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Non-uniformly hyperbolic billiards(*)

ROBERTO MARKARIAN(1)

Annales de la Faculte des Sciences de Toulouse Vol. III, nO 2, 1994

R.ESUME. - On donne une caracterisation de 1’hyperbolicite (non uni-
forme) ou comportement chaotique de fonctions dinerentiables, avec sin-
gularites, en termes de formes quadratiques de Liapounov. Une analyse
generale des courbes convexes desirables comme composantes regulieres
de la frontiere d’un billard plan chaotique est aussi obtenue. On prouve
que tout arc convexe suffisament petit peut faire partie d’un tel billard.
On donne des descriptions de classes tres amples de billards plans avec
ce type de proprietes ergodiques. On montre qu’un arc de circonference,
plus petit qu’une demi-circonference, peut etre C4-perturbé sans perdre
le comportement chaotique des billards de Bunimovich.

ABSTRACT. - We give a characterization of (non-uniform) hyperbol-
icity or chaotic behavior of smooth maps with singularities in terms of
Lyapunov quadratic forms. A general analysis of focusing curves that
are suitable as regular components of a chaotic plane billiard is obtained.
It is proved that any sufficiently small focusing arc can be part of the
boundary of such billiards. We provide descriptions of very large classes
of plane billiards with these ergodic properties. We show that less than a
half circumference can be C4-perturbed keeping the chaotic behavior of
the Bunimovich-type billiards.

0. Introduction

Let M be a smooth compact d-manifold, v a probability measure
absolutely continuous with respect to the Riemannian volume measure, N
a subset such that v(N) = 0, H = M B N, and let f : H --~ H be the

restriction to H of a v-invariant Cr diffeomorphism defined on an open
subset of M, r > 2.
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Motivated by billiard problems, one imposes certain conditions on the
derivatives of f (see Section 1, and Katok &#x26; Strelcyn [10, Part I and V])
and call such a f a discontinuous dynamical system or a smooth map with
singularities. In N the map is not defined.

It is well known that the existence of non zero Lyapunov exponents for f
allows one to construct locally invariant submanifolds. If all Lyapunov expo-
nents are different from zero in A, a non-uniform hyperbolic decomposition is
obtained at each point of A and (if A has positive measure) there is a count-
able number of invariants sets Ai of positive measure ~~ = 

such that f r Ai is ergodic. See, for exemple, Pesin &#x26; Sinai [20] for a survey
of such results.

So, the study of Lyapunov exponents in sets of measure one for a

given smooth map with singularities is a reasonable approximation to the
knowledge of its ergodic properties. We will say that such dynamical
systems have Pesin region of measure one, or are non-uniformly hyperbolic
or that they have chaotic behavior, if the set of points where all the

Lyapunov exponents are different from zero has measure one.

In the words of Pesin himself [19] "there is a deep informal connection"
between the results on dispersing billiards of Sinai [22] and his own abstract
theory. Supporting Pesin’s remark, there is the fact that the works of Sinai

(and Bunimovich) were based on the study of ergodic properties of the
geodesic flow on manifolds of negative curvature. See the introduction of

Markarian [18]. .

In our previous paper we combine the methods of Lewowicz to study
hyperbolic properties considering the asymptotic behavior of some quadratic
forms, with the point of view given by geometrical considerations concerning
the way in which geodesics get apart on a manifold (norm of Jacobi fields).

In this work we give a characterization of non-uniform hyperbolicity in
terms of quadratic forms. In particular, the chaotic behavior of a smooth
dynamical system with singularities implies the existence of an increasing
non degenerate quadratic form. So it becomes natural to look for these

quadratic forms in order to try to find all the focusing curves that can be
part of the boundary of a chaotic billiard.

Then, aside from the geometrical motivations, we analyze directly, in
terms of basic elements of the boundary curves, what the coefficient of
adequate quadratic forms should be in order to have chaotic behavior. The
main result we obtain in this direction is that any short focusing arc can



be a component of the boundary of a chaotic billiard. This allows us to

describe very large classes of plane billiards with these ergodic properties.

The present paper is organized as follows. Section 1 consists of statements
and proofs of theorems that characterize non-uniform hyperbolicity in terms
of quadratic forms.

In Section 2, we give the elements necessary to study billiards in R2, and
the geometrical motivations that allow us to understand better why we use
certain quadratic forms in our previous paper.

Section 3 is devoted to a general study of focusing curves that are suitable
as regular components of the boundary of a billiard with non-uniform
hyperbolicity. It is proved that any sufficiently small focusing arc can be

part of the boundary of such billiards.

Finally in Section 4, we show that an arc of circumference with length less
than half that of the circumference may be C4 perturbed keeping chaotic
behavior of Bunimovich-type billiards, which best known example is the
stadium.

It seems that a more detailed study of the structure and length of the local
manifolds whose existence derive from Pesin theory is the natural way to
treat the ergodicity of billiard systems with chaotic behavior. And it would
be very interesting to apply our methods to study non-uniform hyperbolicity
of other physical systems: billiards with non ellastic hits, motion of particles
on potential fields, etc. See Sinai [21], Kubo [12] and Baldwin [2].

1. . Characterization of non-uniform hyperbolicity of smooth maps
with singularities in terms of quadratic forms

In this section let M, d, v, N, H, f be as in the Introduction, d ~ 2,
We will assume also that

a condition that is needed to apply the ergodic multiplicative theorem of
Osedelets. 

’



We say that x is a regular (Osedelets) point of f if there exist numbers
> 03BB2(x) > ... > and a decomposition TxM = 

.... e such that

for every 0 ~ cv E and every 1  i  m(x). Ej(x) is the proper
subspace of the Lyapunov exponent . The theorem of Oseledets

establishes that the set of regular points has measure one.

E(/) will denote the Pesin region, that is the set of regular points that
have only non zero exponents. If = 1 we will say that the map f
(or the dynamical system defined by it) is non-uniform hyperbolic or has
chaotic behavior.

B : T M ~ IR is a quadratic form on M if Bx : TxM ~ IR is a quadratic
form in the usual sense. If f : M --~ M is a diffeomorphism we denote by

(pull back of B by f ) the quadratic form = B is

non degenerate on a subset N C M if B~ is non degenerate for every z E N,
that is, the associate matrix of B~ in any base has non zero eigenvalues. B
is positive in N if > 0 for every x E N and every non zero u E 

For any quadratic form B on the orbit of a? E M we define

For a; let be

THEOREM 1. - Let B : TM - IR a quadratic form such that:

(i) for y E H, TyM = Ly ~ Ky with B(v)  0 (resp. > 0) for
every non zero v E L~ (resp. Ky) and 0  dim Ly  d with

dim = dim L~ for every n E ~ and every x E H ;

(ii) B~ depends measurably on x, and is non degenerate in H;

(iii~ P~ = - is positive for every x E H .

Then = 1 and for every x E 



Remarks

. A slightly stronger version of the theorem can be proved in the same way:
instead of condition (iii) v~e assume that P is positive eventually: P > 0;
and for almost every x E M there exists k = E IN such that

for every non zero u E This fact is pointed out in part (b) of the
proof.

. Hypotesis (i) is verified if, either:

(1) M is a 2-manifold, since Sx and U~ are non void subspaces and then
dim 5’~ = dim U~ = 1, see Markarian (18~; or

(2) B is continuous and non degenerate in M, and M is connected.
In this case the non degeneracy of B ensures the decomposition
TyM = Ly ~ Ky and the dimension of Ly depends neither on the
special choice of the decomposition nor on the point y E H.

THEOREM 2.2014 If r > 2 and v(E(f)) = 1, there ezists a quadratic form
B : TM -~ IR such that conditions of Theorem 1 are verified.

These theorems are ergodic versions of Theorem 2.1 in Lewowicz [14]
where it is proved that the existence of a continuous quadratic form B
verifying (iii) is equivalent to f being Anosov. Also a simple version of
Theorem 1, was proved in Markarian [18].

_ Proof of Theorem 1

(a) For n > 0, z E M, let Wn E be such that  0. Then

 0 and {(f-n)’wn} C TxM has a convergent subsequence,
say, to 

If > 0 for some N > 0. > 0 for nj > N and

the same inequality is valid in some neighbourdhood of to which

some wnj must belong, nj being large enough.

(We have used repeatedly that P > 0.)

Then  0 and w~ E So S~ contains a one dimensional

subspace. Similarly for U~ .



(b) Define, for each real a > 0,

Then, if 0  b ~ c, Mc ~ Mb, Ec ~ Eb and Fc ~ Fb. Also

The only non trivial fact here is the last equality and this is a consequence
of the following observation: if z E H B ~a>0 Fa we can select a sequence
Un E UZ. = 1, n > N with (1/n~ Bz(un) and for an
accumulation vector u of ~un,~, Pz(u)  0. If P is positive eventually we
can work instead of Ea and Fa with the sets

respectively, and study the points which have infinite iterates in these sets,

~ 

as it is done in (c) and (e).

(c) As each a? E H is in some Ec applying the Poincaré Recurrence theorem
we obtain an increasing sequence such that { x ) E E~, and for
u ~ Sx we have

So, if I 7~ 0 is concluded that -~ which is a

contradiction (B  0 on S). Then, if u, v E À, JL E IR, we have



This implies +  0 since otherwise

which contradicts the previous statement. Then S’~ (and are subspaces
of 

(d) Consider now the sequence TxM and a limit

subspace Loo obtained in the following way: if ..., is an orthonor-

mal basis of by compacity, there exists a sequence np - 

such that limp_..,., +~ = We have that , ... is linearly inde-

pendent and Loo is spanned by its vectors. Now if 1  i  k, for all n  0,
we have

(It was used repeatedly that B -  0, and that E 

So, Loo C (and Koo C and dim S~ > k(dim U~ > n - k ) . Sinces

Sx ~ Ux = it is concluded that Sx ~ Ux = TxM for each x E H.

(e) Let z E D = Fa n Ma for some a > 0. The measure of D is as large as
we need. For u E we have

and if fnk (z) E D for an increasing sequence no = 0, then

Since , E Ma, finally we have



Now, if x is a regular point of f and

it follows that

for 2c E D with v(D) > v~D). The existence and positiveness of the last
limit derives from a standard application of the theorem of Birkhoff to ,

the characteristic function of D: if

v-almost every x E H, then

and as xD ( y~  1, y E D it follows that > 0 for x E D with

v(D) > v(D).

(f) Now, if u = E vi E from (e) it follows that

where j is the smallest index I such that vi # 0. Also, if s = wi e Sx,
Wi E Ei(z), 

_

where r is the largest index i such that 0. So, ifvl E = u -~- s,
the definition of Lyapunov exponents and some elementary properties of

log z permit to deduce that



Also

So either u or s must be zero and coincides either with or

with a,. (x), and all the Lyapunov exponents are different of zero.

(g) This argument also proves that

The statement of the theorem then follows. D

Proof of theorem 2

(a) We will use Lyapunov charts (Pesin [19]) in the version of Ledrappier
&#x26; Young [13, Section 2 and Appendix], we define

These four numbers are invariant along orbits and u ( x } + s ( x } = d if
a- E ~ ( f ) . For each .~ E IN , let be

0393l is a measurable and invariant set. For z) E IRu x IRs, let be

where !! and !! ’ are the euclidean norms on and R~ respectively.
We will omit the subscripts in these norms. The closed disk in of radius

a centered at 0 is denoted by R(a) = x There exist

a measurable function A : E(/) 2014~[1~ oo), and an

embedding ~ : ~(A(~)’~) 2014~ M such that if /a. = ~f~~ o f o ~~ : : Ux 2014~

!7~~B (connecting map), ~ G then for each z G I/ we have

From here on we will omit the z ero in .



(b) Then, if L = > 1, we have

and every n E IN . . So, if w = vi + v2 v2 ~ IRs, let for example, be

I = , for consider n > 0 (if I I zv I I = ~v2~ > ~v1~ we must
take n  0). Then

If N,~ is such that LN~ - > ~, we have proved that there ezists a
measurable and invariant function N : -~ IN defined by = N,~ if
~ E such that

either for n > or n  

(c) if v(E(,f )} = 1 and B is a measurable quadratic form on M such that
P > 0 on E( f ~, then

(c2 ) B is non degenerate.

Actually, for every v E E~ B ~0~, we have -~ o. So  0

since otherwise

which is a contradiction because as (x) E Ma for some a > 0 and an
increasing sequence no = 0 (Poincaré Recurrence Theorem), we
have > . Now , if for some x E ~~ f ) and some



0 ~ w E TxM we have + w) = (in this case B is degenerate),
then for any v E E~ and every 0 ,~ a E IR,

and so the subspace generate by E~ and w intersects trivially Ex . Thus

and as B(w) = 0, it follows that w = 0.

(d) If : H --~ IR and N : H ~ IN are measurable functions, then 9i

is a measurable function.
The proof of this fact is standard.

( e ) Obviously, = . If x ~ E(f) let Bxw = 0 for every
w E and for each x E define

whose measurability follows from (b) and (d).

Differentiating the condition of fx it follows that D~- ~ f~ = D,fx D~~ 1,
then

This number is bigger than either or II depend-
ing on the cases of the result in (b).

(f) So we can apply (c), and and ~iii~ in the statement of the theorem
are proved. Finally, (i) follows from (ci) and the invariance by f’ of the
dimension of the proper subspaces in Oseledets decomposition. 0



2. Plane billiards. Some known results

A plane billiard is the dynamical system describing the free motion of
a point mass inside a bounded, connected region of the plane, with elastic
reflections at the boundary. This consists of a finite set of curves 

r > 1, with curvature bounded. The regular components of the

boundary, 8Qi = 8Qi ~ 8Qj can have positive (focusing components),
negative (dispersing) or zero curvature (neutral). If n(q) is the unit inward
normal in q E 8Qi then the parametrization q(s) and the curvature K(s),
where s is the arc length of the component 8Qi, are defined by

Let x be the natural projection from the tangent bundle to R2. . Following
(Cornfeld et al. [8]), we define the set

Fig. 1

Given xi = (q1, v1) E M1, Tx1 (if defined) is obtained moving forward in the
billiard surface, in the direction vl, a distance (time) ti till the intersection
with 8Qj in q2. ’Formally Tx1 = (q2, v2) where



Let N C Mi be the set of points where T~ is not defined or not continuous
for some k E IN . . See figure 2, where = Mi B N. .

Fig. 2

The billiard transformation T : H -~ H is measurable, bijective, C~ and
v-measure preserving. As usual dv = ds d8 cos 8, normalized. The proof
that T verifies the conditions on the map f of Section 1 is given in details in
Part V (Plane Billiards as smooth dynamical systems, by J. M. Strelcyn) of
Katok &#x26; Strelcyn [10]. In particular, to apply Corollary 4.1 and Theorem
5.1, it is needed for ~i to be C2 and for K to be uniformly bounded.

T is a discontinuous dynamical system (or a smooth map with singular-
ities) if, for example, either a~~ is real analytic or C3 with non vanishing
curvatures. These conditions are sufficient to apply Pesin’s theory to the
billiard transformation T.

A wave front is given by the curve (q ( s ) , v ( s ) ) in M1 and so an element
in the tangent space in z E Ml, z = (q(0) v(0)) is

In higher dimensions v’ must be replaced by the covariant derivative along
q~s~. . .



Let be:

s1, s2 the arc length of ~Qi, ~Qj, in neighbourhoods of q1, q2,

respectively (fig. 1);
= q1(s1) + t1(s1)v(s1), the point evolution of a wave front;

Kj(sj), the curvatures in 
the angles of with n(qj(sj)); ;

J = 1, 2.

If the variable ( . ) is not indicated, it means that we are working in the base
point; for example K2 = K2 (s2 (0~~ . .

It is simple to prove the following formulas where

These expressions correspond to Lemma 2.3 of Sinai [22] adjusted in
Lemma 3 of Bunimovich [3], and are important for their construction of
locally contracting and expanding fibres.

If Mi is parametrized by (s, {3) instead of ~s, 8), where ,Ci is the angle
formed by a fixed axis with v, we have

If q’ and v’ are projected on iv, the positive 03C0/2-rotated of v, we obtain
a natural parametrization of the tangent space (remember transversal

foliations in the study of geodesic flows). Let be



Sinai [22] proved that billiards whose components of the boundaries
are all dispersing, are ergodic. Bunimovich [4] indicated that billiards

whose focusing pieces of the boundaries have constant curvature and do not
contain dispersing components are Bernoulli (the stadium, for example).
Wojtkowski [25] proved that a large class of billiards with focusing arcs
at the boundary have Pesin region of measure one. In Markarian [18], it
is proved that the condition obtained by Wojtkowski for focusing curves

(d2R/ds2  0, R = 1/.F~) is not typical. More precisely, open conditions for
focusing curves, different that those in Wojtkowski [25] were obtained for
the regular components of the boundary of chaotic billiards.

As we have applied a simpler version of Theorem 1 to study when

Lyapunov exponents are non vanishing for several billiards, we will now

explain briefly the motivations we had to use certain quadratic forms in
such a study.

Consider first the geodesic flow in a compact manifold M of negative
curvature. The most natural "distance function" to study the evolution of

geodesic flows is the norm of Jacobi fields, perpendicular to the trajectory.
Let be r~ = (p, v) E SM, an element of the unitary tangent bundle;
get : SM --> SM is the geodesic flow defined by

where 03B3~ is the geodesic defined by ~. D~gt : - Tn(SM) can be
consider restricted to where = {u E TPM : (v, u) = 0} . With

this restriction is not difficult to prove that y) = (J(t) , J~(t)) where
J(t) is the Jacobi field, perpendicular to v, such that J(0) = a?, J’(0) = y
(we use the symbol to designate different types of derivatives).
_ 

Lewowicz [15] gave a proof, using the quadratic form

of the fact that geodesic flows in manifolds of negative curvature are Anosov.
Observe that the derivative of this quadratic form along the geodesics
(equivalent to the P of Theorem 1), is positive:

In the case of plane billiards is very natural to take ~q~ , iv ~ = a as
the norm of the perpendicular Jacobi field, since in this expression it is



reflected the geometry of the boundary, which determines the dynamics of
the billiard. The derivative of a along the trajectory of the billiard is

Thus, continuing the analogy, we consider the quadratic form 
aV. . Then

which is positive (eventually) if the regular components of the boundary are
dispersing or neutral and the trajectories pass by dispersing components in
finite time (i.e., for almost every a?, there exist k E IN such that is

in a dispersing component). This allows us to apply theorem 1 to Sinai’s
billiards (negative curvature) and to obtain a result somewhat weaker than
that of Sinai [22]. .

For positive curvature the previous expressions do not work neither in
geodesic flows nor in billiards. Therefore, turning to the original motivation,
we consider again the quadratic form a2 and instead of taking the derivative
directly to obtain B, we substract its values between one collision before
the reflection and the previous one. So, we obtained

This, eliminating the first ti for simplification, was the second form
studied in Markarian [18]. The change of tl by Ll (time that the trajectory
- or its continuation - spends inside the osculating circle of radius R = 1/.KB ,
before or after colliding with the boundary at ql, see figure 1) is quite natural
taking into account the geometric study of the question and the results of
Wojtkowski [25]. . This was our third quadratic form.

Now, it is difhcult to continue the study of curves that are allowded in
billiards with chaotic behavior by this case by case method. This is a main
reason why we began our general study of "good" quadratic forms.

3. Plane billiards. General analysis.
Focusing components

As it was observed in Section 2 a natural parametrization of the phase
space of plane billiards is



Then the general expression of a quadratic form z = (q, v) is

where a, b, c are functions of s, 8 (using the natural parametrization of 
In order to verify condition (ii) of theorem 1, a, b, c must be measurable
functions of x and ac - b2 ~ 0.
We study now which conditions must be verified by a, b, c if (iii) of

theorem 1 is required. We will use formulas (4) in Section 2 (0 is used

instead of 92).

Then the sign of P depends on

This expression is positive for every ()’ iff

and



We take bZ = 1 in order to have a control of the non degeneration of B
and to simplify the calculus. Hence, P > 0 iff

and

where E = (2 cos 8)/K2. If the component of q2 is focusing (K2 > 0), then
E = L2. . In the case K2 = 0, (7) becomes

The quadratic forms studied in Markarian [18] correspond to the following
values of the parameters:

(a) ai = ci = 0 allows one to get ergodic properties in Sinai’s billiards
(K  0);

(b) a2 = 0, Ci = Li gives the condition  0 for focusing curves

(Wojtkowski [25]);
(c) a2 = 0, c2 = ti gives the condition  0 for focusing

curves.

In the last two cases the conditions on the radius of curvature appear
when we make a study of focusing curves compatible with the inequalities
(6) and (7). Some more conditions on the distances between two different
regular components of the boundary are needed. See Theorem A and B, in
this section.

We study now the local conditions that a focusing curve must verify
in order to be suitable as a part of the boundary of a chaotic billiard. We
must look at the behavior of expression (6) and (7) when we have successive
reflexions in the same component, with 8 ^-_’ 

The first simple observation is this one: as 0 (see Appendix),
if we suppose ai, Ci continuous in a neighbourhood of (q2 ~~r/2), the
discriminant A of (5) verifies:



As we must have A  0. We deduce Ci = 0. If ci we have

and if cZ « ti we have

So, we must have cz "-_J t2: this justify a posteriori our election of cz = tZ or

Li in our previous paper.

Fig. 3

Let P(A) = q2 + (fig. 3) be the polar parametrization of a C~
curve (k ~ 4) where (see Appendix):

If the coefficients a, c depend differentiably on s, B (angle between the
oriented tangent and the inward trajectory), in q2 (B = A), then they may
be developed as

Then in q2 we have s = 0, B = A, and



As c2 ’-_" t2 for small A, then C2 = r (for A > 0; if A  0, 8 close to -03C0/2,
we must take C2 = -r. We will make all the calculus for positive A; there
are equivalent expressions for A  0). In ql, we have

and

As ti in first approximation, we have Cl = 0, and finally

Then (6) is immediately verified because

which is positive (r > 0) for small angles A.
The first member of (7) is now,



Because of symmetry considerations it is natural to take U = 0, and

then, for small A, we must have

It is interesting to observe that cases (b) and (c) previously analized
correspond to:

(b) Ai = 0: comparing the expressions of c2 and L2 we obtain C5 = 0,
C9 = -r/6 and comparing Li with cy, it is deduced that U = 0 and

so (8) becomes

which is the condition of Wojtkowski [25] written in a different way.

(c) Ai = 0, comparing the expressions of c2 and t2 we obtain C5 = r/2,
C9 = r /6 ; and comparing tl with ci it is deduced that

and

so (8) becomes

which is condition (8) in Markarian [18]. .

Also, it is easy to observe that given any C4 small focusing arc (that
is, given r > 0, r, r , in our polar coordinates), we can choose Ci, Ai
conveniently, in such a way that U = 0 and (8) are verified. For example,
we can take C6 in such a way that -2r4C6 dominates all the other terms.
So, we have that any sufficiently small C4 focusing arc can be a regular
component of the boundary of a choatic billiard.



A more general problem is how to construct all possible boundary
pieces in order to get good ergodic properties for billiard: angles between
consecutive components, distance between components, etc.

We show now how to construct plane billiards with chaotic behavior in
which some of the regular components of the boundary are short focusing
arcs. We take a = 0 in any case and for succesive hits in short focusing arcs
C, we define quadratic forms that verify condition (8).

1 (i~. If ql, q2 E C and q3 ~ C we define c2 = L2. Then (6) is

immediately verified since the first member, in first approximation, is equal
to 2rA. (7) is verified if (8) is true with C5 = 0 = Ao = Al: : it is sufficient

to take Ca big enough.

If ql E C and q2 ~ C we consider initially only the condition
C2 ~ 0. In the first member of (6) we have c2 - L1 + 2tl > 2tl - Li > 0
if 2t1 > L1; this means that the component of q2 must be outside the
semicurvature circle of any point of C. If K2 = 0, the first member of (7’)
is zero. So, in order to maintain increasing B along the trajectories, they
must go eventually to the non neutral components. If ~2 7~ 0, the first
member of (7) is (Li - 2ti)(4c2 - 2E) + 2c2E. If K2  0, then E  0

and it is enough again to consider 2t1 > Li. If K2 > 0, we define c2 = L2
and then the previous expression is 2L2(L1 + L2 - 2t1) which is negative if
L1+L2  2t1; this means that semicurvature circles of focusing components
must not intersect themselves.

If q1, q3 ~ C, q2 E C, let c1 ~ 0, c2 = L2. The first member of
(6) is L2 - c1 + 2t1 > 2t1 - c1 so (6) is verified if 2t1 > c1. The first member
of (7) is (c1 - 2t1)2L2 + 2L22 = 2L2(c1 + L2 - 2t1). If the component of ql
is dispersing or neutral we define ci = 0; if it is focusing, we define ci = Li ;
then (7) is true if the arcs verify the conditions that appeared in l(ii).

1 (iv~. - If ql ~ C and q2, q3 E C, the verification of (6) do not generate
new conditions and, since L2, the first member of (7) is

(c1 - 2t1)(4c2 - 2L2) + 2c2L2 ~ 2c2(c1 + L2 - 2t1)

which is negative in the conditions that were found in l(iii).

1 (v~. - If the segment of trajectory is between two components that are
not short focusing arcs, the quadratic forms is defined with c; = Li if qz is in
a focusing component, and c; = 0 in any other case. The results proved in



Markarian ~18, case C~, allows to assert that the focusing components must
verify the condition of Wojtkowski: d2 R/ds2  0.

Thus, we have proved the following theorem.

THEOREM A. Chaotic billiards can be constructed in the following
way; the C3 components of the boundary can be of any type, except that
the focusing ones must be C4 and verify d2 R/ds2  0 or must be short.

The semicurvature circles of any focusing arc do not contain parts of other

components and the semicurvature circles of not adjacent focusing compo-
nents do not intersect themselves; adjacent focusing components form inte-
rior angles bigger than ~r; focusing and dispering adjacent components form
interior angles not less than ~; focusing and neutral adjacent components
have interior angles bigger than ~/2. .

We will study now what happens if c = t in any case that one of the
extremes of the segment of trajectory is not in C: cl = tl if ql or q2 is not
in C. 

’

,~~i~. If q1, q2 E C, q3 ~ C the analysis is like in with

,~~ii~. If ql E C, q2 ~ C, (6) is always true (t2 +tl > 0). If K2 = 0 we
obtain conditions as in 1 (’iii) on the trajectories that hit neutral components.
If K2 # 0; the first member of (7) is -tl (4t2 - 2E) + 2t2 E. If K2  0, then
E  0 and (7) is verified. If K2 > 0, suppose first that tl > t2 > L2; then

In both cases (7) is verified if the components of ql and q3 are outside of
the circle of curvature in q2. .

2(iii). 2014 If q1, q3 ~ C, q2 E C, everything is like in 2(ii) because ci = ti,
i = 1, 2, in both cases. ,



,~~iv~. - If ql ~ C, q2, q3 E C, (6) is trivially verified (t2 + tl > 0~. As in
first approximation c2 rr L2, the first member of (?~ is

which is negative if tl > L2, i.e. all the other components are outside the
circles of curvature of the points of C.

2w~. - If the segment of trajectory is between to components of the

boundary that are not short focusing arcs, the behavior of the quadratic
form (and the resulting geometrical conditions) were studied in Markarian
[18, case B]. .

So, we have proved the following theorem.

THEOREM B.2014 Billiards with chaotic behavior can also be constructed

taking a finite number of dispersing and neutral arcs, short C4 focusing
components and C4 focusing arcs that verify L2(t1 + t2)  2t1t2. . The cur-

vature circles of focusing components must not intersect other not adjacent
components of the boundary; the conditions of adjacent components are as
in Theorem A. 

’

Remarks

(a) The meaning of short focusing component is that expression (8) is valid
on it and A is small enough so that this expression dominates the remainder
of the Taylor development of the first member of (7).

(b) The focusing arcs mentioned in Theorem B are those that verify
d2R1~3/ds2 > 0, and some other conditions for long trajactories between
points of the same component.

(c) The conditions on adjacent components are deduced from simple
geometrical considerations.

(d) Billiards studied in Theorems A and B maintain chaotic behavior if

their non neutral components are C4-perturbed.

If we want to obtain simultaneously local and global conditions on ai, c2
we can write them as Taylor’s developments of the natural parameters L;,
ti:



It is very interesting to observe that if in the succesive hits in a

circumference (Li = tl = L2 - t2 ) we take such kind of a;, ci, then the
first member of (7) becomes

This implies that we can not use this type of coefficients in order to keep
chaotic behavior in billiards that contain perturbed curves of an arc of
circumference as part of the boundary. So we must define a sort of "strange"
quadratic form to study this perturbations (Section 5).

If the last developments of c and a are substitued in (7), and we add the
condition Ci + C2 = 1 (cz = Li = ti in first approximation), after a lot of
routine calculus, we obtain

This type of study of the evolution of the quadratic form is in some sense
more general because as the negativity of the expression in brackets gives a
condition for the short trajectories, the global character of L and t admits
the study of long trajectories. In order to ilustrate this assumption, we
observe that if Cl = 1/2, CZ = 0, i > 2; Ao = a, AZ = 0, i > 0; we obtain
the conditions

which are consequences, respectively, of the local study on focusing compo-
nents, and the global analysis of (7) and (6).



4. Perturbation of the billiards of Bunimovich

The proof provided by Bunimovich that of what we now call Bunimovich-
type billiards are ergodic is very rigid: the focusing parts of the boundary
must be circumferences and in particular no perturbations of them are al-
lowed. In this section we prove that C4-perturbations can be done in less
than a half circumference keeping chaotic behavior in the resulting billiard,
if the other components are conveniently design. As a consequence all the
billiards of Bunimowich that contain less than half circumference (and only
such kind of regular focusing components) are C4-perturbable. In the case
of the stadium, we can C4 perturbe its half circumferences, maintaining its
straight lines tangent to the perturbed curves at the contact points: the re-
sulting billiard has Lyapunov exponents different from zero. In Bunimovich
[5] there are some heuristic ideas referring to this problem. Victor Don-

nay [9] proved a similar result (only C6-perturbations are allowed) using
Lazutkin coordinates.

It is simple to see that a half circumference (or a bigger arc of it) can not
be perturbed in general keeping chaotic behavior. Such arcs can be COO-

perturbed obtaining more than a half ellipse including the vertex of the
short half-axis. But all the trajectories in elliptical billiards have caustics
(curve such that all the intervals of a trajectory are tangent to it); in the
case we are now interested, they are hyperbolas. See Cornfeld et al. [8,
Chap. 6, Theorem 1]. The existence of caustics for sets of trajectories with
positive measure is incompatible with Pesin region of measure one.

Fig. 4



Consider a circumference parametrized as in figure 4. We prove first that

for 0  (3  ~r - E (any e > 0) the curve C can be C4-perturbed keeping
chaotic behavior in the resulting billiard, if the other components of the

boundary are conveniently fitted.

If qi q2 E C, (32 > ,Ql (there is a clear analogous for /3i > ~C32 ) we define
the quadratic form by

a > 0 is a real constant to be estimated. If ql E C, q2 ~ C then

We will analize three possible cases

Case 1. ql, q2, q3 E C. Then tl = t2 = Ll = L2  R and the first

member of (6) becomes

So (6) is verified if 1 - a03C0R > 0, or a  
The first member of (7) is now

So (7) is verified if

We distinguish now two situations.



In the circumference r = ’r’ = 0, r = - r = 2R. And so in first

approximation (A ~ 0), (7) is verified if -2 + a03C02R  0, that is a  2/R03C02.
It is important to observe that (6) and (7) are verified for C4-perturbed
curves of C as a consequece of the following facts: U = 0 independently of
the values of ai (and it is only in this parameters where the variation of ,QZ,
as a consequence of the perturbation, can influence; see (b) in Section 4;
and (8) and the restrictions on a, are open conditions.

It is also useful to remark that if in the first member of (7) we substitute
ci, az by the values indicated above, and do the local analysis, we obtain

For small A this expression is less than ~~r2r4/4)a2 - + D where

D = -(2/3)~(~ + r) + r2, so P > 0 if

In the case we are interested ~r = 2R, r = 0, r = -2R, D = 0), if

0  a  2/R~2 for C4-perturbations of arcs of circumference, 0  /3  x,

the resulting quadratic forms are increasing along short hits.

1(ii) ~Ci2 - ,Ql » 0. First we observe that

and if ,a2 = 2/) ,Cil = x, the first member of (9) is

which sign must be studied in the triangle 0 : ~ > 0, y  ~, y > x. We
have

since



So for each fixed yo, the graphic of z = H(x, yo~ is as in figure 5 with

Hx(y0, y0) = 2 - aRy20 which is positive for a a  2/R03C02.

Fig. 5

This graphic is valid for the circumference, but we know ( 1 (i) ) that for its
C4-perturbation it is negative if y rr ~. It is clear that if this is not the case,
the graphic is far away from zero and negative. So, we have proved that
the quadratic form is increasing for any trajectory that has there successive
reflections on the circumference or its C4-perturbations.

Case 2. - q2 E C. We define ci = tl, al - 0 and must

distinguish two cases depending where is q3.

2(i) q3 E C, /33 > ,~32 . In this case (6) becomes t 1 + t2 > 0 which is obviously
true. And the first member of (7) is

It is less than zero if ti > L2 since in the arcs of circumference and its

perturbations L2 .



2(ii) q2 ~ C. As it was indicated above, in this case c2 = t2, a2 = 0. (6) is
verified immediately and (7) becomes

which is true if tl, t2 > L2 .

So in both posibilities of case 2, the other components of the boundary
must be outside the osculating circles of each point of the perturbed curves.

Case ?.2014 q1, q2 ~ C, q3 % C. (6) is verified if t2 + t1 - 03B103B21lt21 > 0 and
since we assume t 2 > t 1 ( Case 2), this gives the same condition of Case 1:

The first member of (7) is now

In the circumference (and essentially the same in its perturbed), ti = L2,
and the last expression is

which is negative if

This bound for a is away from zero if all the components of a Bunimovich-

type billiard are circumferences (see the final remark in Case 2), or the
neutral components are not tangent to the focusing ones. If the neutral

components are tangent the result is also true, but we must add a general
remark about the behavior of quadratic forms on such components.



If we define (as it was indicated at the beginning of Case 2) c2 = t2,
a2 = 0 on the neutral components (KZ = 0), formulas (6) and (?~) indicate
that the quadratic form is increasing (not strictly) when the trajectory hits
on it. So, we can assume that t2 is the time the trajectory spends between
two non neutral components.

Fig. 6

For example, in the stadium of figure 6, it results t2 - tl > d’ = d/10,
and 9t2 - 7ti  9t2  R’, where R’ depends on Rand d (observe that as

q2 E C, C, then 93 > ~r/4). Finally, if we take

we have proved that chaotic behavior is kept if in the stadium the half cir-
cumferences are C4-perturbed and the tangents at the end of the perturbed
curves coincide with the neutral components.

5. Appendix
Formulas for focusing components of a billiard

Let P(A) = q2 +r(A) eiAq’2 be the polar parametrization of a Ck focusing
curve, k > 4, r(0) = 0. See figure 3. r(A) will indicate the first derivative
with respect to A, r = ~(0), ~ = ;(0), etc.



Then

For A > 0 we have ql = q2 + r(-A) Then



Ftom the formula for cos 81 we obtain

Fig. 7
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