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The structure of the critical set
in the general mountain pass principle

GUANGCAI FANG(1)

Annales de la Faculté des Sciences de Toulouse Vol. III, nO 3, 1994

RÉSUMÉ. - Nous etudions la structure de l’ensemble critique engendré
par le principe general du col de Ghoussoub-Preiss. Ce faisant, nous
étendons et simplifions les resultats de structure de Pucci-Serrin établis
dans le contexte du principe du col classique de Ambrosetti-Rabinowitz.
Le result at principal est le suivant : : si les deux points base sont non
critiques, alors 1’une des trois assertions suivantes sur 1’ensemble critique
correspondant est vraie :

1) l’ensemble des maxima locaux stricts contient un sous-ensemble
fermé qui separe les points de base ;

2) il existe un point selle de type passe-montagne ;
3) il y a au moins un couple d’ensembles disjoints non vides de points

selle qui sont aussi points limites de minima locaux. Ces ensembles
sont connectes par 1’cnscmblc des minima locaux mais pas par celui
des points selle.

ABSTRACT. - We study the structure of the critical set generated by
the general mountain pass principle of Ghoussoub-Preiss. In the process,
we extend and simplify the structural results of Pucci-Serrin in the
context of the classical mountain pass theorem of Ambrosetti-Rabinowitz. .

The main result states that if the two "base points" are not critical, then
one of the following three assertions about the corresponding critical set
holds true:

(1~ the set of proper local maxima contains a closed subset that

separates the two base points;

(2) there is a saddle point of mountain-pass type;
(3) there is at least one pair of nonempty closed disjoint sets of saddle

points that are also limiting points of local minima; these sets are
connected through the set of local minima but not through the set
of saddle points.

(*) Reçu le 02 novembre 1993
(1) Department of Mathematics, University of British Columbia, Vancouver, B.C.,

Canada V6T 1 Z4

This is a part of the author’s Ph.D dissertation in preparation at the University
of British Columbia under the supervision of Dr. N. Ghoussoub.



0. Introduction

In this paper, we shall use the information obtained in a recent result
of Ghoussoub-Preiss [GP] about the location of min-max critical points,
to describe the structure of the critical set in the Mountain pass theorem
of Ambrosetti-Rabinowitz [AR]. We will not be using Morse theory and
the functionals are only supposed to be C1. We will use systematically
the methodology initiated in [GP] to reprove, simplify and extend various
related results established by Hofer [H], Pucci-Serrin [PS1, 2, 3] and
Ghoussoub-Preiss [GP].

To state the refined version of the Mountain pass theorem, we need the
following:

DEFINITION (a).2014 A closed subset H of a Banach space X is said to
separate two points u and v in X, if u and v belong to two disjoint connected
components of X ~ H .

We will also need the following compactness condition.

DEFINITION (b).2014 A C1-function 03C6 : X -- IR is said to verify the
Palais-Smale condition around the set F at the level c (in short if
every sequence in X verifying

has a convergent subsequence.

We will denote by Kc the set of critical points of p at the level c. We let
also r~ be the set of all continuous paths joining two points u and v in X,
that is:

where C( ~0,1~; X ~ is the space of all X -valued continuous functions on ~0,1~ . .

We shall make a systematic use of the following



1. Structure of the critical set in the separating set F

THEOREM 1 (Ghoussoub-Preiss). - Let p : X ~ IR be a C1-function on
a Banach space X . For two points u and v in X, , consider the number

and suppose F is a closed subset of X that separates u and v and such that

If ~p verifies then F n Kc is non empty.

Remark (a~. In the case where F = ~~p > c~, that is when

max~ ~p(u~, ~p(v) }  c, the above theorem reduces to the well known moun-

tain pass theorem of Ambrosetti-Rabinowitz.

To classify the various types of critical points, we use the following
notations:

(Recall that x is said to be a saddle point if in each neighborhood of z there
exist two points y and z such that ~p(y~   ~p(z~.~

THEOREM 2. - Under the hypothesis of Theorem 1, assume F n Pc
contains no compact set that separates u and v, then either F n Mc ~ 0 or

.

Proof. - Suppose that F n M~ = ~ = F n Sc. Since F separates u and
v we can use a result of Whyburn [Ku, chap. VIII, § 57; III, theorem 1] to
find a closed connected subset F C F that also separates u and v. Note

that F n Kc = F n Pc and the latter is relatively open in F while F n Kc is



closed. Since F is connected, then either F ~ Pc = 0 or FnPc = F. But the
first case is impossible since by Theorem 1 we have F = F n K~ 7~ ~.
Hence F ~ Pc which is impossible by assumption and the claim is proved. 0

COROLLARY 3.2014 Under the hypothesis of Theorem 1, assume 03C6 verifies
and that u, v ~ Mc. If Pc does not contain a Compact subset

that separates u and v, then Sc ~ 0.

In particular,  c, 03C6 verifies (PS)c and X is infinite
dimensional, tlten 5’c ~ 0. .

Proof . First observe that Ke is the disjoint union of Sc, Mc and Pc.
By the condition, we know that .K~ is compact. Suppose
Sc = 0. For each x E Mc, there exists a such that C Lc.
Let

Then M~ C N C Lc. Since u, v ~ M~ and M~ is compact, we may assume
that u, v ~ N. Now put Fo = It is clear that infx~F0 03C6(x) > c

and that Fo separates u, v. Moreover, Fo n (Mc U = ~. By Theorem 2,
P~ n Fo and hence P~ must contain a compact subset that separates u, v. A
contradiction that completes the proof. 0

Remark ~b~. - Theorem 2 and Corollary 3 improve earlier results by
Pucci and Serrin and they are due to Ghoussoub-Preiss ~GP~. The
next Theorem 4 appears in ~GP~ and improve the results of Hofer ~H~ and
Pucci-Serrin ~PS2~ that appear in Corollary 5.

DEFINITION (c) (Hofer).- Say that a point x in Kc is of mountain-
pass type if for any neighborhood N of x, the set {x E N ~ 5p~x~  c~ is

nonempty and not path connected. We denote by Hc the set of critical
points of mountain pass type at the level c.

THEOREM 4. - With the hypothesis of Theorem 1, we have:

(1) Either F ~ Mc ~ Ø .

(2) If F ~ Pc contains no compact set that separates u and v, then either
F n M~ ~ ~ or F n Kc contains a saddle point of mountain pass type.

Here is an immediate corollary:



COROLLARY 5. - With the hypothesis of Theorem 1, assume

then:

(1~ either M~ ~ Mc ~ 0 or Hc ~ ~;

(2) if X is infinite dimensional, then either M~ ~ Mc ~ ~ or Kc contains
a saddle point of mountain pass type.

Proof. - It is enough to apply Theorem 4 to the set F = 8~c,p > c~ and
to notice that no local minimum can be on such a set.

To prove Theorem 4, we shall need the following topological lemma.
Throughout this paper, we denote by e) the open ball in the Banach
space X which is centered at ae and with radius e > 0.

LEMMA 6. - Let Fo be a closed subset of X that separates two distinct
points u and v . Let Zz (i = 1, 2, ... , n~ be n mutually disjoint open subsets
of X such that u, Zi. . Let G be an open subset of X ~Fo and denote
by Yi = Then the following holds:

(i) the set Fl = ~ (~ni=1 ~Yi) separates u and v.

(ii) if Ai (i = 1, 2, ... , n~ are n nonempty connected components of G
and for each i (1  i  n ) TZ C (Zi n aAZ) is a relatively open subset
of aYi such that Ti n 8L = 0 for any connected component L of G
with L ~ Ai, then the set F2 = U aYi,TZ) also
separates u and v.

Proof

(i) Since G C X ~Fo, we have

Clearly Fi is closed and u, f ~ Fi. We need only to show that for any
96 r~,



If g~~0,1~~ n (Fo B fi) 7" 0, we are done. Otherwise

so that if g ([0,1]) n (~ni=1 ~Yi) = Ø, then g([0,1]) C ~ni=1 YZ C ~ni=1 ZZ
which contradicts that u, v ~ Z2.

(ii) We first prove the following claims: for i, j = 1, 2, ... , n, we have:

(a) Ti ~ Yi ~ ~Yi, Ti ~ G = Ø and Ai ~ F2 = Ø;

(b) Tj ~ Yi = Ø and Ti ~ Tj = Ø if i ~ j;

(c) ZZ n (8G B Ti) c aY2 B TZ. .

(a) Since G is open, it is clear from the definition of TZ that Ti C Zi n 8G
so that TZ C YZ n aY2 and Ti n G = ~ for i = 1, 2, ... , n. On the other hand,
Ai ~ Yj cAZn{Z3BG) 

(c) Since G is open, we have that for any x E ZZ n 8G B Ti, G, hence
x E Zi B G and x E YZ. . Moreover, for any x E 8G B TZ and any E > 0 there is
y E B { x, E) n G. Clearly y ~ Y2 so that x E ~Yi . Since Ti ~ Zi n { aG B Ti ) = Ø,
we have that x E aYi B Ti .

Back to the proof of the Lemma, we note first that the set F2 is closed
and is equal to

Clearly u, v tf. F2 and we need only to show that for any g E 

g ~[0, i]~ n F2 ~ ~.
Suppose not, and take go E r~ such that go ~ [0,1] ~ n F2 = 0. We shall

work toward a contradiction.

First by (1), we have



Let il be the first i E {1, ..., n} such that go ([0, 1]) n Ti ~ 0. We shall find
a gZl E r~ such that

To do this, we define the following times:

We shall show the following:

Indeed, it is clear that 0  sl  s2  tl  t2. Since u, v ~ Zi, we

have 0  sl and t2  1. On the other hand, go(t2) ~ ZZ1 since the latter
is open, while gO(t1) E aYil n Ti1 since go ([0,1]) n F2 = Ø, hence (a) yields
that go(tl ) E ~Yi1 n Til = Ti1 C Zi1. Modulo a similar reasoning for sl, s2, 
(d) and (e) are therefore verified.

To prove (f), we note first that go(t) E G for t E (si s2 ) LJ (tl , ~2 ), since
otherwise go(t) E Yzl which contradicts (4) and (5). So, for any t E (tl, t2)~
go(t) E U for some connected component U of G. If , we have

that Ti1 n 8U = 0 and since go(tl ) E Ti1, we see that g0(t1) ~ 8U. Hence
there must be t3 E (t l t) such that gO(t3) E 8U C 8G B Ti1. By (c) we see
that F2 which is a contradiction. So U = Ail and consequently,
go(t) E A21 for all t E (tl, t2), and (f) is proved.

Since now Ail is path connected, then for sl  s21  s2 t1  t21  t2, we

can use a path in AZ1 to join go(sZ1 ) and go(t21 ). In this way, we get a path
gi1 E r~ such that g21 ([0,1]) nTi1 = 0 and gi1 ([0,1]) n11 = 0 for 1  i  ii ,
since by (a), Ail n Ti = 0 for all i = 1, 2, ..., , n. On the other hand, since

Ail n F2 = ~, we get that gi1 ([0,1]) n F2 = 0 and (3) is established.

Next, let i2 be the first i E {1, ..., , n~ such that gil ~~0,1~) n TZ ~ ~.
Clearly ii  i2  n. In the same way, we can construct gZ2 E r~ such that



By iterating a finite number of times, we will get a g~ e I‘v such that for

But this contradicts assertion (i) and the lemma is proved. D

Proof of Theorem 4

(1) Suppose F n Kc contains no critical points of mountain-pass type and
F n Me = 0. We claim that:

there exist finitely many components of Ge,

Indeed, otherwise we could find a sequence xi in F n Kc and a sequence
of different components of G~ such that (x2, Ci) -~ 0. But then any

limit point of the sequence x2 would be a critical point for p of mountain-
pass type belonging to F, thus contradicting our initial assumption. Hence
(*) is verified.

Let now Mi = F n Ci. Since any point of

would be a critical point of Mountain-pass type, we may find for each
i = 1, ..., p an open set Ni such that:

Since F n Me = 0, we may also assume that

Observe that for each i (1  i  n), for any x E Mi there must be 
such that n U = 0 for any component U of Ge with U ~ G~. Put



Then Ti C N2 n 8Ci and is relatively open in 8fi. Now

By Lemma 6, F separates u and v, hence F n which is clearly a
contradiction since Mi C T2 and F n Me = 0.

(2) Since F separates u and v, we can again use the result of Whyburn
mentioned above to get a closed connected subset F also separating u and
v and such that F = 8U = aV where U and V are two components 
containing u and v respectively. Assume F n 0. The set K = F n Pc
is an open subset relative to F. If K is not closed, then any a? E KBK is a
saddle point since F n Me = 0. Moreover, if H is any open neighborhood
of a? not intersecting Me and such that ~p  c on H, then both sets U n H
and V n H meet the set ~Sp  c~. This shows that x is a saddle point of
mountain pass type.

Assume now K is closed. Then it is a clopen set in the connected space
F. Hence either K = F or K = 0. In the first case F is then contained

in Pc and since it separates u and v, we get a contradiction. In the second

case, note that by part (1) F n Kc contains a point of mountain pass type.
Such a point is necessarily a saddle point since F n Me == 0 and F n Pc.
This clearly finishes the proof of Theorem 4. D

For the sequel, we shall need the following concept.

2. Structure of the critical set at the level c

DEFINITION (d). 2014 For A, B two disjoint subsets of X and any nonempty
subset C of X, , we say that A, B are connected through C if there is no

F C CUAUB both relatively closed and open such that A C F and F~B = 0.

When A and B are connected through C, we also say that C connects
A and B or that the space C U A U B is connected between A and B. We

refer to Kuratowski [Ku, pp.142-148] for details.

The following theorem is an improvement on the results of Pucci and
Serrin [PS3] that are stated in Corollary 8 below.



THEOREM 7. - With the hypothesis of 
Theorem I, we further assume

u, v / Kc and that p verifies (PS)c. Then one of the following three

assertions concerning the set Kc 
must be true:

(I) Pc contains a compact subset 
that separates u and v;

Fig. 1

Kc contains a saddle point of 
mountain-pass type;

Fig. 2

(iii) there are finitely many components pf 
Gc, say Cy (I = 1, 2, ... , n)

such that Sc = S§ and S§ n S( = $ for (I # j, I  I, j  
n )

where S§ = Sc n Ci; moreover there are 
at least two of them Si1c, Si2c

(ii # 12, 1  ii , 12  n ) 
such that the sets Mc n , % n Si2c are

nonempty and connected through Mc .



Fig. 3

COROLLARY 8. - With the hypothesis of Theorem 1, assume further that
~p verifies and that  c. If ~’~ does not separate 0
and e, then at least one of the following two cases occurs:

~a~ K~ contains a saddle point of mountain-pass type;

~,Q~ M~ intersects at least two components of S~ .

Moreover, if Me has only a finite number of components, then either

(a~~ K~ contains a saddle point of mountain-pass type, or

(03B2’) at least one component of Mc intersects two or more components
o f .

To prove Theorem 7, we shall need the following two topological lemmas.
The first is staightforward.

LEMMA 9. Let M be a subset of a Banach space X. . Suppose
M = Ml U M2 and Ml n M2 = Ø. If M1 is both open and closed relative to
the subspace M, then there exist open sets D1, D2 of X such that

Proof. - Since Ml is both relatively open and closed, so is M2. . Hence
there exist open sets Ei , E2 such that



Set H1 = nE2) and H2 = E2, ( E1 n E2). . Then M1 C .Hl , M2 C H2
and Hl n H2 = 0. Since Ei is open, for each x E 8E2 n El , 3 > 0 such
that the ball B (x, centered at x with radius is contained in . Let

~’x = dist(x, 8Ei n E2). Then ~’x > > 0. Set

Clearly, M1 C D1, , M2 C D2 and D1, D2 are open. We now claim that
D1 n D2 = ~. Indeed, if not, say z E D1 n D2, then there exist B(x, E~/4~,
B(y, Ey/4~ such that z E B(x, E~/4~ n B(y, Ey/4~. Then

On the other hand, E~  ~ ~ ~ - and Ey  ~ ~ x - which imply that
- y~~ > A contradiction which completes the proof of the

lemma.

LEMMA 10. - Let S‘Z (i = 1, 2, ... , n) be n mutually disjoint compact
subsets of a Banach space X and let M be any nonempty subset of X. . If
for all i, j (i ~ j; i, j = 1, 2, ... , n~, the sets ,52 n M and S’~ n Mare
not connected through M, then there are n mutually disjoint open sets N2
(i = 1, 2, ... , n~ such that

Pr~oof . For each i (i = 1, 2, ... , n), we denote by MZ the compact
set ,SZ n M. Since by assumption none of the pairs M2, M3 (i ~ j;
i, j = 1, 2, ~ ~ ~ , n) are connected through M, there exist by Lemma 9 open
sets Oij and Pij (Oij = Pji, i ~ j; i, j = 1, 2, ... , n) such that MZ C Oi j,
Mj ~ Pij, Oij ~ Pij = Ø (i ~ j; i, j = 1, 2, ..., n) and



For each i (i = 1, 2, ..., n), let

Then

Put for each i (i = 1, 2, ... , n)

Then by (2.2)-(2.5), we have

It is not generally true that Ms U M C Oz. In order to prove the

lemma, we let

Then

By (2.5) and (2.6), we see that M~~ is both open and closed relative to
Ms U M. Again by Lemma 9, there exist two open sets D’ and D~‘ such
that



Now for each i (i = 1, 2, ... , n) put OD = OZ n D". By ~2.?) and (2.9), we
have

By the compactness of Si and M% we may introduce

Let 62 = (1/4) min{ai , 03B41 | i = 1, 2, ..., n} and

Then Q, G OiD and Siq n M = 0. By (2.11), we see that 
2014 $2 ~ 362. . By the compactness we may also introduce

Put

Then

By (2.10), we have that R’ n Ni) = 0 and Ni n Nj = ~ (i ~ j;
i, j = 1, 2, ... , n~. Furthermore

Hence



By (2.14) and (2.16), we also have that

Now let N 1 = Nl U { x E X S‘q )  b3 ~ U R’ and

By (2.8), (2.12) and (2.15) it follows that

By (2.10), (2.17) and (2.18), we see that

So (2.19) and (2.20) imply that Ni satisfy (2.1). This completes the proof
of the lemma. 0

3. . Proof of Theorem 7

Suppose assertions (ii) and (iii) are not true and let us prove (i). The
critical set Kc is the disjoint union of Sc, Me and Pc. Also by the (PS)
condition, Kc is compact. It is also clear that Sc is closed and compact. We
will assume that 5c 7~ 0 since otherwise we conclude by Corollary 3. We
start with the following:

Claim 1

There exist finitely many components of G~, say CZ (i = 1, 2, ... , n~ and
rh > 0 such that

Indeed, if not, we could find a sequence xi in Sc and a sequence (Ci) i of
different components of Gc such that dist(xi , Ci) ~ 0. But then any limit
point of the sequence x2 would be a saddle point of mountain-pass type for



p, thus contradicting our assumption that assertion (ii) is false. Claim 1 is
hence proved. We clearly may assume that for all i = 1, 2, ..., n.

Next for each i = 1, 2, ... , n, let S‘~ = ,S~ n Ci . They all are compact
and mutually disjoint. Also we have that

Claim ~

There are n mutually disjoint open sets N2 (i = 1, 2, ... , n~ such that

Indeed, we have two cases to consider.

Case 1 Me = ~. - This is a trivial case. By the initial assumption that
Kc, for each i (i = 1, 2, ..., n~ there exists an open neighborhood NZ

of S’~ such that u, v / Ni. Since the are mutually disjoint compact sets,
we may take the in such a way that they are also mutually disjoint.

Case 2 0. 2014 In this case we are in a situation where we have n

mutually disjoint compact sets S‘~ (i, = 1, 2, ..., ?t) and a nonempty set Me.
Moreover all the pairs ,5~ n Me, ,S~ n Me (i 7~ j; i, j = 1; 2, t ... , n) are
not connected through Me since assertion (3.3) is assumed false. Applying
Lemma 10, we can then find n mutually disjoint open sets N2 such that (3.3)
is verified. Since u, v ~ Kc, we may clearly assume that Ni.
Claim 2 is proved in both cases.

In order to finish the proof of Theorem 7, we still need the following

Claim 3

There exists a closed set F such that F separates u, v while

We let for each i (i = 1, 2, ..., , n):



Then observe that for each i (1  i  n) there must be B(x, > 0)
such that for any connected component U of Gc with U, =

0. Otherwise a? is a saddle point of mountain-pass type and this contradicts
that assertion (ii) is assumed false. Put

Clearly

and T ~ is open relative to aYi. . Also ~1 8U = ~ for any component U of

Gc with U ~ C2. . Now let

Clearly, inf - c. Since Fn Lc separates u, v and in view of Claim 1,
Claim 2, (3.5 and (3.7), we see that we can apply Lemma 6 with Az = C2,
G = G~, Zi = Yi = y{, Ti = T~ for all i = 1, 2, ..., n to conclude that
F separates u, v. On the other hand, since Me n = ~, we have by
(3.3) and (3.5), that 8Yie n Me = 0. Therefore by (3.2) and (3.6), we have
1 n U M~) = ~. Hence F n (M~ U S~) _ ~ and Claim 3 is
thus proved.

Finally by Theorem 2, we see that F n Pc and hence Pc must contain a
compact subset that separates u, v which implies assertion (i). This finishes
the proof of the theorem. D

Remark (c). Theorem 7 is still true if instead of ~p verifies only
The proof also shows that the condition ~, 1? ~ K~ can be

replaced by S’~ U Me.

We have the following surprising corollary concerning the cardinality of
the critical set Kc generated by the Mountain pass theorem.

COROLLARY 11. - Suppose dim(X) > 2. Then under ~he hypothesis of
Theorem 7, one of the following three assertions must be true:

~1~ k~ has a saddle point of mountain-pass type;

(2) the cardinality of Pc is at least the continuum;

(3) the cardinality of M~ is at least the continuum.
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Proof. - If K~ does not contain a saddle point of mountain-pass type,
then either assertion (i) or assertion (iii) in Theorem 7 is true. Let us

first assume that assertion (iii) is true. Then there exist two disjoint
nonempty closed subsets of Ke, say, M; and M; which are connected
through Me. Clearly dist(M1c, M2c) = d > 0. For any 0  03C3  d, let

Mu = ~ x E X  ~ ~ . Then M~ ~1 M~ = ~, M~ C M~ . We
claim that 8Mu n Me 7~ 0. Otherwise, there will be two disjoint open sets
Mu and XBMu such that

M; c Mu , Mu n M; = 0, , M~ u M; u M; c Mu u .

This contradicts that M;, , M~ are connected through M~. Now let m~ E
8Mu n M~ . Then we have a map f : ~ E ( 0, d) - m~ E M~ . Clearly f is
inj ective which implies assertion (3).

If instead, assertion (i) of Theorem 7 is true, then Pc separates u and
v. Let Xo be a subspace of X of dimension 2 containing u, v and let
Q = Pc n Xo. Then Q separates u, v in Xo. Clearly, the cardinality of Q
is at least the continuum. Since Q C Pc, this implies assertion (2) of the
corollary.
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