangiens dans 1’espace
symplectique lineaire. La derivee de Schwarz lagrangienne reconstruit
le système des equations lineaires de Newton par 1’evolution d’un plan
lagrangéen. Elle est aussi invariante par rapport aux transformations

symplectiques lineaires. On peut comprendre ces objets comme "inva-
riants symplectiques projectifs". . Nous considerons les applications de la
derivee de Schwarz lagrangienne a la theorie de Sturm, et demontrons un
théorème qui donne une condition de non-oscillation pour le système des
equations de Newton.

ABSTRACT. - We present here two constructions in the linear sym-
plectic space which can be considered as analogues of the classical cross-
ratio and Schwarzian derivative. The symplectic cross-ratio is the unique
invariant of four Lagrangian subspaces in the linear symplectic space.
The Lagrange Schwarzian derivative recovers the system of linear New-
ton equations from the evolution of a Lagrangian plane. It is also invariant
under linear symplectic transformations. One can understand these ob-
jects as "symplectic projective invariants". . We consider applications of
the Lagrange Schwarzian derivative to Sturm theory and prove a theorem
which gives a nonoscillation condition for the system of Newton equations.

( *) Rec;u le 2 5 février 1993
(1) Centre de Physique Theorique, C.N.R.S., Luminy Case 907, F-13288 Marseille

(France)



0. Introduction.

Geometrical meaning of the classical Sturm theorems
and Schwarzian derivative

Two famous Sturm theorems on zeros of solutions of the linear differential

equation (Sturm-Liouville equation)

have a simple geometrical interpretation ~(A1~, see also [01]) illustrated by
figures 1 and 2.

THEOREM A: (theorem on zeros) Given two linearly independent
solutions and of the equation ~1~, between any two zeros 
there is at least one zero of (fig. 3).



THEOREM B. - (disconjugacy theorem) If the potential k(t) of the
equation ~1~ is non negative for any t, then any solution has at most one
zero.

To prove these theorems consider a point in the plane with coordinates
(xl(t), x2(t)). The "motion" of the point is determined by the "central
force" which is proportional to the vector r(t) = (xl(t), x2(~)) with the
coefficient k (t). The kinetic moment (the area of the parallelogram on
figure 4) does not depend on t and is not equal to zero. That is, the velocity
vector r’ is never proportional to r. Consequently, between any two points
of intersection of the trajectory with the axis xi there is at least one point
of intersection with the axis z2 . (In other words, the trajectory on figure 1
can not occur.) This proves theorem A.

Theorem B follows now from a simple remark. In the case when the force
acting on the point is repulsive the trajectory is convex. That means that
the trajectory lies entirely on one side of any of its tangent line (fig. 2).



Note that the kinetic moment (the area of the parallelogram in figure 4)
is equal to Wronski determinant

The Schwarzian derivative

(where is a function such that f ~ ~ 0, , f ~ = was already
known to Lagrange [L]. The Schwarzian derivative bridges geometry and
analysis (see [Kl]) and appears unexpectedly in a variety of problems, from
differential geometry of curves (where it can be interpreted as curvature

[Fl]) to the theory of conformal maps. The Schwarzian derivative owes its
universality to two properties:

i) it is projectively invariant: S (,f (t}~ = S (g(t~~ if and only if

(where a, b, c, d are numbers);

ii) it is the unique (modulo coboundaries up to multiplying) continuous
1- cocycle on the group DifF R of difFeomorphisms of the line with values
in the space of quadratic differentials [Fu]. That is, we have the
formula

(where ,f , g are diffeomorphisms of IR). Thus the map g - 
to quadratic differentials is a 1-cocycle.

The Schwarzian derivative appears in our context in the "projectivized"
picture. Let us consider the evolution of the strainght line Rt (fig. 4) on the
plane. The problem is:

how to recover Sturm-Liouville equation from the evolution
of a straight line in IR2 ?



The answer is given by the following construction. Fix any three distinct
straight lines which contain the point 0. Denote by ~(t) the cross-ratio of
these lines and Rt (fig. 5):

The statement is

To prove this formula, remark that the cross-ratio ~~t~ coincides (up to a
linear-fractional transformation) with the afhne coordinate of Rt (fig. 6). In
other words, it equals the quotient of two solutions:

One can easily verify that x 2 (t ~ = Indeed, observe
that = x2 (t~~(t~ and use the fact that Wronski determinant

const. We obtain immediately



The main content of this paper

1. Construction of the multidimensional analogue of the Schwarzian

derivative that recovers the system of linear Newton equations

from the evolution of a Lagrangian subspace in a linear symplectic space.

2. Disconjugacy theorem which gives a necessary condition of oscillation

(in some sense "the border of oscillation").

The first result was originally published in Russian [02]. . In the present
paper we shall give more details and discuss relations of this multidimen-
sional Schwarzian derivative with loop groups.

Remark. . - There exist already many different analogues of the Schwar-
zian derivative which generalise its different properties (see e.g. [Ca], [R],
[RS], [T]). The main property of the Lagrange Schwarzian derivative is its
projective invariance.



1. Two constructions

"A straight line is just a Lagrangian subspace of the plane" [A2]. The
higher-dimensional Sturm theory ([B], [M], [C], [A2]) describes the evolution
of a Lagrangian plane in the standard linear symplectic space (IR2n, under
the action of a linear Hamiltonian system (e.g. of the system (4)).

As in one-dimensional case, the higher-dimensional analogue of the
Schwarzian derivative corresponds to the "projectivised" picture. In the
case of a linear symplectic space it is natural to consider the manifold of all
Lagrangian subspaces as an analogue of the projective space. This manifold
is called Lagrange Grassmann manifold and denoted by An. The evolution
of a Lagrangian space defines a curve in An.

The Lagrange Schwarzian derivative recovers the system of Newton
equations (4) from a curve in An. To define it we need the notion of the
cross-ratio of four Lagrangian subspaces in w ) .

1.1 Cross-ratio in the linear symplectic space

DEFINITION 1.2014 Given four Lagrangian subspaces a, ,Q, y, b such that
a, Q, 5 are transversal to y, in the linear symplectic space (R2’~, w). . Define
the cross-ratio as a pair of quadratic forms (up to a linear transformation )
in a linear n-dimensional space in the following way.

First of all, a, ~y, 5 define a quadratic form in a linear n-dimensional
space. Indeed, consider the subspaces 1 and 03B4 as "coordinate planes". Let
v E 5 and consider the vector u in a such that its projection on 5 along,
equals v. Let w be the projection of u on 1 (fig. 7a). Define a quadratic
form on 5:

The four transveral Lagrangian subspaces a, ,Q, -y, 5 of (IR2’~, c,~~ define a
pair of quadratic forms on 5 (fig. 7b):



As a linear space 03B4 is isomorphic Rn. One obtains a pair of quadratic
forms ( ~ 1, ~ 2 ~ in Rn defined up to a linear transformation.
We shall call the pair of quadratic forms in R n t ~ 1, ~ 2 ~ ~ a "~3, y, b which

is defined up to an equivalence

the cross-ratio in (R Z’~, or the symplectic cross-ratio.

LEMMA 1. Given four transverse Lagrangian subspaces a, ,C~, y, b

i~ the cross-ratio is the unique invariant of a, ,Q, ~y, b under the action

of the group of linear symplectic transformations Sp(2n, 

it) the cross-ratio does not depend on the following transpositions of the
arguments:

Proof

i) The first statement is evident, indeed, the unique invariant of three

Lagrangian spaces is the corresponding quadratic form (which is defined as
we saw up to a linear transformation) [A2]. The invariant of the quadruple
(a "~3, y, b ~ is in fact the invariant of two triples (a, ~, ~ ) and ~,Q, ~y, b ~ .

ii) The second statement is a simple computation.



Remark 1. - The standard cross-ratio in R2 is equal to the fraction
~1/~2.

Remark 2. - The index of the quadratic form 03A6[03B1, ,Q, y ] is called Arnold-
Maslov index of the triple (a, ,Q, 03B3) ([A3], [A2]).

Remark 3. - In the particular case when the form ~2 is positive definite
the complete list of invariants of four transversal Lagrangian subspaces in

w) is given by eigenvalues of ~1. Indeed, consider an orthonormal
basis for the form ~2. Denote by F the symmetric matrix which is given
by the quadratic form ~1 in this basis. This symmetric matrix is defined
up to a conjugation by an orthogonal matrix:

In general, it is clear that the characteristic polynomial det( 1 - .t~2) is

invariant.

Suppose that F = -id (where id is the unit matrix). Then we say that
(a,,Q, ~y, b) is a harmonic division (cf. Sec. 5).

1.2 Definition of the Lagrange Schwarzian derivative

DEFINITION 2. - Consider a 1-parameter smooth family of symmetric
positive definite n x n matrices . A family B(x) is called a square root
of M(x) and is denoted by = Q, if

B*B = M and B’ B-1 is symmetric for every x

where B’ = EIR.

Remark. - We will show in section 4.1 that the square root defined by
these two properties is the normal form of all families of matrices B(x) such
that B*B = M under the action of the loop group C°° (Sl, O(n)). .

LEMMA 2. - Given a family as above, the square root is defined
uniquely up to the equivalence M(x) ~ OM(x) where O is art orthogo-
nal matrix that does not depend on a’.

We will prove this lemma in section 4.1.

Consider a 1-parameter family of symmetric matrices such that

F~(;r) is positive definite for every a*.



DEFINITION 3. (main definition) Define the Lagrange Schwarzian

derivative by

Remark. - Note that LS(F) is defined only up to a conjugation by
orthogonal matrices. On the other hand it is easy to check that for a

fixed matrix C, = Thus we can consider LS as a

mapping from the space of 1-parameter families of symmetric forms on 

Here are some elementary properties of LS.

PROPOSITION 1

i) = if and only if

Thus LS is invariant under the action of the group locally
on the space of quadratic forms on 

ii) if g : IR -.IR is a diffeomorphism, then

Here S(g) is the classical Schwarzian derivative and id is the unit

matrix.

iii~ Given any continuous family of matrices the equation LS(F) _
A is (locally in x~ solvable.

Proof. - see section 4.

2. Main theorem

We formulate here the main results of this paper concerning the relation
of the Lagrange Schwarzian derivative with Newton systems. All proofs will
be given in section 4.



2.1 Newtonian systems and positive curves on the Lagrange
Grassmannian

DEFINITION 4. - ~ ~A2~ ~ The train of a given point a of t~e Lagrange
Grassmann manifold n is the set of all Lagrangian planes which are not
transversal to a.

In the neighborhood of any point a the Lagrange Grassmannian is diffeo-
morphic to the manifold of quadratic forms in Rn (fix another Lagrangian
subspace ~Q transverse to a, then for any y E An in a neighborhood of a, this
diffeomorphism is given by 03A6[03B3, ,Q, a ]). The train of a is locally diffeomor-
phic to the variety of degenerate quadratic forms. Thus the complement of
the train of any point of An is partitioned into (n + 1 )-subsets corresponding
to indices of nondegenerate forms (fig. 8 a)).

DEFINITION 5.2014 Consider the system of linear Newton equations (4).
Define a symplectic structure ("Wronskian") on the 2n-dimensional space
of its solutions by

where y = (y1 (t), , ... , yn(t)} , z = ... E IRn are solutions of
the system (~~.

LEMMA 3. - W(y, z) does not depend on t and it is a nondegenerate
skew-symmetric form in .

Thus, the space of solutions of the system (4) is identified with the linear
symplectic space (Ft 2’~, w ~ .



Let .1(s) be the n-dimensional space consisting of solutions of the system
(4) that vanish if t = s.

LEMMA 4. - is a Lagrangian subspace of the space of solutions of
the system ~1~.

Thus, each system (4) defines an evolution of a Lagrangian subspace of
(R2n, cv). In other words, it defines a curve in the Lagrange Grassmann
manifold An.

DEFINITION 6. Fix two transverse Lagrangian subspaces a, 03B2 in

(~2n, w~. The evolution of the Lagrangian space a(s) defines a family of
quadratic forms on IR’~

(Note that ~(s) is defined iff is transversal to a.~ The curve in

.1~ is called positive if the quadratic form d~(s)/ds is a positive definite for
every s such that a(s) is transversal to a (fig. 8b~.

It is easy to check that the definition does not depend on a choice of

Lagrangian subspaces a, ,Q.

PROPOSITION 2. The curve in an, corresponding to a system ~1~~,
is positive 

That is, a Newton system (4) canonically defines a positive curve in An.



2.2 Newton systems and the Lagrange Schwarzian derivative

One can construct the Lagrange Schwarzian derivative similarly to the
classical one. Given a positive curve A(t) in An, fix an arbitrary pair
of transversal Lagrangian subspaces a, 13 in (R2n, Fix an arbitrary
isomorphism of/3 with Rn. Then (for values of t such that transverse

to a) the family of quadratic forms

defines a family of symmetric matrices.

THEOREM 1. - Every positive curve in An corresponds to a system
~1~~, where A(t) is given by

A does not depend on the choise of a, ,C3.

Note that locally in t there exists a factorisation of the differential

operator which defines the system of Newton equations:

where V(t) is a family of symmetric matrices. Consequently,

We denote this expression by 

PROPOSITION 3. - is given by the formula

Remark. - The last formula is an analogue of the logarithmic derivative
d {log( f’~~ /dt which defines a l-cocycle on the group with values

in the space of 1-forms on 51. . Formula (7) is an analogue of the so-called
Miura transformation.

Let us call the right hand side in formula (8) the Lagrange logarithmic
derivative and denote it LD ~F(t~~ .



3. Symplectic Sturm theorems. Disconjugacy theorem

3.1 Sturm theorms in Symplectic space

Let us give here a very brief "esquisse" of Sturm theory in the linear

symplectic space (see ~A2~ for the details).

DEFINITION 7. - Consider an evolution of a Lagrangian space in the lin-
ear symplectic space. Fix an arbitrary Lagrangian subspace. A Lagrangian
space is said be "vertical" (in the terminology jA,~~~ if it is not transversal
to the fixed Lagrangian subspace.

In higher-dimensional Sturm theory instead of zeros of solutions one
considers moments of verticality of a Lagrangian plane.

Let us formulate symplectic analogues of the Sturm theorems A and B
which also have already become classical ( ~M~, ~C~, ~A2~ ~.

A. . Theorem on zeros. - Given the evolutions of two Lagrangian planes
and a2 (t~ under the action of a Newton system, the difference between

the numbers of moments of verticality of al (t) and 03BB2(t) on any segment of
time does exceed the number n of degrees of freedom.

DEFINITION 8. - The system (l~~ is called disconjugate on the interval

I, if the corresponding Lagrange subspace a(t) of the space of solutions fails
to be transverse to each fixed Lagrange subspace in at most n values of t.

(For example, for Sturm-Liouville equation it means that each solution has
at most one zero point on 1.~

B. Disconjugacy theorem. - If the potential energy A(t) is nonnegative
definite:

,

then the Newton system is disconjugate on the whole time axis.

Proof. - ( ~A2~ ~ It is clear that in theorem A instead of evolutions of

two Lagrangian planes ~11 (t) and ~12 (t ~ one may consider the evolution of
one Lagrangian subspace and its moments of nontransversality with two
fixed Lagrangian subspaces. The equivalent way to formulate the result is
theorem A’.



THEOREM A’. - Given two Lagrangian subspaces a and ,Q in the space of
solutions of the system ~1~~, the difference between the numbers of moments
of nontransversality of a and ,Q with the Lagrangian plane .1 (t) on any

segment of time does not exceed the number n of degrees of freedom.

Consider the quadratic form ~ (t) _ ~ ~ .t (t), a "E3 ~ . At each moment of

nontransversality of A(t) with ,Q the form ~(t) is degenerate. The index

of the form ~(t) increases by the dimension of the kernel of the form ~(t)
at this moment. Indeed, according to proposition 2, the derivative ~(t)’
is positive definite. At each moment of nontransversality of A(t) with a,
the inertia index of the form ~(t) decreases. Consequently, the difference
between the numbers of nontransversality of a and ;Q with À(t) does not
exceed n. Theorem A is proved. 0

Consider the quadratic . At each moment of non-

transversality of a and ,Q with A(t), the inertia index of this form increases.
That is this number is at most n. Theorem B is proved. 0

3.2 Nonoscillation property

Let us apply property ii) of the Lagrangian Schwarzian derivative to
disconjugacy theorem. Consider the nonoscillation property on the whole
line:

and apply a diffeomorphism t --~ g(t). The potential transforms to

The corresponding Newton system is still disconjugate since the action of g
on the curve A(t) is a transformation of the parameter:

Whe obtain the theorem 2.

THEOREM 2. - If the quadratic form

(nonnegative de, finite~ then the system (l~~ is disconjugate on the whole time
axis. .



Exarrzpte. - In one dimensional case condition (10) gives a criteria of
nonoscillation for Sturm-Liouville equation.

COROLLARY

i) If the quadratic form

on the interval (-1,1~ then the Newtonian system is disconjugate on
this interval.

ii~ If the quadratic form

on the ray (0, oo) then the Newtonian system is disconjugate on it.

Proof. - Consist in ~, simple application of the diffeomorphisms g(t) =

(1/~r) arctan(t) and g(t) = et (which transform the time axis into the interval
and into the ray correspondingly).

Remark. - These theorems are multidimensional analogues of Nehari

[N] and Kneser theorems correspondingly. The second one is known (see
[C]), the first one we failed to find in literature.

4. Relation with loop groups. Proofs

Let G be the group of all smooth functions on 51 with values in the

group of matrices G = C°° (,S1 , GL(n)) . . Denote by g the corresponding
Lie algebra: g = C°° (S1 , gl(n)) . .

Notation. - Denote by f the space of functions on S1 with values in the
set of symmetric matrices, and by ~’ C f the subspace of functions with

nondegenerate derivative.

Consider the following mapping (which we defined in section 1 ) :

defined by r~F(t)~ _ 



given by a(X) = (note that if X = ~/M then is a

symmetric matrix).
Define a mapping c : G --> g by the formula

(as it is well known, the last formula defines a 1-cocycle on G which
represents the unique nontrivial class of cohomology .H~ (G, g~). Recall,
that by definition of the square root, the mapping c o r has values in the
space of symmetric matrices. Thus we have an application

All these mappings form the following commutative diagram:

where LS is the Lagrange Schwarzian derivative, LD is the logarithmic
derivative, p is given by formula (7). Consequently,

4.1 Proof of lemma 2: the square root and the loop group

Proof. - Let M(x) be a family of nondegenerate symmetric positive
definite matrices. Consider a family of matrices such that B* B == M.
Then B(.c) is defined up to the equivalence where E 

for each x. We shall prove that one can find a family such that

is a symmetric matrix.

Indeed, c(QB) = + c(Q), since c is a 1-cocycle. c(Q) is a

family of skew-symmetric matrices, since Q(x) E O (n~ . That is



We are looking for Q(x) such that c(QB) - c(QB)* = 0. In other words

c(Q) _ (-1/2)Q(c(B)* - c(B)) (~-1. Thus, we get finally the following
linear differential equation on 

This equation has the unique solution Q(x) E O(n) (up to equivalence
where O is an orthogonal matrix that does not depend

on x ) .

Remark. - Consider the group O(n)) of all smooth functions
on S~ with values in the orthogonal group. Define an amne action of this

group on the Lie algebra g: given a family C~ _ ~ ( ~ ) of orthogonal matrices,

(In fact, this action coincides with the coadjoint action of the Kac-Moody
algebra, see e.g. [Ki].) Consider also the (left) action of this group on G:

This action preserves the relation G( x ) * G ( x ) = . The mapping
(11) is equivariant. The normal form of the action TQ is a family of

symmetric matrices (note that the space s is orthogonal to the subalgebra
C°° (S1 so(n)) in g). It means that the square root G = M(x) is the
normal form of families of matrices which verify the relation G(x)*G(x) _
M(x) under the action of the loop group C°° (S1 , O(n)).

4.2 Proof of theorem 1: solutions of the Newton system

Proof of lemma 3. . - Let yl (t), ... Yn(t) E IRn be linearly independent
solutions of the system (4). Denote by Y(t) the n x n matrix such that
its column Yi coincides with the vector y2. We shall Y(t) the matrix of
solutions of the system (4).

Given two matrices of solutions Y(t) and Z(t). Define their "Wronskian"
by

It is clear that Wi~ = W ( y2 . Then



Thus, W is a bilinear antisymmetric form on the space of solutions of
the system (4). One can easily construct Darboux basis on the space of
solutions: it is given by the standard initial conditions.

Proof of lemma l~ . Follows immediately from the definition.

Proof of theorem ~.2014 Consider the curve A(s) in ~n by the evolu-
tion of a Lagrangian subspace in the space of solutions of the system
(4). Fix two arbitrary transversal Lagrangian subspaces 03C8 and 03B6. Let

(yl (t), ... yn (t) ; zl (t), ... be the Darboux basis in the space of solu-

tions associated with the polarization (~, () and Y(t), Z(t) the correspond-
ing matrices of solutions. Then

For each value of s, .1(s) is a subspace of solutions of the system (4) which
are equal to 0 at the moment t = s. Let Ls(t) be its matrix of solutions.
Then (up to a conjugation)

Consider the quadratic form ~(s~ -.- ~ ~ a(s), ~, ~ ~ ] (defined on the
subspace ~, see section 1.1) and denote by F(s) its matrix in the basis
(zl (t~, ... zn (t~~ .

LEMMA 5

i~ The curve a(s} in An is given by the evolution of a Lagrangian
subspace under the action of a Newton system.

ii~ Matrices of solutions of this Newton system are given by

Proof of the lemma. - From formula (13) we get immediately:

Thas is,



Substitute this formula to (12): W (Y(s) , Y(s)F(s)) = id. Thus, from the
formula (5~)

Whe have the first property of the square root: Y*Y = ( F’ ) -1. The second
property: Y’Y-1 is a symmetric matrix is equivalent to the fact that ~ is
a Lagrangian subspace. Indeed, it means that W (Y ( s ) Y(s)) = 0. We get
Y’*Y = Y*Y’. The lemma is proved.

To finish the proof of the theorem, remark that the potential of the
Newton system can be calculated from a matrix of its solutions by the
formula A(t) = The matrix of solutions Y(t) is given by
formula (14). Thus, we must calculate the derivative of the square root.

The first derivative of the square root. - Let us derivative the formula
Y*Y = -(F’~-1. Then

Also (by the second property of the square root, Y*’Y is a family of

symmetric matrices) Y *’Y + y*y’ = 2Y*Y’. . Thus, finally we get

(we shall use this formula in the proof of proposition 3).

The second derivative of the square root. - In the same 

From the previous formula we have 2~~ _ - (F~)-1 F~~~t)~F~)~1. . So

and we obtain the formula (6).
This calculation does not depend on the choice of the Darboux basis since

for a fixed matrix G’,

Theorem 1 is proved. 0



Proof of proposition 1. . - The calculation in the proof of theorem 1 does
not depend on the choice of Lagrangian subspaces 03C8 and ( because as we
saw the curve A(s) defines the system (4) uniquely. Thus the Lagrange
Schwarzian derivative is a projective invariant, and i) is proved. The

property ii) is evident. The third one follows from the fact that any Newton
system defines the evolution of a Lagrangian subspace.

Proof of proposition 2. - Becomes evident now because of the formula
Y*Y = (F’) 1.

Proof of proposition 3. . - Consider the linear differential equation Y’ _

V(t)Y. If Y = Y(t) is solution of the system (4) then satisfies

The formula (8) follows now from (8’).

Remark.- Another version of the Schwarzian derivative was con-

structed in [T]. This symplectic Schwarzian defines a 1-cocycle on the group
of symplectic diffeomorphisms on a manifold with values in some space of
vector fields.

We ask here an analogous question: Is Lagrange Schwarzian derivative a
1-cocycle in any sense ?

5. Symplectic projective geometry: does it exist ?

There is at least one reason to suppose that such a theory exists: the

construction of Tits building on the linear symplectic group (see [Br]).
We present here several small remarks and definitions which probably

could be related to this theory (certainly, in the case of positive answer to
the question). It is a result of discussions of B. Khesin, S. Tabachnikov and
the author.

Consider the following configuration in (IR2’~, Let a, ,~3 be two

Lagrangian subspaces. Fix k points ai , ..., ak in a and k points bl, ... , b~
in ,Q. Consider n + 1-dimensional afhne spaces



Consider the points of intersections pIJ = LIJ n LJI (fig. 9). The

question is : whether these points belong to the same affine Lagrangian
space ? are not necessarily Lagrangian.)

PROPOSITON 4

i) If the pairs of points (ai, bi) are given by intersections o f a and 03B2 with
k affine Lagrange spaces parallel to the same Lagrangian subspace 03B3

(fig. 10) then the points pIJ belong to a Lagrangian subspace ~ such
that four Lagrangian subspaces (a ,C3, y, b) are harmonic.

ii) Let al , ... , an+2 E a and b1, ... , bn+2 E ,Q and there exists k E

~1, ..., n + 2~ such that for any i affine Lagrangian subspaces

(ai , ..., ai, ... an+2, and (bl, ... , bi, b~, ..., bn+2 , a~ ~

are parallel Lagrangian subspaces then the affine spaces

(bl, ..., b~, b~,,, ..., bn+2, aj) and (al, ... , ! aj, . .. bj)

are parallel and Lagrangian (fig. 

iii) If k = n and the vectors (al, ... an , bi ~ ~ ~ , bn) are proportional to
a Darboux basis in then pIJ belong to an affine Lagrangian
space.



Remark. - i) is due to B. A. Khesin, ii} is due to S. L. Tabachnikov.

However, we do not know of any general configuration theorem in
w~.
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