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On approximate controllability
of the Stokes system(*)

ANDREI V. FURSIKOV(1) and OLEG YU IMANUVILOV(2)

Annales de la Faculte des Sciences de Toulouse Vol. II, n° 2, 1993

RESUME. - On étudie un probleme d’une controlabilitc approximative
dans des espaces fonctionnels divers pour un système non stationnaire de
Stokes qui décrit un courant de fluide visqueux incompressible dans un
domaine borne S~. On prend, en guise de fonction de controle, la densite
de forces extérieures concentrée dans un sous-domaine w ~ 03A9 la condition
aux limites concentrées dans un sous-domaine de la frontière, ou d’autres
fonctions. On démontre que l’équation de Burgers ne possede pas de
controlabilite approchee par rapport a la fonction de controle indiquée
ci-dessus.

ABSTRACT. - The problem of the approximate controllability in differ-
ent functional spaces of the nonstationary Stokes system which describes
a viscous incompressible fluid flow in a bounded domain Q is investigated.
We use as a control function the density of external forces concentrated
in an arbitrary subdomain w C 0, or the boundary datum concentrated
in a subdomain of the boundary, or some other functions. It is proved
that the Burgers equation is not approximately controllable with respect
to the control functions mentioned above.

1. Introduction

This paper is devoted to the problem of controllability of the Stokes

system, defined in a boundary domain n c IRd with a C°°-boundary BSZ:
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Here t E [0, T] ~ is the time, x = (xl, ..., is the spatial variables,
y(t, x) = ..., yd) is the vector field of a fluid velocity, A is the Laplace
operator, Vp(t, x ~ is the pressure gradient, u(t, x~ = (ul, ... is the

density of external forces. We impose the boundary and initial conditions
for system (1.1~:

Suppose that u(t, x ) in (1.1) is a control and it runs through a fonctional
space U. Besides for an arbitrary u E U, we suppose that the unique solution

( y, p~ of problem ( 1.1 ) to ( 1.3 ~ exists in some corresponding functional space
and that the restriction y(T, . ) of y at time moment T belongs to the
functional space H.

Problem (1.1) to (1.3) is called H -approximately controllable with respect
to the control set U, if y(T, . ) ) runs through a H-dense set when u runs
through U.

The case when U is a space of vector fields concentrated in a certain

subdomain w of domain H is the main one in this paper. The problem
of approximate controllability of the Stokes system for this kind of control
was formulated by J.-L. Lions in [7], [9]. This problem has been studied in
section 3 below. To formulate our results we introduce the functional space

where n = ~(c~)) x’ E an is a field of external normals to an, and (y, n~ is
the normal to an component of field y. For a natural number k, we set

where is the Sobolev space of functions which are quadratic inte-
grable together with its derivatives up to the order k. The is

defined below.

In section 3, we prove that problem (1.1) to (1.3) is Xk-approximately
controllable with respect to U if k = 0, 1, 2. Here U is the subspace of all
functions belonging to L2 ( o, T and vanishing on x E v.



Note that some arguments connected with the smoothness of the solu-

tions force us to suppose, in the case k = 2, that the controls from U are

equal to zero for t belonging to some neighbourhood of T. The case k ~ 3
is considered under the same assumption. But if k > 3 then approximate
uncontrollability of this problem is proved. Besides in section 3, we show a
method of construction of a sequence Uv E U such that the corresponding
yv(T , ~ ) approximate the prescribed vector field y(x) in X~, l~  2.
An analogous result on the approximate controllability is proved also for

impulse control, i. e. for controls having the form 6(t-to)v(x), where b (t -to )
is the Dirac measure and supp v C w c n, and for initial control with

support belonging to a subdomain ofn (section 4). A similar result is proved
for the case when the control is a density of external forces concentrated on
a hypersurface S ~ 03A9 (section 6). Here, we consider the case of a closed

surfaces S (for the Stokes system of an arbitrary dimension d) and the case
when S has a boundary (when d = 2). In section 5, problem (1.1) with

u(t, x) = 0, (1.3) and with the boundary condition

is considered, where v is a control. In this case some results on the

approximate controllability, similar to the results of section 3, are obtained.
We also study the problem of the exact controllability. For an arbitrary
initial condition yp (x ), we prove the existence of a control v having support
on the whole boundary [0, T] x aSZ, such that the solution (y, p~ of problem
(1.1), (1.3), (1.6) satisfies the equation y(T, x ) = 0 ( i. e. control v transforms
initial value yo to zero). This result is deduced from an analogous assertion
for the heat equation (see G. Schmidt [11]).
We remark that the problem of the approximate controllability for the

Navier-Stokes system with distributed control concentrated in a subdomain

C n is open at the present. E. Fernandez-Cara and J. Real [3] have
proved that the linear cover of the set ~ y(T, ~ ) ~ is dense in X ~ where

(y, p) is the solution corresponding to a control u and u runs through U.
Nevertheless, it is possible that because of nonlinear term the Navier-Stokes

system rests approximately uncontrollable in the sense of the definition

which was given above. Indeed, J. I. Diaz [2] illustrated with a semilinear
parabolic equation having a boundary control, that the presence of suitable

nonlinearity can imply the approximate uncontrollability of equation. In

section 7, we consider the Burgers equation which is connected with the

Navier-Stokes system more closely than any semilinear parabolic equation.



It is proved that the Burgers equation is not approximately controllable
with respect to a distributed control concentrated in subinterval as well as
with respect to a boundary control. This result is obtained by means of a
new estimate on a solution of the Burgers equation. This estimate shows

that the velocity of change of the positive part of the solution at a finite
distance to the left at the source of influence is bounded by a constant which
does not depend of the magnitude of the influence.

Note that one of results of section 3 was announced in [5].

2. Preliminaries

We recall the definition of functional spaces, used for the investigation of
problem (1.1) to (1.3). Set

is the closure of V in F~(~) = n 

where is the Sobolev space of functions with finite norm

where

be the orthogonal projection operator of space (L2 (S~)) d onto the space
We consider the operator A = -IIA in the space It is

known (see V. A. Solonnikov [12]) that A : : H~(SZ) -~ with domain

D (0) = is a self-adjoint positive operator and its eigenfunctions 



form an orthonormal basis in We denote the eigenvalues of operator
A by 0   a~  ~ . ~. For arbitrary a E IR, we introduce the space

Denote by R( f, g) the operator assigning to the functions f, g the solution
z of the Neumann problem

where n is the external normal to ~03A9, f , g satisfy the condition

and is the solution of problem (2.5) which satisfies the condition

We relate the operator II from (2.3) with the operator R from (2.5).
For arbitrary z E ~L2 (SZ)~ d the Weyl decomposition holds (see o. A.
Ladyzhenskaya [6], R. Temam [15]):

where IIz E p E Applying the operator div to both sides of

(2.6), we obtain that the function p is a solution of the Neumann problem
(2.5) with f(x) = div z, g(x~~ = (z, n) Hence,

where div z and (z, n) can be understood in the sense of distribution

theory. We shall use (2.7) only for smooth z, when div z and (z, n) Ian may
be understood in the classical sense.

We set



where D([0, T] x n) is the space of distributions defined on [0, T] x H.
The following known assertions hold:

THEOREM 2.1.2014 Let a E IR. Then for any yo E 
L2 (o, T there exists a unique solution (y, p) E Ya x Pa of
problem (1.1) to (1.3).

We apply to both sides of the first equation (1.1) the operator II to prove
the theorem in the case a ~ 0. Since II Vp = 0, we obtain the equation

Theorem 2.1 is proved for this equation as in the book by M. J. Vishik,
A. V. Fursikov [16, pp. 27-28]. If a  0 then theorem 2.1 is proved by the
methods of the book of J.-L. Lions, E. Magenes [10]. .

THEOREM 2.2.- Let a E IR, yo E E L2(0,T; a

(y, p) E Ya x ~a and a domain G belongs to ~ 0 , T ~ x Q. Then:

1) if u(t, x~ is infinitely differentiable for (t, ~) E G, then y(t, x) E

2) if we assume that u E L2(to, T ; H03B2) where a  ,Q, then y(t, x) E
C (to, T ; ; H~ ~ .

The first assertion follows from the results of V. A. Solonnikov [13], and
the second statement is proved as in M. J. Vishik and A. V. Fursikov’s book

[16, pp. 27-28].

3. Distributed control concentrated on a subdomain

We consider problem (1.1) to (1.3). Let 03C9 be a fixed subdomain of the

domain H and I be a fixed subinterval of [0, T]. We suppose that the
right-hand-side u(t, ~~ is a control and that

Obviously U(w, I ~ C L2(0,T; ; H~(SZ~~ . We assume that a subinterval

satisfies the condition



DEFINITION 3.1.- Let a > 0. Problem (1.1) to (1.3) is called Ha-

approximately controllable with respect to U(cv, I) if for any fixed yo E
the restriction y(T, ~ ) at t = T of a solution y of problem ~1.1~

to (1.3) runs through a dense set in when the right-hand-side u(t, ~)
runs through the space U(w, I~. .

Note that by (3.1), (3.2) and by the second assertion of theorem 2.2
the inclusion y(T, ~ ~ E holds and therefore definition 3.1 is

correct. If a E ~ 0 , 1 ~ ] then condition (3.2) is unnecessary, because the

inclusion y(T, ~ ~ E .FI« follows from the assumption u E L2 (0, T ; H~(SZ)~ . .

THEOREM 3.1. - Let I = ~ 0 , T when a E ~ 0 , 1 ~ ] and for a > 1 assume

(3.2). Then problem (1.1) to (1.3) is H03B1-approximately controllable with

respect to U(cv, I) .

Proof. - Firstly we consider the case when initial condition is yo = 0.
Let W be the closure in H« (S~) of the set of restrictions y(T, . ) at t = T of
solutions ( y, p) E Y~ x P~ of problem ( 1.1 ~ to (1.3), when the right-hand-
side term u(t, x ) runs through U (w , I ~ . We have to prove that W = 

Suppose the contrary. It follows from (2.4) that the space is the

conjugate space of H« with respect to the duality ( ~ , ~ ~ generated by the
scalar product in Therefore the assumption W ~ implies
the existence of ~o (~ ) satisfying the conditions

Applying the operator II from (2.3) to the both sides of the first equation
in (1.1) and taking into account that II~p = 0, we obtain the equality

Using this equality and (2.7), we can write down (1.1) in the following way

Let t E [0 , T ], x E 0 and ~~t, x) be the solution of the problem



where ~o is the vector field (3.3). Comparing (1.1) with (3.4) it is easy
to understand that (3.5)-(3.6) is the Stokes problem with the inverse time.
Hence, from theorem 2.1 there exists a solution ~(t, a*) of problem (3.5)-(3.6)
and, by theorem 2.2, ~(t, ~) E C°’° ([ 0 , T - E ~ x for arbitrary E > 0.

Scaling the first equation in (3.5) by the solution y of (3.4), ( 1.2), (1.3) in
the space L2 (0, T; ; (L2 (S~)) d , integrating by parts and doing other simple
transformations, we obtain by (3.3) that

It follows from (3.7) that the restriction ~(t, x) at w satisfies conditions

~(t, x) ~ ~(t, x) E (H~(w)~1, for almost all t E I. Therefore we
obtain as in (2.6), (2.7) that

where R is operator (2.5).
Denote w(t, ~} _ ~). We apply the Laplace operator å to the

both sides of the first equation in (3.5). Then taking into account that
OR(o, g) = 0 in virtue of (2.5), we obtain the equation

Applying A to (3.8), we obtain the equality

The solution w(t, x) of parabolic equation (3.9) is analytic with respect
to variables x, when t E (0, T). Hence it follows from (3.10) that



This equation and the second equality in (3.6) imply that ~(t, x) = 0,
t E [0, T], x E S~. Therefore = 0 which contradicts (3.3).

Let now the initial condition yo E be an arbitrary vector field.
We write the solution of problem (1.1) to (1.3) as follows:

where (y1, p1) is the solution of (1.1) to (1.3) with u = 0, and (z, q) is the
solution of (1.1) to (1.3) with yo = 0. We have proved earlier that z(T, . )
runs through a dense set in Hence the equality

shows that the theorem is also proved for 0. D

We consider now the case, when control u(t, ~~ runs through the space

Here is characteristic function of subdomain cv C S~:

I is an interval satisfying (3.2) when a > 1 and I = ~ 0 , T ~ for a E ~ 0 , 1 ~ .

COROLLARY 3.1. Let 0. Then problem (1.1) to (1.3) is Ha -

approximately controllable with respect to set (3.11).

Indeed, since the embedding U((03C9,I) C Ul (w, I ) holds for spaces (3.11),
( 3.1 ) then corollary 3.1 follows from theorem 3.1.



LEMMA 3.1. - Let X ~ be space ~~.1~~ or ~1.5~ and H~ be space ~,~.1~~.
Then the following assertions hold:

a) the identity X ~ = H~ holds when k = 0, 1, 2;

b) if k > 3 is natural then H~ is a closed subspace of X ~ and H~ does
not coincide with X ~ .

The norms of spaces H~ and X ~ are equivalent on .

Proof . The correctness of assertion a~ is well known (see for instance
R. Temam ~15~~. Assertion b) is proved by induction by means of the
following chain of identities

Indeed, the first identity follows just from definition (2.4) of H«, the
second one is true by the inductive assumption and definition (1.5) of 
The theorem on smoothness of solutions of steady Stokes system (V. A.
Solonnikov [14], R. Temam [15]) implies the third identity and the forth
one follows from (1.5). The equivalence of the Hk and Xk-norms is proved
in M. I. Vishik, A. V. Fursikov [16, p. 124~ . CJ

The main result of this section follows from lemma 3.1.

THEOREM 3.2. - Let I = (0 , T’~ when k = 0, 1, and I satisfies (3.2) for
k > 2. Then problem (1.1) to (1.3) is Xk-approximately controllable with
respect to U(w, I) when k = 0, 1, 2 and is not Xk -approximately controllable
when k > 3. The analogous assertion holds if we change the control set

by U1(w, I~.

Proof. - The assertion follows from theorem 3.1 and lemma 3.1. 0

We show how it is possible to construct solutions of an approximate
controllability problem. Consider the following extremal problem.



To minimize the functional

when the pair

satisfies conditions (3.4), (1.2), (1.3). Here y E Ha is the datum which must
be approached, E > 0, a > 0 and I = ~ 0 , T ~ when a E ~ 0 , 1 ~ and satisfies
(3.2) for a > 1.

PROPOSITION 3.3. There exists a unique solution uE) E Y0 x
U(w, I) of problem (3.13), ~3.11~~, ~3.1~~, ~1.,~~, ~1.3~.

The proof is carried out by well know methods (see, for example J.-L.
Lions ~8~ , A. V. Fursikov ~4~ ) .

THEOREM 3.3. - Let uE) E Y~ x U(w, I) be a solution of (3.13),
~3 .1 l~ ~, ~3. l~ ~, ~1. ~~, ~1. 3~ . T h e n

Proof. - In virtue of theorem 3.1 for any 03B4 > 0 there exists a pair
(~~) C ~ x which satisfies equalities (3.4), (1.2), (1.3) and
condition

We choose é > 0 such that

Since (yE, uE) is the solution of the extremal problem, then it follows from
(3.13), (3.15), (3.16) that



4. Impulse and initial controls

We consider now the case of impulse control. Let us recall that a control
u(t, x~ is called impulse if it is written as follows:

where 6(t - to) is the Dirac measure concentrated at to. We suppose that

where w is a subdomain of S~.

PROPOSITION 4.1. ~et a > 0, tp E (0, ~~ . . Then problem ~1.1~ to (1.3)
is H03B1-approximately controllable with respect to the class of functions (4.1),
(~.~~.

Proof . The proof follows as in theorem 3.1. Instead of (3.7), we obtain
equality

Equality (3.10) where t = to follows from (4.3). By means of (3.10),
(3.9), we obtain the equation = 0 as in theorem 3.1. D

Proposition 4.1 and lemma 3.1 imply the following theorem.

THEOREM 4.1.2014 Let t0 ~ (0, T). . Then problem (1.1) to (1.3) is 

approximately controllable with respect to the control set (4.1)-(4.2) when
k = 0, 1, 2 and it is not Xk-approximately controllable with respect to the
same control set when k > 3.

Let us study the case of initial control when the control is included into
the initial condition. This problem is similar to the case of impulse control.
We consider the Stokes problem (1.1) with the following boundary and
initial conditions

where Yo ( x) E is a fixed vector field and E is a control (here
UW is space (4.2)). We suppose about the right-hand-side u (t, x ~ in ( 1.1 }
that u E ~2 (o, T; Ha(SZ)} is fixed and



We need the condition (4.5) to prove Ha-approximate controllability
when a > 0 is arbitrary. If a E [0, 1] the condition (4.5) is unnecessary.

PROPOSITION 4.2. - Let a > 0, y° E u E L2 (o, T and

u satisfies (4.5). The problem (1.1), (4.4) is H03B1-approximately controllable
with respect to the class UW in ~4.,~~.

Proof. - We reduce the proof to the case = 0. By analogy with
theorem 3.1, we obtain instead of (3.7) the equality

which is similar to (4.3). As in theorem 3.1, 4.1 it follows from this equality
that = 0. D

Proposition 4.2 and lemma 3.1 imply the following theorem.

THEOREM 4.2.- Let the conditions of proposition l~ .,~ hold. Then

problem (1.1), (4.4) is Xk-approximately controllable with respect to 

when k = 0, 1, 2 and is not Xk-approximately controllable when k > 3.

5. Boundary control

In this section we investigate approximate and exact boudary controlla-

bility of the Stokes system. Let r be an open set on the boundary an of
domain H. Firstly, we study the problem of the approximate controllability
of the Stokes system when the Dirichlet boundary condition concentrated
on r is taken as a control. Consider problem

where HO(O) is a fixed initial condition, w is a control and

supp w E ~ 0 , T] x r. The following identity is a necessary condition of

solvability of problem (5.1)-(5.2):



Introduce the space of controls

where I C [0, T] is set (3.2). The proof of the existence and uniqueness of
solutions of problem (5.1)-(5.2) for arbitrary w E W(F, I ) is obtained easily
by reducing it to the case of zero boundary conditions, i.e. theorem 2.1. Q

THEOREM 5.1.2014 For arbitrary a > 0 problem (5.1)-(5.2) is Ha-

approximately controllable with respect to controls set (5.4).

Proof. - It is enough to consider the case = 0. Besides, we can

suppose that the boundary of F is C°’°-manifold. Indeed, if it is not

so, we can change in (5.4) the set I‘ by r1 C I‘ with ar1 E Coo. Let

w E W(r, I) be a control and ( y, p) be the corresponding solution of problem
(5.1)-(5.2). By virtue of (3.2), the pair (y, p) is a solution of (5.1) with the
zero Dirichlet boundary condition when (T2, T), and therefore by theorem
2.2 on smoothness of solutions the inclusion y(T, . ) E Ha (SZ) holds. We set

W = ~y(T, ~ ) (y, p) is solution of (5.1)-(5.2) when w E W(r, I)} .
The existence of a nonzero vector field W1 C H-a follows from the

assumption that W is not dense in Ha. . We consider problem (3.5)-(3.6)
with this initial fonction ~o’ Scaling (5.11 ) by the solution § of problem
(3.5)-(3.6) in (L2 (~ 0 , T x we obtain similarly to (3.7) that

where we use the notation q = .R {U , n) for brevity. It follows

from (5.5) that



This equality and (5.3) involve the existence of such constant A, that

Let w E IRd be a domain which satisfies conditions :

where the line above means the closure of domain. We define the open set

by formula 
____

By (5.7), this set is connected in Rd if H posseses this property. We

suppose about 03C9 that the boundary of is a Coo manifold. The

existence of such domains 03C9 follows from the assumption aI‘ E C". We
define the function in the cylinder [0, T] x by formula

Let ~,x) C (c~([0, T] x n~)) be an arbitrary function satisfying
conditions

Integrating by parts with respect to x and taking into account (5.9), (5.6),
(3.5), we obtain that



These equations involve the identity

which is understood in the sense of distributions. Here is the

characteristic function of the set H (see (3.12)). It follows from (3.52),
(3.62), (5.9) that div z(t, x) = 0 when x E Applying the operator div
to the both parts of (5.10), we obtain that

In accordance with the definition of the function Xn the equation

holds. It is easy to deduce from this identity and (5.11) that

Hence by (5.10), the equation

holds. Since by (5.9), the equation z(t, a*) = 0 takes place for x E w then we
have by (5.12) that = 0 and therefore the equality = 0 holds. D

By theorem 5.1 and lemma 3.1, we obtain such proposition:

COROLLARY 5.1.2014 Problem (5.1)-(5.2) is Xk-approximately control-

lable with respect to (5.4) when k = 0, 1, 2 and it is not Xk-approximately
controllable for k > 3 with respect to the same set of controls.

Now we will prove a result on the exact boundary controllability of the
Stokes problem (5.1)-(5.2) which is a simple corollary of an analogous result
for the heat equation. The general problem of the exact controllability con-
sists in the construction of a boundary control w such that the component
y of the solution of problem (5.1)-(5.2) is equal to a given function in
the prescribed time T : y(T, ~~ = 



Since the Stokes system can not be inverted with respect to time, then the
solution of the general problem of the exact controllability is very difficult,
because of the necessity of describing precisely the space ~ y(T, ~ ~ ~ through
which the solutions of problem (5.1)-(5.2) run. We solve this problem for
a concrete function which certainly belongs to {y(T, ~ ~} namely, for

= 0. We introduce the following functional spaces:

where ~y is the operator of restriction of a function y(t, x} E fi to 0 , T ~ .

THEOREM 5.2. Let yQ E Then there exists a boundary value
w E W such that the component y of the solution (y, p) E Y x P~ of problem
~5.1~-~5.~~ satisfies condition

Proof.- Let 03A91 E IRd be a domain with C1-boundary ~03A91 which

contains 0 : 0 C Hi. We prolong onto 03A91B03A9 by the equality yp ( x = 0
for x E 03A9. It is known (see, G. Schmidt [11]) that there exists a vector-
function u(t, x) E L2 (0, T ; satisfying the equations

For every t e [0, T] the Weyl decomposition for the function 
gives

where y = 03A01u and 03A01 : (L2(03A9))d ~ H0(03A91) is the operator of orthogonal
projection on Substituting the decomposition (5.15) into the first
of equations (5.14), we obtain that (5.11) holds with Vp = - Oq).
Besides, (5.13) follows from (5.143), (5.15). Thus if we take w = iy then
all the assertions of theorem will be fulfilled. 0



6. Control on a hypersurface

We develop the results of section 3 narrowing the support of the control
u(t, .r). Les us consider a hypersurface S as a support of u and begin from
the case when S ~ 03A9 C IRd is a closed C°°-manifold. Suppose that in (1.1)
to (1.3) the control u has a form

where b~,S, ~ ), )/an are Dirac measure concentrated on the surface
S and its derivative with respect to the external normal to S. The value

of distribution (6.1) at test function § E ([ 0 , T ~ x ~ ) d is defined by
the formula

where Q2 are given vector-functions and

We denote by U(S, I) the set of controls having form (6.1), (6.2), (6.3).

THEOREM 6.1.2014 The Stokes problem (1.1) to (1.3) is H03B1-approximately
controllable with respect to U(S, I) for arbitrary a > 0.

Proof. - As in previous theorems we can limit ourselves to the case

yo = 0. Similarly to theorem 3.1, we denote by W the closure in of

the set ~ y(T, ~ ) ~ if (y, p) E Y~ x Pa is a solution of problem (1.1) to (1.3)
with right-hand-side running through U(S, I ). Assuming that the relation
W ~ holds, we denote by ~o a vector function satisfying (3.3) and
by x) the solution of (3.5)-(3.6). We obtain by (3.7), (6.1), (6.2) that



for any 03B2i satisfying (6.3). Therefore

Denote a domain, bounded by a closed surface S. We set

and R is operator from (2.5). By (3.5), (6.4), (6.5) the following equalities
hold in the sense of distributions:

Applying the operator div to both sides of (6.61), we obtain by (6.62) that

and therefore the restriction of the normal component of vector function h
on to the surface S is defined and by (6.52) the equality

holds, where n is the vector field of normals to S. It follows from (6.53) that
Oq(t, x) = 0, ~ E S~ and in virtue of (6.52), (6.7) the identity 0

holds. Thus q(t, x) = const for (t, x) E I and hence by Aq = 0 we
obtain that Vq(t, x) = 0 for (t, x) E I x H.

Therefore identity = 0 follows from (6.52), and this means that
(6.61) is a heat equation when (t, x ) E I x Q. This fact and (6.51) imply
the identity

Since Vq = 0 for such then = 0 also. The equality ~o = 0
follows from the last identity. 0

We consider now the case when the hupersurfaces S is not a closed

manifold and we suppose for simplicity that the dimension of the Stokes

system equals two. Thus let 03A9 E IR2 be a bounded domain with C"-curve
S which is placed inside the domain H.



As it turns out, it is more convenient in this situation to take as unknown
function the current function F(t, r) which is connected with velocity
( yl , y2 ~ by the relations

Assume for simplicity that 03A9 is a simply connected domain. In this case
the current function F is defined by solenoidal vector field up to an arbitrary
constant. Let v (t, be a current function corresponding to the density
of external forces u:

The first of the equalities (1.1) is in reality a system of two equations.
Applying to the first equation of this system and to the

second one, adding the resulting equations and taking (6.8), (6.9) into
account we obtain the equation for the current function:

Let us deduce the boundary conditions for (6.10). It follows from (6.8),
(1.2) that

where n is the field of external normals to r is the tangent toward
a~2 field. The second equality implies that F ~a~ = const and since F is
determined up to a constant then we can take = 0. Thus we have the

following boundary and initial conditions for (6.10):

where Fo is an initial condition for the current function.

Let [ 0 , 1 ] 3 ~ -i 5’(.1) = S be a smooth curve disposed in SZ. We assume
that the current function of external forces density u has the form (6.1) and
belongs to the controls set U(S, I~ which is defined by (6.1), (6.2), (6.3)
(when d = 1 in (6.3)).

Let us recall that



o 2
THEOREM 6.2. - Let Fo E W2 (S~) and let v be function (~.1~. Then

problem ~6.14~-(6.11~ has a unique solution F(t, x) E L2 (0, T ; W2 ~+2 (S~)) ,
E L2 (0, T ; WZ ’~(S~)), , ,Q > 3/2, and F(t, x) is infinitely differen-

tiable when x E S~ ~ S, t E I and when x E SZ, t ~ I. Besides, the vector

field y defined in (6.8~ belongs to with arbitrary a > 0.

Proo f . We write the solution F of problem (6.3), (6.11) in the form

where Fl is the solution of problem

which is defined for (t, x ~ E [0, T] x IR2,

and F2 is the solution of problem

We apply the Fourier transformation to both sides of (6.12) with respect
to r:

where

is the Fourier transformation of g and Fi is the Fourier transformation of

Fl. Since g(t, .c) has a compact support with respect to x, then g(t, ~~ is an
analytic function with respect to ~. Hence, after dividing (6.14) b~ - ~~ ~ ~,
we obtain the Fourier transformation of heat equation



Solving this problem, applying the inverse Fourier transformation and
restricting the obtained function to [0, T] x H, we shall have that

and Fl is infinitely differentiable outside the support of u and, particularly,
in a neighborhood of [0, T] x 

Problem (6.13) has a unique smooth solution. It is possible to prove this
assertion using the methods of [1] for example. 0

We denote by G the set of fields u = (u1, u2) defined in (6.9) where v is
a function of form (6.1) to (6.3) and prove Ha-approximate controllability
of Stokes problem (6.10)-(6.11) with respect to G.

THEOREM 6.3. - The Stokes problem (6.10)-(6.11) is H03B1-approximately
controllable u,ith respect to G in the case of dimension d = 2 and arbitrary

Proof. - It is sufficient to consider the case yo = 0. Let W be closure
in of the set ~ y(T, ~ ) ~ , where ( y, p) is the solution of problem ( 1.1 ~ to
(1.3) with density of external forces u E G. Assuming that Her. as
in previous theorems, we choose a non zero function ~~ E H-a such that

= 0, V y(T, ~ ~ E W. In a vector notation We

construct the differential form 03C602 dx1 + dx2 which is closed because 03C60
is solenoidal vector field. Since n is a simply connected domain then this
form is exact, and there exists such distribution ~~ ( ~ ~ that

The function is defined up an arbitrary constant and is a current function
for the vector field ~~. We consider the problem

which is adjoint to (6.10)-(6.11) and prove that it has a solution.



Note that problem (3.5)-(3.6) has a unique solution x) for ~~ 
and x is an infinitely differentiable function for t  T .

By means of 03C6 we construct another function x) E when

t  T, such that

Obviously, the function

satisfies (6.17), where a E an and the integral is taken along an arbitrary
curve 1 ~ 03A9 jointing the points a and x. Defining 03A80 we can choose a
constant such that limt~T 03A8(t, c) = in the sense of distributions. The

constructed function is, obviously, the solution of problem (fi.16).

Scaling (6.16) in L2 ~~ 0 , T] x n) by function F which is a solution of

(6.10)-(6.11), we obtain similarly to (3.7) that

It follows from (6.18), (6.2) that

Besides, by (6.16) is a solution of the inverse heat equation. Using the
analyticity of x) with respect to x when t ~ I, we can deduce from
(6.19) x) = 0. Hence, taking into account (6.162) we obtain that

x) = 0 and by (6.163), (6.15) we have ~o = 0. 0



7. On the approximate uncontrollability of the
Burgers equation

In this section, we show that the Burgers equation is not approximately
controllable on arbitrary bounded time intervals. Let us consider the

Burgers equation

where a > 0, and T > 0 are arbitrary fixed numbers. We suppose that a
solution y(t, x) satisfies zero boundary and initial conditions

Assume that u(t, z) E L2 ([ 0 , , T ~ x ~ 0 , a ~ ~ and that for any t E ~ 0 , T ~

It is well-known that for an arbitrary u E L2 ([ 0 , , T ~ x 0 , a ~ ~ there

exists a unique solution y(t x~ E L2 ~0, T ; W2 (4, a)) of problem (7.1)-~7.2).
It is possible to see, that ay(t, x)/at E L2 ~~4, T~ x (0, a)~ . We deduce one
estimate for the solution y(t, ~~ of problem ~7.1~-(7.2~ which simply implies
the uncontrollability of this problem.

LEMMA ?.1. Let u E L2 ~ ~ 0 , T ~ x ( 0 a ~ ~ satisfy condition (?’, 3~,
and let y(t, ~~ be the solution of problem ~?’.1~-(7.~~. Denote y+(t, x) =

max(y(t, x~, 0~ . Then for arbitrary N > 5 the estimate

holds where b is the constant from (?’,3~ and a(N) > 0 is a constant,
depending on N only.

Proof. - We multiply both sides of (?.1 ~ by (b - ) and

integrate them with respect to x from 0 to b. Integrating by part in the
second term of the left side of the obtained identity we shall have



It follows from the theorem on the smoothness of a solution of the Burgers
equation that E C°° ~~0, T) x (o, a~~. Denote y- = Then

The following identities are proved in an analogous way

Using these equalities and integrating by parts in the last two terms of

equation (7.5), we obtain

By the Holder inequality

Using the Young inequality, we shall have

where a(N) is a positive constant, depending on N > 5 only. Substituting
(7.7)-(7.8) into (7.6) we obtain (7.4). D



THEOREM ?.1.- Let T > 0 be an arbitrary finite number. Then problem
~7.~1-~7.~~ is not L2(0, a)-approzimately controllable with respect to set of
controls u E L2 ((0, T) x (0, a)) satisfying (7.3).

Proof. - Let y(x) E L2(0, a), y(x) > 0, y be a solution of problem
(7.1)-(7.2) and T > 0. Then

By the Cauchy-Bunyakovskii inequality, we have:

In virtue of (7.4) for any T > 0 the inequality

holds. Let T > 0 be fixed and y(x) E L2(0, a) satisfies condition

Then it follows from (7.9) to (7.12) that for any control u E L2 ((0, T) x
(0, a)) satisfying ( 7.3 ), the solution y of problem (7.1)-(7.2) satisfies inequal-
ity

The inequality implies the approximate uncontrollability of problem (7.1)-
(7.2). D



Now we consider the Burgers equation with boundary control u:

THEOREM 7.2. - Problem (7.13)-(7.14) is not L2(0, b)-approximately
controllable with respect to the control space L2(0, T) for arbitrary T > 0.

Proof. - Estimate (7.4) holds for solution y of problem (7.13)-(7.14)
and its proof does not differ from the proof of lemma 7.1. We obtain the
assertion of the theorem by means of this estimate after repeating the proof
of theorem 7.1 word by word. D
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