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Completion by Gamma-convergence
for optimal control problems(*)

MARINO BELLONI, GIUSEPPE BUTTAZZO and LORENZO FREDDI(1)

Annales de la Faculte des Sciences de Toulouse Vol. II, n° 2, 1993

RESUME. - On considère des problèmes de contrôle abstraits de la
forme

min~ J(u, y) : y E argmin G(u, ~ ) ~
et on identifie les problèmes relaxes par la completion de l’espace des
contrôles dans la topologie de la r-convergence pour les fonctionnelles
G(u, ~ ). On montre que plusieurs exemples rentrent dans ce cadre
abstrait.

ABSTRACT. - Abstract optimal control problems of the form

: y E argmin G(u, ’ ) }
are considered, and the associated relaxed problems are identified by
completing the space of controls with respect to the r-convergence of
the state functionals G(u, ’). . Several examples are shown to fall in this
framework.

1. Introduction and preliminary results

Many optimal control problems can be written in the form

where y is the state variable varying in a space Y, u is the control variable
varying in a set U, J : : U x Y --~ iR is the cost functional, and G : U x Y -~ IR
is a functional whose Euler-Lagrange equation (if any) is the state equation.
We shall call G the state functional.

(*) Resu le 12 novembre 1992
(1) Dipartimento di Matematica, Via Buonarroti 2, 1-56127 Pisa (Italy)



Usually Y is a function space endowed with a metric structure, while U
is just a set with no topological structure. The natural topology on U that
takes into account the convergence of minimizers of G is the one related to

r-convergence of the mappings G(u, ~ ~: in other words, if we endow U with
the convergence defined by

under some lower semicontinuity and coerciveness assumptions we get (see
Corollary 2.3) the existence of solutions of (1.1) by the standard direct
method of the calculus of variations.

When these assumptions are not fullfilled, we have to pass to the relaxed
formulation of (1.1) which is here introduced by considering relaxed controls
û E !7) where the set ~7 is constructed as the completion of U with respect to
the convergence (1.2). The usual properties of relaxed problems are shown
in Proposition 2.8.

Finally, three main examples are illustrated in the framework of this
abstract theory. The first one is related to some shape optimization
problems recently considered by Buttazzo and Dal Maso in [2], [3], [4] in
which the control set U is the class of all domains contained in a given
open subset H the second and the third ones are problems where the
control is on the coefficients of the differential state equation.

In the following we consider a separable metric space of states; a

functional G : : Y --~ iR = ] - oo , ] will be called coercive if for every
t E IR there exists a compact subset Kt of Y such that

The set argmin G is defined as the set of all minimum points of G on Y
where G is finite, and for every set E we define

Given a sequence (Gh) of functionals from Y into R we recall that (Gh)
is said to r-converge to a functional G if for every y E Y

and the following results hold (see for instance De Giorgi and Franzoni [10]
or Dal Maso [8]).



THEOREM 1.1. - Properties of F -convergence :

i) every 0393-limit is lower semicontinuous on Y;

ii~ if(Gh) is equi-coercive on Y and r-converges to G, then G is coercive
too and so it admits a minimum on Y. . Moreover, if G is not

identically +~ and yh E argmin Gh then there ezists a subsequence
of which converges to an element of argmin G;

iii) from every sequence (Gh) of functionals on Y it is possible to eztract
a subsequence F-converging to a functional G on Y.

Concerning the metrizability of the F-convergence we have the following
result (see Dal Maso ~8, Theorem 10.22]).

THEOREM 1.2. - Let : Y - IR be a coercive function and let 
be the class of all lower semicontinuous functions from Y into IR which are

greater or equal to ~. Then endowed with the F-convergence is a

compact metric space in the sense that there exists a compact distance br
on such that

2. Existence of optimal pairs and relaxation

We start this section by finding conditions which, via Tonelli’s direct
method of the calculus of variations, ensure the existence of optimal pairs
for the control problems (1.1). Setting

the minimum problem (1.1) becomes the minimum problem for F on the
whole product space U x Y. We assume that the following conditions hold.

For every u E U the mapping G(u, . ) is not identically +00; (2.2)

the mappings G(u, ~ ~ are lower semicontinuous and locally
equi-coercive that is, for every compact set K ç U there exists a /o ;B
lower semicontinuous coercive function ~~ : Y -~ IR such that ~ 2.3 )

G(u, y) > for every (u, y) E K x Y;



a topology on the control set U is a priori given, stronger than
r-convergence for G(u, . ), that is

J is sequentially lower semicontinuous on U x Y ; (2.5)

J ( u, y) is sequentially coercive with respect to u, that is 
( )J(uh, yh)  C e lR # (uh ) is relatively compact in U . (2.6)

THEOREM 2.I. - Under assumptions (2./), (2.5) the functional F in
(2.I ) is sequentially lower semicontinuous on U x Y.

Proof. . - Let (uh, yh ) - (uo, y0) in U x Y ; we have to prove that

Passing to subsequences and avoiding the trivial case in which the right-
hand side of (2.7) is +00, we may assume that yh E argmin G(uh, .). From
(2.4) and Theorem 1.1 ii) we obtain that yo E argmin G( uo, . ) so that, by
(2.5)

THEOREM 2.2.2014 Under assumptions (2.2), (2.3), (,~.1~~, (~.8~ the func-
tional F in (2.1~ is sequentially coercive on U x Y .

Proof . Let be a sequence in U x Y and assume  C.

Then C and y~ E argmin G(uh, ~ ) so that by (2.6) we
have, possibly passing to subsequences, that (uh) tends to some uo in U.
Hence r-converges to G(uo, ~ ). Thanks to equi-coerciveness (2.3),
Theorem 1.1 applies and turns out to be relatively compact in Y. 0

COROLLARY 2.3. - Under assumptions (,~.,~~, ... , (~.6~ problem (1.1~
admits at least a solution.

Remark 2.4. - The problems which we consider are quite general, indeed
G doesn’t need to be an integral functional but, for instance, it may be the
indicator of a set A of admissible pairs, that is G(u, y) = XA (u, y) where A
is a subset of U x Y.



We consider now the case when the control set U is not a priori
topologized, and condition (2.5) is not fullfilled; then it’s easy to see that
in this situation the existence of a solution for problem (1.1) may fail. We
still assume (2.2) and (2.3), and

the mapping g U --; ,S~ (Y) defined by ~(u~ = G(u, ~ ) is (2.8)
one-to-one.

We endow U with the distance

being 5r the compact distance on S~ (Y) given by Theorem 1.2. In this way
( U, d~ is a metric space, ~ is an isometry, and

Let now (U, d~ be the completion of the metric space (U, d); we define the
mapping : as the unique isometry which extends ~: more

precisely

where is any sequence d-converging to S. Therefore we may define

G : ~ x Y 2014~ )R by G(S, .) = 9(S)~ and we have

PROPOSITION 2.5. - The metric space (U, d ~ is compact.

Proof. - Since ~ is an isometry and U is complete, is a complete
subspace of the compact one S‘~ (Y) , so that ~ ( U is compact. Hence, using
again the fact that 9 is an isometry, we get that !7 is compact too. 0

Define now the following functionals on !7 x Y



and consider the relaxed control problem associated to (1.1)

THEOREM 2.6. Assume (2.3), ~,~.8~ and

for every u E U the minimum point of G(u, ) on Y is unique; ~,~.10~

there exist a function 03A6 : U ~ IR bounded on the d-bounded sets and

a function w : Y x Y --~ I R with

such that for every u E U and y, z E Y,

Then problem ~,~.9~ is actually the relaxed problem of ~1.1~ in the sense
.

Proof.- Since F  Foo the inequality F  sc - ( U x follows

immediately from the lower semicontinuity of  on  x Y. In order to prove
the opposite inequality, let ya ) E ~7 x Y be such that F (ico,  

then t/o E and there exist two sequences in U and (y~)
in Y such that

Take zh as the unique minimum point of G( uh, . ) in Y; by the assumption
(2.10) and Theorem 1.1 ii) we get zh so that, by (2.11) and (2.12)

Remark 2.7. - Under the assumptions (2.11~ it is easy to see that



Summarizing, for the relaxed problem (2.9) the following results hold.

PROPOSITION 2.8. - Under the assumptions of Theorem 2.6, we have:

i~ the relazed problem (2.9) has always a solution;

ii) inf{J(u, y) : u E U, y E argmin G(u, .)} =
= : u E U, y E 

iii) if (uh, y~) is a minimizing sequence for (1.1~, then there ezists a

subsequence converging in U x Y to a solution (E, y) of (2.9);

iv) if (2.5) holds and if (u, y) E U x Y is a solution of the relaxed problem
(2.9), then (u,y) is a solution of (1.1~.

Ezample ,~.9. . - The uniqueness hypothesis (2.10) cannot be dropped, as
the following example shows. Take U = ~+ ~ ~0~, Y = (R, ( ~ ~ ), J (u, y) = y2,
G(u, y) = (y2 - 1) V Note that hypothesis (2.8) is satisfied. Then it
is easy to check that U = ([ 0 , ~, d~ and

It is F(0,1/2~ = 1/4 but sc- F~ (0,1/2~ _ -I-oo. Indeed



3. Some examples

In this section we show some applications of the abstract framework
illustrated in the previous sections. The first example deals with a class of
shape optimization problems recently studied by Buttazzo and Dal Maso

([2], [3], [4], and references therein) in which the set U is the class of all
domains contained in a given open subset {} of Rn; this class has no linear
or convex structure, and usual topologies are not suitable for the problems
one would like to consider.

To set the problem more precisely, let Q be a bounded open subset oflRn

(n > 2), let f E L2 and let j : : S2 x IR --~ IR be a Borel function. Consider
the shape optimization problem

where is the family of all open subsets of SZ and yA is the solution of
the Dirichlet problem 

extended by zero to ~ ~ A. Setting U = Y = with the strong
topology of LZ (5~~, and

the minimization problem (3.1) can be written in the form

Note that assumptions (2.2), (2.3) and (2.8) are fullfilled, with

for suitable constants a, ;Q. In order to identify the relaxed problem
associated to (3.2) we have to characterize the completion ~7 of U with



respect to the distance induced by the F-convergence on the functionals

G(A, ). This has be done by Dal Maso and Mosco in [9] where it is shown
that U coincides with the space of all nonnegative Borel measures,
possibly +00 valued, which vanish on all sets of capacity zero. Moreover,
for every E and y E HJ(S1) we have

The relation y E can also be written, via Euler-Lagrange
equation, in the form

which must be intended in the weak sense: y E ~(~) and

The uniqueness property (2.10) follows straightforward. If we assume on

the integrand j

j ( x , ~ ) is continuous for a.e. x E S~; (3.3)

for suitable a E L1(11) and b E IR we have Ij( x, )  a(x) + for 
(3.4)

a.e. x E S~, for every s E IR, 
(3.4)

the functional J turns out to be continuous in the strong topology of L2
so that (2.11) is fulfilled, Theorem 2.6 and Proposition 2.8 apply, and the
relaxed problem of (3.2) can be written in the form

The second example we consider is the case of a control problem where
the control occurs on the coefficient of the state equation. More precisely,
given cx > 0 take

Y = Ha (0, 1~ with the strong topology of L1 (o, 1)



and consider the optimal control problem

Here f E L2 (o,1), and g, p are Borel functions from (0,1) x IR into iR with

~p(x, ~ ~ is continuous on IR for a.e. x E (0,1), (3.6)
for a suitable function w(x, t~ integrable in x and increasing in t we
have (3.7)

Setting for any (u, y) E U x Y

we obtain that problem (3.5) can be written in the form

, uEU, , yEY, , .

It is well-known that

therefore, by applying Theorem 2.6, we obtain U = U, G = G, and

where y(x, s~ = ,Q** (~,1/s~ being ** the convexification operator (with
respect to the second variable) and

For instance, if a  1 and s) = Is - 1 ~ we have



An analogous computation can be done in the case

In this case, in order to satisfy the coerciveness assumption (2.3), it is better
to consider

where y’ « dx denotes the constraint that y’ is a measure absolutely
continuous with respect to the Lebesgue measure. Following Buttazzo and
Freddi [5] we obtain that coincides with the set of positive measures  on

[0,1] such that ~.c ~ ~ 0 , 1]) ~ c and

where is the Radon-Nikodym derivative of y’ with respect to It

is not difficult to see that assumptions (2.3), (2.8), (2.10) are fulfilled, with

for suitable positive constants a, b. It remains to compute the functional
J. Assume for simplicity that g(x, s) = g(s) and that (3.6) and (3.7) hold;
then we obtain

where j3(t) = g(1/t), ~c = + is the Lebesgue-Nikodym decompo-
sition and (,Q**) °° is the recession function of 13**. For instance, if

g(s) = Is - the relaxed problem of (3.5) has the form



In this last example we consider a class of optimal control problems for
two-phases conductors which has been studied by Cabib and Dal Maso ([6],
[7]). As in the second, also in this case the control occurs on the coefficients
of the state equation which is actually of elliptic partial differential kind.
Precisely, let H be a bounded open subset of Rn and a, /3 be two real

positive numbers, f E L2 (5~~, U is the set of all functions u : S~ --~ IR with
the property that there exists a Borel subset A ~ 03A9 such that

and Y = with the strong topology of L2.

Consider the optimal control problem

where the cost functional is still of the form

where g x U --~ IR is a given function in L 1 ( S~ ), and x IR -~ IR is

a Charatheodory integrand which satisfy the growth condition

+ c2z2 for suitable cl E L1 (SZ) , c2 E IR .
The energy functional G is now given by

The completion ~7 of U with respect to the G-convergence of the state
equation or, equivalently, the r-convergence of the functionals G(u, . )
has been characterized by Lurie and Cherkaev {[11], [12]) for the two-
dimensional case and more recently by Murat and Tartar ([13], [14]) for
the general case. They proved that ~7 is the space of all symmetric n x n
matrices = whose eigenvalues ~2(r) ~ ~ ~ ~  
satisfy for a suitable t E [0,1] ] depending on x to the following n + 2
inequalities



where t and vt respectively denote the arithmetic and the harmonic mean
of a and /3, namely

For instance, when n = 2, then ~7 consists of all symmetric 2 x 2 matrices
whose eigenvalues a2(x) belong for every z E H to the following
convex domain D of R2

The functional G turns out to be

The computation of the functional J can be found in Cabib [6]. We have

where
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