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On the different notions of convexity for
rotationally invariant functions(*)

BERNARD DACOROGNA(1) and HIDEYUKI KOSHIGOE(2)

Annales de la Faculté des Sciences de Toulouse Vol. II, n° 2, 1993

RESUIVtE. - Soit R2 x 2 l’ensemble des matrices 2 X 2 et f : 1~2 x 2 .~ IR.
Sous l’hypothèse d’invariance par rotation de f, on montre que les

conditions de convexité et de polyconvexité prennent une forme plus
. simple qu’usuellement ; alors que ce n’est pas le cas pour les notions de
qussiconvexité et convexité de rang 1. On montre aussi que le calcul

des dinerentcs enveloppes convexes est aussi facilité sous cette hypothese
d’invariance.

. 

ABSTRACT. - Let R2 x2 be the set of 2 x 2 matrices and f : R2 x~ -~ IR.
We assume that f is rotationally invariant and we show that the notions
of convexity and poly convexity are simpler than for general f ; while this
is not the case for quasiconvexity and rank one convexity. We finally
show how this also simplifies the computations of the different convex
envelopes.

0. Introduction

Let R2x2 be the set of 2 by 2 real matrices and be the subset of

all diagonal matrices. We denote By 0 the set of orthogonal matrices, i.e.

where Ut denotes the transpose of U and I is the identity. By 0~ ~ we mean
that

~ * ~ Recu le 27 jsnvier 1993
1~ Departement de Mathematiques, E.P.F.L., CH-1015 Lausanne (Suisse)
(2) Institute of Applied Mathematics, Chiba University (Japan)



We will be interested in functions f : : R2 X 2 -.~ IR which are rotationally
invariant, i.e.

For such functions, we will study the different notions of convexity used in
the calculus of variations (namely: convexity, polyconvexity, quasiconvexity
and rank one convexity, see below for a precise definition). Most examples of
vectorial calculus of variations are functions f satisfying (H). In particular
a very important case is the one where (H) is satisfied for every U, V E 0
(instead of O+ }. It has been intensively studied (see Ball [2], Buttazzo-
Dacorogna-Gangbo [3], Ciarlet [4] or Dacorogna [5] for more references).

To illustrate more concretely the hypothesis (H), let h : IR2 --~ IR and

denote for £ E j~2 x 2, by I~ l 2 = the Euclidean norm and by
det ~ the determinant. If f is of the form = h ( ~~ ~Z , det$) then f
satisfies (H).

Our main results will be that to test the convexity or the polyconvexity
of f, it is enough to test them on diagonal matrices. This might be in
some concrete examples an important computational simplification. It also

reduces significantly the computations of the convex or the polyconvex
envelopes of a given function.

Surprisingly we will show that these results do not extend to rank one
convex functions. We will give two examples showing that it is not enough
to infer the rank one convexity of a function f from its rank one convexity
tested only on diagonal matrices. More precisely if either

we will show that for a certain choice of the parameters a and b, is

rank one convex when restricted to diagonal matrices, while it is not rank

one convex (on the whole of R2 x 2).
Our article is inspired by those of Buttazzo-Dacorogna-Gangbo [3],

Dacorogna-Douchet-Gangbo-Rappaz [6] and Iwaniec-Lutoborski [7, Prop.
10.2]. It is divided into five sections; the three first deal with the notions of
convexity, polyconvexity and rank one convexity respectively. The fourth
one is devoted to some results on the different convex envelopes of a given



function f satisfying (H). The last one gives an application of the fourth
section to a concrete example.

Most of our results can be extended to Rnxn (n > 2), but we have
prefered for the sake of clarity to restrict ourselves to the case n = 2.

1. Convexity on diagonal matrices

We first start with ordinary convexity. The main result of this section is
Theorem 1.1.

THEOREM 1.1. Let f : R2x2 -~ ~R satisfy ~H~. Then the following
properties are equivalent:

~i~ f is convex,

f x 2 is convez.
d

Remarks

(i) By f is convex, we mean that for every ~, r~ diagonal matrices

and for every A E ~ 0 , 1 ~ ,

(ii) This result might not be new, but we are unaware of any precise
reference.

Before proceeding with the proof, we introduce some notations (following
Alibert-Dacorogna [1]).

Notations. . - Let

Define

Observe that if (’; ’) denotes the scalar product in R2 x 2 ~ ,



Remark. - Note that if

then

Before proceeding with the proof of Theorem 1.1, we prove two intermediate
results.

LEMMA 1.2. - Let g : R2 ~ IR be convez and satisfy

Proof - We first prove that for every a E 1R, x E IR, b E IR and y E l~,
then

In fact, using the convexity of g and (1.1), we get



Similarly to get (1.4) we use the convexity of g and (1.1), namely

We now prove (1.2) using the convexity of g, ( 1.3 ) and ( 1.4) :

Hence the result. 0

LEMMA 1.3. - Let g be as in lemma 1.2, then there ezists a function
f : ~ ~R such that

f is convez, ( 1.5)

f satifies ~H~, (1.6)

Proof - Let us define f : R2 x 2 --~ ~R by

of every £ E R2 x 2 . Observe that (1.6) holds trivially. To prove (1.7) we let



We then get immediately that

We finally prove (1.5). For r~ E R2x2 and A E ~ [0, 1 ], we set

Note that

Hence using Lemma 1.2 and (1.8)-(1.11), we get

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1

(i)=~(ii) is trivial.

(ii~ ~ (i~ For

let g(a, b~ = f (~~, Then g satisfies the conditions of Lemma 1.2. Using then
Lemma 1.3, we deduce that there exists f : R2x2 such that

Since f and f satisfy (H), we deduce that f = f on the whole of R2x2 and
thus the result. Q



2. Poly convexity on diagonal matrices

We now turn our attention to the notion of polyconvexity. Let us recall
the definition (see Ball [2] or Dacorogna [5] for more details).

DEFINITIONS

~i~ A function f : R2 x 2 -~ IR is said to be polyconvex if there exists

g R2 x 2 X IR --~ IR convex such that

We say that f is polyconvex if there ezists g : ~3 -~ IR convez
d

such that for every

We then have the main result of this section.

THEOREM 2.1. - Let f : R2x2 - IR satisfy (H). The following condi-
tions are then equivalent:

(i) f is polyconvex,

(ii) f  R2  2 is polyconvex,
d

(iii) the following holds

for every Ai E 2, every ai > 0 with ~4 1 .1i = 1, such that

in particular if g : IR3 ~ IR is defined by



then g is convez and

for every ~’ E 

(iv) for every ~ E there exist 03B1(~), 03B2(~), 03B3(~) E R such that

for every ~ E and (. ; .) denotes the scalar product in R2x2; in
partucular if

then h is convex and

for ever~y ~ E R2x2.

Remarks

(i) One should compare this result with that of Ball [2] (see also

Dacorogna [5]) for general polyconvex functions. For example from

(iii) we see that to test polyconvexity it is enough to take 4 diagonal
matrices instead of 6 general matrices. In 2, the gain will be
obviously even bigger (for example if n = 3, with a theorem similar to
the above one, we need only 8 diagonal matrices instead of 20 general
one).

(ii) A similar observation can be made with (iv).



Proof of Theorem ,~.1

(i~ ~ (ii~ is trivial.

(ii) ~ (i) Since fR2x2d is polyconvex, there exists g R3 ~ IR convex such

that

Moreover under the assumption (H) on f, we deduce that

Now set

from which we have

G : R3 is convex,

Applying Lemma 1.3 to G(’, ’, $), we find that there exists G R~~~ x
tR 2014~ )R such that

G is convex, (2.8)

= (03BE,03B4) for every C 0+ and 03BE ~ R2x2, (2.9)

(The convexity of G in (2.8) is obtained exactly as in the proof of
Lemma 1.3.)

In particular, it follows from (2.10), (2.7) and (2.2) that



for every a, b E IR and ~ E ~2 x 2 , Here we used the fact

Hence for ~ E R2 x 2 with

Therefore f is polyconvex.

The proof of this is classical and in particular identical to
that of Dacorogna [5, th. 1.3, p. 106~. ~

3. Rank one convexity on diagonal matrices

As we mentioned in the introduction, a theorem as those of the preceding
sections cannot be proved for rank one convex functions. Let us recall first
the following definitions.

DEFINITIONS

(i) A function f : R2x2 --~ IR is rank one convex if

for every t E ~ 0 , 1 ~, ~, r~ E R2x2 with = 4 .

(ii) Similarly f is said to be rank one convez if the above inequality
d

holds for every diagonal matrix ~ and r~ with r~) = 0 .



Remark. - As well known (see the references), we always have

Before producing counterexamples to the implication

fR2x2d rank one convex ~ f rank one convex

(the converse implication being trivial) we give a very elementary charac-
terisation of rank one convexity on for some C2 functions.

PROPOSITION 3.1.2014 Let

with g E C2(R2) . The following is then equivalent

(I) fR2 2d 13 Ta7lk one convex;(i) f d d x2 is one conuex;

(22) g satisfies

for every a, b E IR and where

Proof

(i~ ~ (u~ Let

with det r~ = x y = 0 and t E IR. Let



Since f is rank one convex, then necessarily 03C6"(0) > 0. A direct

computation, bearing in mind that xy = 0, leads to

Dividing + y2 and setting

and bearing in mind that xy = 0, we obtain the claimed result.

(ii~ ~ (i) follows elementarily from the above proof. 0

Remark. - A similar computation is done in Dacorogna-Douchet-Gang-
bo-Rappaz [6, prop. 1.1]. It shows that rank one convexity on the whole of
R2 x 2 is equivalent to

for every (z y, a, b) E IR4 with

One sees clearly that Proposition 3.1. follows from the above condition if

we set a? = a2 + b2 (=~ ~ = ab~.

We may now give the two following counterexamples which are implicitly
contained in Dacorogna-Douchet-Gangbo-Rappaz [6, Prop. 1.6 and 1.8].
For the explicit computations of the following constants b1 and b2, we refer
to the above paper.

Counterexample 3.1. . - Let b > 0, cx > 2 + 2 and

Then

is rank one convex ~==~ b ~ b2 (~’~-)

R2 2d is rank one convex ~ b  b1 (3.2)

(for the precise value of b1, b2, see the above paper) and b2  b1. .



Counterexample 3.,~. . - Let b > 0, a > (9 + 5~ ~~4 and

Then

is rank one convex 4==> b  b2 ( 3 .3 )

is rank one convex ~=~ b  b1 (3.4)

(for the precise value of b1, b2, see the above paper) and b2  bl.

4. The different envelopes

We now turn our attention to some properties of the envelopes of a given
function f satisfying (H).

Before being explicit, we need one more notion of convexity (introduced
by Morrey [8]). .

DEFINITION .- Let f : --~ IR be continuous. Then f is said

to be quasiconvex if for every St C IR2 bounded domain and for every
u E IR2) (i. e. u = (ul, u2) E (C°° (S~)) 2 and has compact support)
and for every ~ E 2 ~ ,

Remarks 
’

(i) In minimisation problems of the calculus of variations, this is the

right notion. As seen by its definition, it is very hard, in practice, to
check such a condition. In fact one always have

f convex ==~ f polyconvex ==~ f quasiconvex
==~ f rank one convex.

The reverse of the last implication is still open (although Sverak
[10] has produced a counterexample in higher dimension). The fact
that f quasiconvex ~ f polyconvex can be found in Sverak [9] and
Alibert-Dacorogna [1].



(ii) Note immediately that if f satisfies (H) the quasiconvexity of f
cannot be infered from the quasiconvexity on diagonal matrices (since
every continuous function is quasiconvex when restricted to diagonal
matrices).

For a given function f : R2 x 2 -~ IR, we define the convex, polyconvex,
quasiconvex and rank one convex envelope to be respectively

C f = convex},
P f = polyconvex} ,
Q f = fig quasiconvex),
R f = rank one convex}.

Then the following is well known ( cf. Dacorogna ~5~ ~;

for every A E R2 x 2 ,

The following result is elementary and we will not prove it (it is com-

pletely identical to that of Theorem 3.1 of Buttazzo-Dacorogna-Gangbo ~3~).

THEOREM 4.1. - If f = R2x2 -~ IR satisfy ~H~, then so do C’ f PI, 
and R f .

Less trivially we have a better characterisation of C f and P f when f
satisfies (H).

THEOREM 4.2. - Lef f : 1~2x2 -,~ IR satisfy (H) and

for some a E ,Ci E ~R and for every ~ E R2 x 2 , .

(A) Let g : IR2 ~ IR be defined by



then

(B) Let h* : R 2 -~ IR be defined by

and h** : IR2 -~ IR be defined by

Remarks

(i) As in Theorem 2.1, we see that (A) gives a much easier way to
compute the convex envelope than the usual one. Indeed we need

only 3 diagonal matrices, instead of 5 general matrices (as usually
implied by Caratheodory’s Theorem).

(ii) Theorem 4.2 might, as Theorem 2.1, be known by those working in
convex analysis, but we are unaware of any place where it is explicity
quoted.

(iii) (B) in Theorem 4.2 should be compared with Theorem 3.2 in

Buttazzo-Dacorogna-Gangbo [3].

Proof of Theorem 1~.,~

(A) Let g be as stated. Observe that by Caratheodory’s Theorem, g is
convex ( c f. Dacorogna [5, th. 1.1, p. 201]) and because of the invariance of
f, one has g(a, b) = g(b, a) = g(-a, -b). So setting for £ E 



we get from Lemma 1.3 that f is convex and

We now show that in fact f = C/ as claimed. To do this, we first prove
that and then that f.

Step ~. C f
Oberve that / ~ f. This is easy, since for every ~ e ~~, we can find

C 0+ such that

then

Since f is convex and less than f, we conclude that f ~ C f .

Step 2. f 2: Cf
Let as above ~ E R2 x 2. Then there exist R~ E O+ such that

and thus using the definition of g and Theorem 4.1 we get

Hence the result.



(B) This is proved similarly. Let h** be as stated. Then it is clear that

h** is convex h** (a, b) = h** (b, a~ = h**(-a, -b). Thus from Lemma 1.3,
we get that if

then f is convex, rotationally invariant and

To show that C f = f, it is therefore sufficient to prove that f  C f and

C f  f and this is done as in (A). 0

We end up this section with the corresponding theorem for polyconvex
functions.

THEOREM 4.3. - Let f : R2x2 -~ ~R satisfy (H) and

for some a E j~2 x 2 ~ ~~ y E IR and for every ~ E R2 x 2 , .

(A) Let g : IR3 ~ IR be defined by

then

(B) Let hP = IR3 ~ IR be defined by



Let hPP : R3 --~ IR be defined by

then

for every ~ E RZ x 2 , .

Remarks

(i) As in Theorem 3.1, we see that (A) gives a much easier way to
compute PI than the usual one (see Dacorogna [5]). Indeed we need
only 4 diagonal matrices instead of 6 general ones.

(ii) (B) of the theorem should be compared to Proposition 3.3 of

Buttazzo-Dacorogna-Gangbo [3].

Proof of Theorem 1~.3

(A) Let g be as stated. It is clear by Carathéodory’s Theorem that
g : : IR3 -~ IR is convex. Furthermore since f satisfies (H), we immediately
get that

We therefore use Theorem 2.1 to get G : R2x2 x IR -i IR such that

We now show that in fact

To do this, we first prove G  P,f then G > P f .



Step 1. . G  P f

Let ~ E R«, E 0+ be such that

Then we have

G(~ , det) = = g(a, b, ab)

Since G is convex and in view of the above inequality we deduce that
G  P, f .

Step 2. G > P f

Let £ , be as above. Using the definition of g, P f and Theorem 4.1,
we get

Thus (A) is established.

(B) This is proved similarly. Let h~’ be as stated. Observe that hPP is

trivially convex and has the required invariance to apply Theorem 2.1. We
get H : R2 x 2 x IR such that

(i) H is convex;

Using the same argument as above, we deduce that



5. An example

In this section, we shall give an example of how to apply the above results.

Let g : : IR --~ IR be such that g(t~ = g(-t) and f ; .RZ x 2 -~ IR be defined
by

We then have the following Proposition.

PROPOSITION 5.1

Remark. - A similar result holds for g ( 2 + 2 det ~~ . .

Proof of Proposition 5.1

We devide the proof into two steps.

Sept l. . - It follows trivially from Theorem 1.1 that

Sept 2. - In order to conclude the proof, we only need to show that

R f (~~  g** ( (~ i2 - 2 det ~~ . Using Corollary 2.2.9 in Dacorogna ~5~,
we have that for any ~ > 0, there exist 03BB~ ~ [0,1], 03B1~ and 03B2~ with
03BB~03B1~ + (1 - 03BB~)03B2~ = x - y such that

Now set

Then ~2) = 0 and



Hence using (5.2) and Theorem 5.1.1 in Dacorogna [5], we have

Letting 6- tend to 0, we get

Let ~ E R2 x 2, then there exist E O+ such that

Using Theorem 4.1 and (5.3), we find that

and thus the conclusion. 0
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