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On the Novikov complex for Rational Morse Forms(*)

ANDREI VLADIMIROVICH PAZHITNOV(1)

RESUME. --- Soit w une 1-forme fermee sur une variete compacte M.

Supposons que les zeros de 03C9 soient non degeneres et que sa classe de
cohomologie [03C9] E Hl (M, IR) soit intégrale a constante multiplicative
pres. Soit p . M --> M un revêtement avec groupe structural G, tel

que p * ~ (w~ ~ = 0 . .
A partir de ces donnees nous construisons un complexe de chaines sur la
completion de Novikov de 1’anneau Z G. Ce complexe est libre et muni
d’une base dont le nombre de générateurs en degré k est egal au nombre
de zeros de w d’indice k pour tout k. Le type simple d’homotopie de ce
complexe est egal a celui de la completion de Novikov du complexe de
chaînes simpliciales de M. .

ABSTRACT. - Let w a closed 1-form with non-degenerate zeros on a
compact manifold M. Assume that the cohomology class [03C9] E H1 (M, IR)
is integral up to a multiplicative constant. Let p : M -i M be a covering
with structure group G, such that p ~ (w~ ~ = o.
To this data we associate a free based complex C* over the Novikov
completion of ZG. For every k the number of free generatores of Ck
equals the number of zeros of w of index k. The simple homotopy type of
C* equals the simple homotopy type of the Novikov-completed simplicial
chain complex of M.

0. Introduction

It is well known that, given a Morse function / on a smooth manifold
M, one can construct a chain complex C*(~f ) (the Morse complex), which
is a complex of free abelian groups and the number of free generators in
dimension p is exactly the Morse number (i.e. the number of critical
points of index p). This complex computes the homology of M itself:

.I~*{C*~f)) .~ 
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One can strengthen this result so as to associate to any regular covering
M --; M with structure group G a free ZG-complex ~’* ( f M), such that
the number , M)) of free Z G-generators of the module Cp(, f M)
equals mp(f). The simple homotopy type (over of this complex
appears to be the same as of the complex of simplicial chains of M for the
triangulation of M, coming from any smooth triangulation A of M. That
is a useful tool for some kinds of nonsimply connected surgery ( ~2~, ~12~ ).

Approximately 10 years ago S. P. Novikov [7] proposed that Morse theory
should be expanded to the case of Morse forms, that is closed 1-forms which
are locally the derivatives of Morse functions. He suggested a construction
of an appropriate analogue of the Morse complex. For the case when

homology class of the 1-form w is integral, this complex is a free complex
over a ring Z ~~t~~ ~t-1~ of Laurent power series. This ring is a kind of

completion of the group ring Z [Z] and the Novikov complex computes the
correspondingly completed homology of the infinite cyclic covering M ~ M,
which corresponds to the homology class [w] E H1 (M, 7l ).

The existence of such a complex enables one to obtain the lower bounds
for the Morse number in homotopy invariant terms (here 
stands for the number of zeros of w of index p), and in some cases to prove
their sharpness, thus pursuing the analogy with usual Morse theory further.

The sharpness of the arising inequalities was proved by Farber [1] for
03C01 M = 7l , dim M > 6 and by the author [8] for 03C01M = Zs, dim M > 6
(under some restrictions on the homotopy type of M and the cohomology
class of the form in consideration). .

I must note that up to the present there existed no detailed proof of the
mentioned properties of Novikov complex. The papers [1] and [8] appealed
only to the inequalities, which were proved in these papers without using
the Novikov complex. But certainly what was underlying these proofs was
the Novikov complex.

So in the present paper I suggest the full treatment of Novikov complex
for the case [w] is integral (up to a nonzero constant).

To formulate it here we need some notations. Let w be a Morse 1-form

on a closed manifold M, such that de Rham cohomology class [w] is nonzero
and is up to the multiplication by a constant, an element of H1 (M, ~). Let
p M --~ 1t~ be a regular connected covering (with the structure group G),
such that w resolves on M, i.e.:



Then cohomology class ~c~~ : ~I M --~ IR is factored uniquely through some
homomorphism £ : G -~ IR. The Novikov construction (generalized to

the case of nonabelian groups by J.-Cl. Sikorav [13]) associates to any

~ : IR a completion A~ of a group ring A = ~ ~G~ (sect. 1). There

is an appropriate notion of a Whitehead group over A., that is a factor

of by a subgroup of trivial units (sect. 1 ) . By the appropriate
version of the Kupka - Smale theorem (Proposition 2.0) we can choose the
gradient-like vector field v for w in such a way that all the stable and unstable
manifolds of v are transversal. Let A be some smooth triangulation of M

(see [4]). It determines a smooth G-invariant triangulation of M and the
corresponding chain complex will be denoted C~’ (M~. It is a free finitely
generated complex over 7L ~G~ .

. THE MAIN THEOREM (Theorem 2.2) .2014 To this data there is associated
the Novikov complez C* (v, M) which is a free complez of -03BE -modules, such
that the number of free generators m~- (Cp(v, M)) is equal to and

C*(v, M) is simply homotopy equivalent to C~ (M~ .

Now we explain the main idea of the proof and present the contents of
the paper.

The main instrument for proving the similar result for Morse functions
[6] is an inductive argument. One uses the construction of a manifold cell
by cell using a Morse function and proves by induction that each step of
the construction is simply homotopy equivalent to the corresponding part
of the Morse complex. The main difficulty in our situation is that although
we can work with Morse functions, say f on M, there is nothing to begin
with, since f, for example, is not bounded from below and the descending
discs of the critical points go infinitely downwards.

So we act in the opposite direction. Since we suppose that (c~~ is a multiple
of an integer class, there is an infinite cyclic covering p : M 2014~ M, such that
p*w resolves:

where ,f is a Morse function. The covering p :  -i M factors through p
like



Now we invite the reader to look at the picture 4.1. The notations are
clear from the picture itself (and also explained in the very beginning of
Section 4). We only indicate that t is a generator of a structure group 7L of
a covering, and we assume f (t x )  .

Let G~ denote the submonoid of G, consisting of all the g E G, such
that 03BE(g)  0 and let ZG- denote its group ring. The Novikov ring -03BE is

formed by the power series in the elements of G which are infinite to the
direction where ~ descends ( a precise definition is given in Section 1). We
denote by A~ the ring of power series in the elements of G- , , which are
infinite to the direction where ~ descends (sect. 1).

Now consider the function f, restricted to

It is a Morse function and we can define a Morse complex with respect
to the covering Q, restricted to W (n~ C M and a gradient-like vector

field v, coming from the base. Since v is t-invariant, one easily shows
that it is actually a ZG--complex, and since the elements g E G- with
03BE(g) ~ - (n + act trivially, it is also defined over ZG-n where

We denote this complex C* (v, n). It is a free ZG-n-complex. There is an
obvious map ~’* (v, n) -~ (v, ~2014 1), and the inverse limit will be denoted
C’~’(~). It is a module over A~ and one identifies easily the Novikov complex
with ~’* (v ) ~AE A~ . °
On the other hand, if we choose the triangulation of M in such a way

that p(V) is a subcomplex, then we obtain a triangulation A of M, invariant
under the action of Z and such that all the W(n) are subcomplexes. The

complexes C* (V , tn+ V - ) where denotes passing to the preimage in
are thus the free ZGn-complexes. There is an obvious projection map

and C* ~ V - ) Ar is exactly the inverse limit of this system.
It suffices to prove the simple homotopy equivalence over 1~~ of the two

complexes C’* ( v ) and C* t Y - ) h~ .



That is done by comparison of two inverse systems. Denote Ker(~ : G --~

IR) by H. The ordinary Morse theory gives a homotopy equivalence

over Z H.

We show that one can choose these hn in such a way, that in the diagram
below all the squares are chain homotopy commutative and that ho is a

simple homotopy equivalence.

From this we deduce in Section 3 that the inverse limits of the systems

~C* (v, n) ~ and ~C~(V’’,~~V~) ~ are chain homotopy equivalent and
the condition on ho guarantees that the resulting chain homotopy will be
simple over A~ .

Now we present the plan of the paper.

The definition of the Novikov ring is given in Section 1. In Section 2 we
state the main theorem. Section 3 is purely algebraic. Here we first develop
some simple formalism for working with chain complexes, endowed with
filtrations, similar to those arising from t-ordered Morse functions. This

formalism enables us to prove homotopical uniqueness (in a certain sense)
of the homotopy equivalence of the Morse complex of a Morse function and
of the chain complex of a triangulation. In Section 4 we start proving the
main theorem. There are mainly the explanations and the reduction to the
existence of the diagram (I.1). This existence is proved in Section 5.

The Appendix contains all the information about Morse functions and
Morse complexes for Morse functions. In particular there are the full proofs
of the theorems cited in the very beginning of this introduction.

It is well known, that the Morse (Thom - Smale) complex of a Morse
function is simply homotopy equivalent to the complex of simplicial chains
of the universal covering of the manifold. The point, which is missing, is



that this chain equivalence does not (up to homotopy) depend on the choices
involved. (It is essential for our purposes, since we want to get the homotopy
commutativity of the square (1.1). We need this result in the framework of
t-equivariant Morse functions on the cyclic covering, and we prove it in the
Section 5. Still we believe, that this sort of result is interesting in itself even
in the non-equivariant setting, and we have included Propositions A.9 and
A.11 in the Appendix, although they are not used in the principal text.

The main result of the paper was predicted (in a slightly weaker form)
by S. P. Novikov long ago. So the main aim of the present paper is to give
a complete and detailed proof of this result, including the theorems, which
are more or less folklore, but which are necessarily used in the proof. This
concerns first of all the Appendix, which seems to be a first text, working out
in details the simple homotopy equivalence (well defined up to a homotopy)
of the Morse complex of a function and the chain complex of the universal
covering.

0

This work was done during my stay in Odense and Arhus Universities
in February 1991, and the present paper is a revised version of my preprint
[9].

The applications of the result of the present will appear in the forth-
coming paper [10], which contains the surgery theory for maps M --~ S1 in
terms of the Novikov complex.

It seems that F. Latour has another approach to the main theorem of this
paper [14, p. 14]. One first checks up that the simple homotopy type of the
complex C* (, f v) does not change under the deformations of the function
f : : M -~ That can be done following the ideas of Cerf’s paper [3]
on pseudoisotopies, or (the suggestion ofJ.-Cl. Sikorav) using the Floer’s
argument. Afterwards J.-Cl. Sikorav shows, that in the homotopy class [ f~
there always exists a Morse map, having the same Novikov complex as a
Morse function g : : ~VI --~ !R. (One takes the rational Morse form C dg + d f. .
It is cohomologous to dl and for C --~ oo it has the same Novikov complex
as g).

This idea has the advantage to cope also with the irrational Morse forms
although it could present some technical difficulties to overcome.

I take here the opportunity to note that the group W l~(G, ~ (sect. 1 ) was
first introduced by F. Latour in his Orsay talk in 1990. The above ideas
seem to be more recent.



1. The Novikov ring

In this section we recall the definition and the properties of the Novikov

ring.

Suppose that:

~ G is a (discrete) group,
~ ~ : G -~ IR is a homomorphism of the group G to the additive group of

real numbers,

~ A is a commutative ring with a unit.

The object, which we are going to construct, is a special completion of
the group ring (denoted ~ for short), with respect to ~.

Namely, denote by A the abelian group of all the linear combinations of
the type ~1 = ~ ngg, where g E G, n9 E A and the sum may be infinite.

For any ~1 E A we denote by supp a the subset of G, consisting of all the
elements g, for which n9 ~ 0. For a real number c E IR denote by Gc the
subset of G, consisting of all the elements g, for which > c.

Now we denote by ~~ the subset of ~1, consisting of all the elements
a E A such that for any c E IR the set supp a r1 Ge is finite. It is obvious

that A~ is a subgroup of !1, containing ~i.

Moreover, A~ possesses the natural ring structure. Namely, let a =

~ rtg g, ~c = ~ mhh belong to . For any , f E G we set E A to be

~9~- f One checks up easily, that this sum is finite, the element
v = ~ f belongs to ~1~ and the operation v = a ~ ~,c endows ~~ with a
ring structure.

Note that supp(03BB. ) C supp 03BB.supp .
The ring h~ is called Novikov ring. It was introduced by Novikov E7~ for

the case G = 7~’~’z and by J.-C1. Sikorav ~13j in the general case.
The basic example one should have in mind is the following: G = ~,

the homomorphism 03BE is the identity. Then [[t]] [t-1] (the integer
Laurent power series ring).

If G is finitely generated, the rank of Im 03BE E IR is finite and is denoted by
rk 03BE. We shall be interested in this paper only in the case rk 03BE = 1. Now we
introduce more definitions for this case.



The homomorphism ~ : G -~ IR factors uniquely as £ . q, where q : G -; Z
is an epimorphism, 03BE : Z ~ IR is a monomorphism. Let t be a generator of
Z, such that (t) is negative. Choose and fix an element 8 E G, such that
q(8) = t. Denote g(8) by (-a), a is a positive real number. Denote Ker ~
by H.

The monoid ~ g E G ~ ~ (g ) _ ~ ~ will be denoted by G- .
Let 7L G- and A~ denote the subrings of ZG (and correspondingly of

A~ ), consisting of finite linear combinations (correspondingly, power series)
with the supports, contained in { ~ (q)  0) . The elements x of (resp.
Ar), for which supple E ~ ~ (q)  -(n + 1 )a } form the double-sided ideal
In of (resp. In of A~ ), which equals 8n+1 = 7L G- - 8’~+1 (resp.
8n+1 - . A = A~ . 8~’+1 ) . The natural embedding 7L G- ~ A~ induces
the isomorphism /L~ ---~ A~ which preserves the ring (as well as
ZG--bimodule) structure. For n = 0 these quotients are isomorphic to Z H
(an isomorphism preserves the ring and ZG--bimodule structures). These
quotients are denoted by 7L Gn .

Every right 7L Gn -module is therefore a right A~ -module. For any free

f.g. right 7LG--module F the module F A is the inverse limit of
the sequence F/h F ~ F/I2 F - ... of the right =03BE-modules.

Vice versa, every free f.g. right =03BE-module F is the inverse limit of the
modules - ~’/I~ ~’ - ...

Next we need the notions of simple homotopy type. For that we need an
analogue of the Whitehead group. Denote by U(G, ~) the multiplicative
group of units of the ring A~ of the form + A, where g E G and

suppA C ~~ (g)  Now we set:

~(G~)=~iA~(G~). .
As usual two f.g. free A~ -complexes G‘1, C2 with fixed bases will be

called simply homotopy equivalent if there exists a homotopy equivalence
f : ~’~ -~ ~‘2 such that the torsion of f vanishes in 

Let U(G, ~)- denote the multiplicative group of power series ~ E A~ of
the form ac = ~h + x’, where

hEH, supp x’ C {03BE(g)  0}.

The group )/U(G, ~)- is denoted Wh- (G, ~). . The projection :

=03BE ~ ZH sends U(G,03BE)- to {±h|h~H}, and therefore induces the

homomorphism 03C0* : Wh-(G,03BE) ~ Wh(H).



LEMMA 1.1. ar* : Wh-(G, ~) -~ Wh(H) is an isomorphism.

Proof - Surjectivity is obvious. Suppose next that for some matrix
A over A~ the matrix ~H is equivalent to (~h) ~ E (where
h E H, (~h) represents a matrix in GL(1), E stands for the unit matrix)
via several elementary transformations. Performing the same elementary
transformations over =03BE (note that ZH C =03BE) we get that A is equivalent
to the matrix B = where boo = ~h + ~oo, bii = 1 + ~ii 0 and

all the have the support, contained in ~~ (g) ~ 0 ~ . Since the elements

bii are invertible in the matrix B is equivalent to a diagonal matrix
B’ = where b’ii = bi2. This matrix is clearly 0 in 

COROLLARY 1.2. - A chain homotopy equivalence h : C* -~ D* of the

free f.g. =03BE-complexes is simple if and only if h ZH is simple. []

2. The statement of the main theorem

The manifold M is supposed to be compact connected and without
boundary. We denote dim M by m.

Recall that a closed 1-form 03C9 on a manifold Mm is called Morse form, if
locally ~ is an exterior derivative of a Morse function (defined locally). The
zeros of a Morse form cv are isolated and the index of each zero is defined.

For each zero c of index p we fix a coordinate system in a neighborhood
U(c) of c, such that c corresponds to = 0~ and the differential of the
standard quadratic form

equals in U (c). For E > 0 sufficiently small we denote by B(c, E) the open
f-disc around c in the standard coordinate system.

A vector field v on is called gradient-like vector field if:

(1) > 0 apart from zeros of w;

(2) for every zero c of 03C9 the field v has the coordinates

in the coordinate system above.



The gradient-like fields exist, see Milnor [5].
For each zero c we denote by J5" (c) (resp. B+(c)) the set of all points

x E M, such that the v-trajectory (resp. (-v)-trajectory), starting at
x, converges to c for t -~ oo. These are injectively immersed discs of
dimensions ind c, resp. We say that a vector field v satisfies the

transversality assumption, if for each two zeros c, d the manifolds .B’~ (c) and
B- (c) are transversal. The following result is a version of Kupka - Smale
theorem, and the usual argument, given for example, in ~11~, provides the
proof for this result as well.

PROPOSITION 2.0.2014 Let v bc a gradient-like vector field for /. . Fiz 03BB,
c > 0 sufficiently small, and such that A  6. Then in every neighborhood
U of v in the set of all the vector fields there is gradient-like vector field w
for f, , such that:

~1~ supp(v - ~.u) belongs ~o the union of the sets B(c, E) ~ B(c, A) over all
the critical points c of f;

~~~ w satisfies the transversality assumption.

Let [a, , b ~ be a segment of the real line, where a may equal to -oo,
b to oo. We say that a trajectory of the gradient-like vector field v
starts at x E M (correspondingly, finishes at y E M) if either a is finite and
-(a) = x (correspondingly b is finite and = y) or a = -oo, = 0 and

-(t) = x (correspondingly, b = oo, v(y) = 0 and = y).
A connected regular covering p : : M ~ lV~ with a structure group G will

be called 03C9-resolving if p*w = d f , where ,f is a !R-valued smooth function
on M. Since w is a Morse form, ,f is a Morse function. In the set of all

w-resolving coverings there is one, which is minimal in the sense that any
other one factors through it. That is the covering, corresponding to the
subgroup IR) (here we consider ~w~ (E as a

homomorphism of to lR); its structure group is which is

finitely generated subgroup of R, hence a f.g. free abelian group. We denote
this covering by p : Denote (w~ by ~.

In what follows we consider only the forms for which the rank of that

group is 1, i.e. the cohomology class ~ is up to a positive constant, an integer
cohomology class. In this case the covering p : M03BE ~ M is an infinite cyclic
covering.

Suppose now that ~ : At 2014~ M is any w-resolving covering with the
structure group G. The resolving function will be denoted f : M --~ !R.



The homomorphism [03C9]: 03C01M ~ IR is factored uniquely through G and the
resulting homomorphism will be denoted by ~ : G --~ IR.

We choose and fix:

( 1 ) the gradient-like vector field v for cv, such that v satisfies transversal-
ity assumption,

(2) for each zero c2 of 03C9 the orientation of the stable disc 

To this data we shall associate a free finitely generated chain complex
over ~~ , , where ~1 = ZG, which is called Novikov complex. It has the

properties, listed in Theorem 2.2 below.

We proceed to the definition. Let Cz be a free Z-module, generated by
the critical points of f of index z. Let C’2 be the abelian group, consisting
of all formal Z-linear combinations A of critical points, such that above any
given level surface f 1 (a) of / the combination A contains only a finite
number of points. One checks up easily, that Ci is a free right module
over and that any choice of liftings ? to M of all zeros c of w gives
the system of free -03BE-generators of C* . Let c, d be two critical points of
/, indc = ind d -)- 1, and let 03B3 be any trajectory of the vector field (-v),
starting at c and finishing at d. For any liftings c to M of a zero c of 03C9 we
denote by B+ (c), B ^ (c) the stable and unstable discs of 6 which are the
liftings to M of the discs B+ (c), _B- (c). In any point r of 03B3 the tangent
spaces Tc and Td to B’(c), are transversal,

dim Tc + dim Td = dim M + 1 , ,

Tc is oriented, Td is cooriented and the intersection Tc ~ Td is generated by
v, hence also oriented. This defines the sign ~, attributed to the trajectory
y (one verifies easily, that it does not depend on the choice of r) We denote
it by .

LEMMA 2.1.2014 Let c, d be the critical points of f in At, indc = .

Then:

(1) there is at most finite number joining c with d.(*)
The sum of the signs e(i) over all these tra~jectories will be denoted
n(c, d) .

(2) For each critical point c of f of index A; the formal linear combination
ac = 03A3 n(c, d)d, where d runs over all the critical points of f of index
1~ - 1, belongs to C,~_1.

~ *~ Here and else where we identify two trajectories, which differ by a parameter
change



We shall prove this lemma in Section 4.

The vector field v on M is G-invariant, which implies that 8 commutes
with G-action. From this one deduces easily that for each element of Ci of
the form A = ~ nici the element

is a correctly defined element of This defines a homomorphism
8i : Ci-1 of the right ~1~ -modules. If we want to stress that 8i
depends on v, we write it as a2~v). Any particular choice of liftings of zeros
of w to M determines a A~ -basis in C*, and therefore gives it a structure
of a based A~ -complex.

THEOREM 2.2

(1 ) 8i o 8i+ 1 = 0.

(2) The free based chain complex C*(v) _ is simply homotopy

equivalent to .

The proof of this theorem occupies the rest of the present paper.

3. Preliminaries on chain complexes

This section is purely algebraic. The part A deals with some special
filtrations in chain complexes, the part B - with chain cylinders and
telescopes.
A. A self-indexing Morse function on a manifold M determines the

filtration in the singular chain complex of M, and also of any covering
of M (for a precise definition of the filtration see Appendix). This filtration
~Fn~ possesses a special property that the homology of Fn/ Fn-1 vanishes
except in dimension n. The chain complexes with the filtrations like that
have some natural and simple properties which we treat in this section.

In this section all the chain complexes are supposed to begin from zero
dimension, i.e. to be of the Co E-- ...}, and the filtrations
to be indexed by natural numbers, i.e. be of the form



and to be exhausting, i.e.

Let A be a ring and

be a chain complex of right A-modules.

DEFINITION 3.1. A filtration 0 = G‘~ 1~ C C C ~ ~ ~ C

c ... of c* by subcomplezes C(i)*, where Ui = C* is called good if
is zero for n.

Note that for a good filtration HZ is zero for n  i.

To any filtration of some complex C* we associate a complex 
setting = and introducing differential 8n : Ct -

to be that of the exact sequence of the triple C~n-2)).
An obvious example of a good filtration is the filtration of the complex

D* by the sub complexes

The associated complex Df is D* itself. This filtration will be called trivial.

LEMMA 3.2. - Suppose that is a good filtration of a complez C* .
Let D* = { 0 E- Do - D1 E-- ... } be a chain complex of free right A-
modules and p : D* -~ be a chain map. Then there exists a chain

map f : D* ~ C*, preserving filtrations imply that D* is good-filtered
trivially) and inducing the map p in the graded complexes. This chain map
f is unique up to chain homotopy, preserving filtrations.

Proof. - The proof is a standard diagram chasing. We will give only
the construction of f.

Suppose by induction that we have constructed the maps : Di -~ Ci
where i  n - 1, commuting with the differentials a* in C* and d* in

D*, preserving filtrations (i.e. C C~t~~ and inducing cp in the graded
groups.



It suffices to define fn on the free generators of Dn: Let e be a

generator of Dn. Let z be any element in representing in the group
= Hn ~C’{n~/C{n-1 ~~ the element Sp{e). Consider the element

We have 8z = 0. The homology class of z in Hn-i (C~~’ 1~/C{n z~) is zero,
since the class of fn-i(de) is equal to the boundary of y2(e) in C;T which
is ~x. Hence z = 8u + v where u E v E . Note that 8v = 0

(in C* itself), hence v = aw, w E by the remark, following the
definition 3.1. Now we put

The class of x - (u + w) in is equal to that of x and
a fn ~e = (de); all the conditions are satisfied. D

DEFINITION 3.3. - A good filtration of a complez C* is called nice

if every module is a free right A-module.

COROLLARY 3.4. - For a nice filtration of a complez C* there ezists
a homotopy equivalence - C*, functorial up to chain homotopy in the
category of nicely filtered complexes.

Proof . The homotopy equivalence --~ C* follows from Lemma 3.2
if we set D* = and let f : D* -; be the identity.

To prove the functoriality suppose that C* and D* are nicely filtered
complexes with filtrations C~2}, and C* -~ D* is a chain map,
preserving filtrations. Denote by

the chain map, induced by f, , and by g : C;r --~ C*, h : -~ D* the
chain homotopy equivalences, preserving filtrations (recall that D*r
are trivially filtered). Then ,f o g and h o ~p are chain maps from to

D*, preserving filtrations and inducing the same map in graded homology,
namely ~p. Hence they are chain homotopic via the homotopy, preserving
filtrations. D



Now we pass to the category of based complexes.

We need one more notation. For a given nice filtration {C(n)*} of a
complex C* we denote by the complex, which vanishes in all the

dimensions except * = n and is equal to for * = n.

By Lemma 3.2 there exists a (uniquely defined up to homotopy) homotopy
equivalence

including identity in homology.

The base ring now is 7L.G. Let

be a free f.g. based complex of right ZG-modules.

Let be a filtration of C* .

DEFINITION 3.5. - The filtration is called perfect if the conditions

(1~-(l~~ below hold.

(1~ The complexes and the quotient complezes are free

f.g, complexes; the filtration is finite.

(Z~ All .the complezes and the quotient complezes ) 
are

endowed with.the classes of preferred bases, compatible in the sense,
that a preferred basis for ~ and a preferred basis for 

form a preferred basis for . The preferred basis for the final 
is a preferred basis for C* .

(3) is nice and = is endowed with a pre-

ferred class of bases.

(4~ The map Kn : -~ introduced above is a simple
homotopy equivalence.

Note that if C* is perfectly filtered, then every inherits from it a

perfect filtration; the corresponding graded complex is .

LEMMA 3.6. For a perfect filtration of a complez C* the

homotopy equivalence - C* (ezisting by Lemma 3.,~~ is a simple
homotopy equivalence.



Proof . Induction in the length of the filtration. 0

B. . In this part we prove a technical result on chain complexes which will
be of use in Section 4. Let {C~} and ~ D* ~ (n > 0) be two inverse systems
of chain complexes of right modules over some ring R, such that all the

maps

and

are epimorphic. Let hn : G‘* --~ D* be chain homotopy equivalences, such
that all the followine diagrams commute up to chain homotopy:

Let

PROPOSITION 3.7

(1) There exists a chain complex Z* and two chain maps A : 0393* ~ Z*,
B : 0* - Z* which induce isomorphisms in homology.

(2) If I‘* and 0394* are free chain complezes, then there exists a homotopy
equivalence G : ~* - 0*, such that the diagram

is homotopy commutative.

For the proof we shall need some preliminaries on telescopic constructions
for chain maps.



All the differentials will be denoted by a single letter ~ since there is no

possibility of confusion. Normally the element of, say, C* of degree n will
be denoted c~. The sign ~ denotes "chain homotopic" or "chain homotopy
equivalent" .

Recall that for a chain map ,f : C* --~ D* of chain complexes the cylinder

Z ~, f ~ is a chain complex defined by

Let:

denote the maps, defined by

The following lemma is trivial.

LEMMA 3.8. - Z(f)* is indeed a chain complex with that differential.
The maps i, ~r, j are the chain maps and have the following properties:
03C0j - id, id, 03C0i = f . D

We shall need a homotopy functoriality property for the cylinder con-
struction.

LEMMA 3.9. - Let:

be a homotopy commutative square of chain complezes. Then there ezists

a chain map F : Z ~h~ * - Z ~h~~ * such that in the diagram below all

the parallelograms, squares and triangles are homotopy commutative and,

moreover, two parallelograms are strictly commutative {F o i = i’ o f , F o~j =

.~ r o g) .



If f and g are epimorphic then F can be chosen to be epimorphic

Proof - Let H : C* --~ be a homotopy between gh and t~~ f . We
set:

All the properties follow immediately. D

Proof of proposition 3.7. Part ~1~. Set Z* = Applying the
preceding lemma to each square of (3.1) we get an inverse system

where each FZ is an epimorphism and the maps in : C~ -~ : D* --~
Z~, producing the strictly commutative maps of inverse systems:

Thus we obtain a morphism of inverse limits I : I‘* -~ Z*, J : ~* -~ Z*
( where Z* = lim Z* ) .



Moreover, ~ in, therefore each in induces an isomorphism in
homology. Since all the three systems were epimorphic, this implies that
~*, J* also induce the isomorphisms in homology. D

Proof of proposition 3.7. Part (2). - We shall construct a chain map
G : : I‘* -~ ~*, such that J o G - I. We add to A* a collapsible free

complex in order to get a complex ~* with the epimorphic chain map J’
and the diagram below, where p is a projection, e is an embedding, J’e = J, ,
Jp - J~. .

Note that J’ induce an isomorphism in homology, hence (Ker J’~ * is an

acyclic complex and by an easy induction argument we construct a map
: I‘* - 0*, such that = I. It is easy to check that ~ = p~p satisfies

our conclusion. Moreover, since JG ~ I, the map G induces an isomorphism
in homology, therefore it is a homotopy equivalence. The commutativity of
the square (3.2) is obvious. D

4. The proof of the main theorem. Part 1

Recall that w stands for a Morse form on a closed manifold M and the

rank of : 03C01M ~ IR) equals 1. We fix any w-resolving covering
p: : M 2014~ M and denote by p : M 2014~ M the minimal w-resolving covering,
which is infinite cyclic. There exists a commutative diagram



corresponding to the epimorphism of groups q : G -~ Z. Q is a covering
with the structure group H = Ker q. Let f : M --~ IR be the corresponding
Morse function;

and denote f o Q by I. . _

Let t be the generator of Z, uniquely determined by the condition

,f (t~)  /(.c). Choose and fix an element 8 (E G, such that = t.

Recall that we denote by ~ the homomorphism G --> Z induced by
[03C9] : 03C01M ~ IR. The class [03C9] factors also through Z and we denote by
~ : Z 2014~ !R the corresponding homomorphism.

Choose now any regular value of f. . Since we can change f by adding a
constant, we can assume that this value is zero. Let a denote ,f (x) - 
The preimage , f 1 { ~-a , 0 ~ ~ is a compact manifold W with boundary
8W = V U tV, where V stands for ,f 1(0), and ,f is a Morse function

on a cobordism W~. . Let n be a natural number and denote by V- the space
{ , f ( ~ )  0 ~ , by V ~’ t he space ~ f ( ac ) > 0 ~ , and by Wn the preimage:

so that Wo = W e Let W (n) denote the preimage f 1 ([-(n + 1)a, 0]),
that is: O

Note that for any n the restriction Q -~ W (n)
is a regular covering with the structure group H.



Fig. 4.1

The liftings of a vector field v to M and to M will be denoted by the
same letter v.

Proof of Lemma ,~.1. . - To prove both (1~ and (2) it is enough to show
that for each critical point c of f and for each a E IR there is at most finite
number of (-v)-trajectories, joining c with the critical points of f, lying
above the level a. The function f and the vector field v are induced from
M, so it is enough to check the corresponding assertion on M. . But it follows
directly from Lemma A.3 of the Appendix. 0

The proof of Theorem 2.2 will occupy the rest of this section and the
following one.

First we shall reduce the proof to the study of the Morse function ,f ,
restricted to Y - . .

We denote the preimages in M of the sets in M by adding the sign .
Let C’.* be a free Z-module, generated by the critical points of f, belonging
to V". . Let C’" be the abelian group, consisting of all the formal Z-linear
combinations A of critical points in ’Ll- , , such that above any given level



surface /-1 (a) of/ there is only a finite number of points in A. One checks
that Cy is a free right ~~ -module and that one can choose as a free basis
for Ci the liftings to M of the critical points off in Wo. In the same way
as in Section 2 one defines the homomorphism

(using Lemma 2.1). Similarly to the section 2, if we want to stress the

dependance of ap on v we write ap (v). One sees easily that the -03BE-module
Cp is the tensor product C’p ~03BE= -03BE, and the homomorphism ap equals
a~ ® id.

If we choose a smooth triangulation of M in such a way, that V is a
sub complex, then it induces a triangulation of such that all the Wi,
W ~ i ), V - are the subcomplexes. The chain complex of V - is a free
based f.g. chain complex over ~G- and the chain complex:

is just C~ -) .
We claim that in order to prove Theorem 2.2 it is enough to prove the

following theorem.

THEOREM 4.1

(1) ap o ap+1 = o .

(,2~ The free based complez C* (v ) = , aZ (v ) ~ is homotopy equivalent
to C*(Y-) ~ZG- ~~ .

(3~ The homotopy equivalence can be chosen in such a way, that it gives
a simple homotopy equivalence, when tensored with ZH. .

Proof of theorem 2.2 from theorem 4.1. - Note that by the definition of
the the simple homotopy type of C*(v) does not depend on the
particular choice of liftings c of the 03C9-zeros c to the covering M. Thus we
can choose the liftings in such a way, that their Q-projections belong to W.
Then the based complexes C* (v) ~~- ~~ and C*~~) are isomorphic by the
isomorphism, preserving the bases. The same is true about



Thus we have only to show that the condition (3) in the statement of our
theorem implies that the homotopy equivalence:

is simple. But it follows from Lemma 1.1. .

To prove Theorem 4.1 we consider the Morse complex of the

Morse function /, , restricted to the cobordism W (n), with respect to the
covering Q. It is obvious that C* (r~, v) is the quotient of C* (v) by the
subcomplex, generated by all the critical points of f , lying below the level

- (n + 1)a. Therefore, C* (n, v) obtains a structure of =03BE-module and it
is obvious that the projection pn : C*(n + 1 , v~ -~ C*(n, v) preserves this
structure and that:

Note that the simplicial chain complexes C~(V",~+~V") also form the
inverse system with the inverse limit C’~(V")~~~- A". D

LEMMA 4.2.2014 There exists o diagram

such that:

(1~ the maps hn are chain homotopy equivalences over 

(2) the squares of (l~ .1~ are homotopy commutative;
(3) the map ho is a simple homotopy equivalence over ZH. .

Proof of Theorem 4 .1 from Lemma 4 .2 . 2014 From Proposition 3.7, we
deduce the existence of the homotopy commutative diagram



where g is a =03BE-homotopy equivalence. Since any chain =03BE-map of a free
=03BE-module F to a Z H-complex factors uniquely though F we get,
that ~A~ ~H, hence g ZH is a simple homotopy equivalence,
and Theorem 4.1 is proved. D

The proof of Lemma 4.2 occupies the next section.

5. The proof of the main theorem. Part 2

In this section we give a proof of Lemma 4.2.
We note first, that if we demanded only that hn be the chain homotopy

equivalences over ZH, this lemma would follow from the results of Ap-
pendix. We need more, because we want hn to commute with the actions
of . Actually both C* (n, v ) and

are modules over hence it suffices to construct the hn of the diagram
(4.1) as ZG-n-chain homotopy equivalences and to check the chain homotopy
commutativity of the squares over ?Z Gn (note that ZG-n-1-modules and
maps are obviously ZG-n-modules and maps via the obvious projection

First we need an ordered Morse function on W(n) which respects the
action of t.

LEMMA 5.1.2014 There exists an ordered Morse function F : W (n) --~ IR,
such that v is a gradient-like vector field for F, F is constant on V and

and if x E W(n) and tx E W (7t), then F(tx)  F(x). o

Proof. - We need some more notations. ~e denote by f : ~ -

Sa = IR/aZ the quotient of f by the action of Z. A Morse function
g : : M --~ Sa = is called admissible, if:

( 1 ) g is homotopic to f and v is a gradient-like vector field for g,
(2) the set of critical values of g consists of N  n points, equidistantly

placed on Sa ,
(3) for two critical points x, y of g the values g(z), g(y) are the same if

and only if ind z = ind y.



A Morse function ~ : M 2014~ tR is called admissible, if = 2014 a and

the quotient g : M -~ Sa is admissible.
The standard procedure of ordering of the Morse function f [5, § 4]

implies, that admissible functions exist. Now we shall describe a procedure
of modification of an admissible function. We shall assume that the number

of different indices of the zeros of v is not less than 2 (otherwise the initial
Morse function satisfies the conclusions of 5.1).

Let g : At -~ Sa be an admissible function, r be its set of critical

values. Assume that ,1, I‘, that 12 = y1 + a/N (that means that 12
is the next critical value after and that ind y2  ind -y1 (the condition
(3) above) implies that for a critical value I E F the notion of index is well
defined).

For an ~ small enough let N be

The map g, restricted to N, provides a Morse function N -~ ~ 71 - ~ , ~y~ -f- ~ ~ ]
with two critical values 11  12, ind y2  ind 03B31. The standard ordering
procedure [5, § 4] provides us with a Morse function r : N --~ - ~ , ’Y2 + ]
which:

(1) coincides with.g in the neighborhood of g-1 (~~ + F) and g-1 (71 - ~’), ,
(2) has v as a gradient-like vector field,

(3) ~ ! = 7i~ ?- = 72.

We set g1 ( (M B N ) = g, gl ( N = T. . It is again an admissible Morse
function M --3 5~. .
We call this procedure elementary modification of the admissible function

g and the function 91 is called the result of the elementary modification.
The number ind ~y2 is called the lower index of the modification, the ind 71
the upper index.

If 9 : M - IR is a lifting of g to ~, then we fix a lifting gl M ---~ IR,
setting gl = 9 in ~ N).

Note that for this particular lifting g1 the values of critical points are as
follows: g1(03C9)  if ind w = ind 03B32, g1(w) > g(z.v), if ind w = ind 03B31,

= in the other case.



We shall always choose this lifting, so the admissible modification will be
applied to a pair (g, g) to get a new pair (gl, gl ) .

Remark. - One proves easily, that if y and z are critical points of g,
such that ind y  ind z and g(y)  g(z), then y and z are again the critical
points of gi and the inequalities ind y  ind z and g~ (y)  g1 (z) still hold.

LEMMA 5.2. - Let f : M -i .Sa be an admissible function, A be a finite
set of critical points of f : M - IR.

Then there exists a finite sequence of elementary modifications of f, ,
resulting with an admissible function g : M - S1a, such that if x, yEA
and ind x  ind y, then g(x)  g(y).

Proof . Denote by Ag C A x ~4BA the set of all the pairs (a?, y) E A x A,
such that ind x  ind y and > g(y). By the above remarks the set Ag1
is contained in Ag. So to prove the lemma it suffices to construct a sequence
of elementary modifications with the resulting Agn ~ Ag and Ag.
For that we need one more lemma.

LEMMA 5.3. - Let g : M --~ .S~ be admissible and le~ x, y be critical

points of g : M ~ IR, ind x  ind y, > g(y). .
Then there is a sequence of elementary modifications with lower indices

 ind x, such that for the resulting admissible function h : M - 51 we have

g(y)  h(y),  

Proof - Denote by N the number of critical values of g. Note that this
number is not changed under an elementary modification. We prove the
lemma by induction in (g(ae) - g(y)) which is an integer, because g
is admissible.

If g(x) - g(y) _ then the elementary modification, changing g(x)
and 9 (y) finishes the proof.

If not, then we distinguish two cases.

a ) For each critical point w of g between g(y) and we have ind w 

ind x. Then we apply the elementary modification to the pair of
critical levels g ( y), g(y) + (a/N). . After the modification the level

of x did not grow up, the level of y did grow up, and we are over.

/3) There are critical points w between g(y) and g(x), such that ind w >
ind x. Then we apply the induction assumption to the pair of critical
points w, a~. We get an admissible function h, such that 7(t~) ~ h(w),



h(z)  Note that the lower indices of the modifications were
 ind x, therefore the level of y did not lower.

Lemma 5.3 is proved, as well as Lemma 5.2. D

of the proof of Lemma 5.1. . - Let f : M --~ ,~‘a be an admissible
Morse function and W(n), as usual, be f 1 ( ~ - (n + 1)a, 0 ~ ) . . We apply
Lemma 5.2 to the function f and to the set A of all the critical points of f
in W (n). We get as a result an admissible function g : M -~ such that

the lifting g: M ~ IR satisfies g(x)  g(y) if ind x  ind y and x, y E 

We restrict the function 9 to W (n) and apply to g the damping con-
struction (see the Appendix Prop. A.10). It is easy to see that the resulting
function F : W (n) -~ IR satisfies the conclusions of the lemma. Indeed, the
only thing to check is the condition F(tx)  F(z) if x,tx E W(n). If both
x and tz do not belong neither to Uo nor to U1, then:

(For the definition of Uo and U1 see the damping construction of the

Appendix). If tx belongs to Uo, then ae does not, therefore

The case ac E Ui is similar. 0

Now we can proceed directly to the proof of Lemma 4.2. The functions
F : W (n) --~ IR, satisfying the assumptions of Lemma 5.1 will be called
t-ordered. For any t-ordered function F : : W(n) -~ ( rx , ,Ci with an ordering
sequence a  c~i  ~ ~ ~   ,Q we consider the filtration of the pair
~Y- V - by the sub pairs (Wp, V - ), where

Note that this filtration is t-invariant, therefore the filtration of the

singular chain complex

defined by

is the filtration by -modules.



Note that it is a nice filtration. Indeed, consider the free Z-module

Cp(n, v~ generated by the zeros of v of index p, belonging to W ~n~, and the
homomorphism J : ---~ ~p)) , which sends each zero c
to the homology class of the intersection of the descending disc D(c) with
F-~ , ,Ci ~~ modulo D~c~ rl (Here F stands for F o Q). By the
standard Morse theory J is an isomorphism of ZH-modules. It is easy to

see, that, since F is t-ordered, the isomorphism J commutes with the action
of 03B8 and, therefore, of .

By Lemma A.7 of the Appendix, J is an isomorphism of chain complexes.
From Corollary 3.4 it follows that the complex Cgr* is ZG-n-homotopy equiv-
alent to Cs*(, tn+1V-). Thus we get a ZG-n-homotopy equivalence:

Furthermore, it does not depend on the particular choice of t-ordered

function F. Indeed, let G : W (n) --> ~ a , b ~ be another t-ordered function
with an ordering sequence a  al  ~ ~ ~  am  b, generating the filtration:

Since v is a gradient-like vector field for both G and F, there are no zeros of v
in the sets ,C3~~ ,

which implies that Up and Wp are both deformation retracts (along the
(-v)-trajectories) of Up U Wp. Therefore {Up U Wp} is a t-invariant filtration
of V - , and it determines a nice ZG-n-filtration

Both J(F) and J ( G) preserve this filtration. Therefore in order to show

that J(F) is homotopic to J(G) it is suflicient (by Lemma 3.2) to show that
they induce the same map in graded homology. To see this notice, that the
J(F)-image (respectively, J(G)-image) of a zero c of v of index p in

equals to the homology class of



respectively, of

in

But since the sets:

respectively

contain no zero of v, it is obvious that these classes are even homotopic via
a homotopy along the v-trajectories.

Therefore J(F) is 7L.Gn -chain homotopic to J(G).
Now we proceed to check the homotopy commutativity of the following

square

where Fn, are the arbitrary t-ordered functions on W (n), resp.

W(n - 1).
Note that by the above we can choose any function we like. We shall

take as the lower damping of F~, ( W (n - 1). (One easily shows that
it is really a t-ordered Morse function on W (n - 1).) In this case the lower
horizontal arrow preserves the filtrations and the homotopy commutativity
follows again from Lemma 3.2.

To get finally the maps hn : C* (n, v) -~ C~ (~- tn+1 V - ~ as demanded
by Lemma 4.2 we compose l(Fn) with an arbitrary chain homotopy inverse
of the natural ZG-n-homotopy equivalence:

and thus the points ( 1 ) and (2) are achieved.
To get (3) we consider the simple ZH-homotopy equivalence R :

C* ~©, ~ ) -; C~ ~V - , tV - ) , constructed in the proof of Theorem A.5 with
respect to an ordered function Fo Then the composition ~ o R is homotopic
to hence R -~- ho. . Lemma 4.2 is proved. D



Appendix

Morse complex of a Morse function

Let (W ; Yo, be an m-dimensional compact manifold with boundary
aW = ~a U Let f : W -i IR be a Morse function such that Im f = ~ a , b ~, ,

= f -1 (b) _ ~1 and all the zeros of d f belong to W = W ~ aW .
Pick any gradient-like vector field v for f . For a critical point c of f

we denote by B- (c), resp. B+(c), the set of all points x E W such that
the v-trajectory, starting at x, converges to c, when the parameter tends
to -+-oo (resp. to -oo). We shall denote B- (c) ~1 ,f -1 (a) by B~ (c), resp.
B+(c) r1 f -1 (~1) by Bt(c). If we want to stress the role of v, we write

B~ (c, v), etc.
The following lemma is well known.

LEMMA A.O

(1) The set B- (c) (respectively, B+(c)) is a submanifold of W = W B
(V0 U V1) of the dimension p (respectively, m - p), where p is the
indez of c.

~Z~ For each regular value ~ of ,f the set B-(c) r1 f -1(a), resp. B+(c) r’1
,f ~~ (a), is the submanifold of ,f -1 (a) of dimension p - 1, resp.

We say that a gradient-like vector field v satisfies the transversality as-
sumption if for any two zeros c, d the manifolds B- (c), B+ (d) are transver-
sal. -

Note, that the transversality of B- (c) to B+(d) is equivalent to the

transversality of B~ (c) to B.t (d) in the manifold ,f -~ (.~), where a is any
regular value of ,f between c and d.

LEMMA A.1. - There exists a gradient-like vector field v for f, satisfying
the transversality assumption.

Proof . It is almost the same as that of theorem 5.2 in ~5~ .
We explain first a procedure of "elementary change" of a gradient-like

vector field. Let a be a critical value of f . Choose the regular value b, such
that b  a and there are no critical values of f in (b, a). . Consider the union of



all B- (d, v), where d is a critical point on the level a and denote by N(v) the
intersection of this set with f -1 (b) . It is a union of compact submanifolds

of ,f -1 (b), each having trivial normal fibration. If c is a critical point of f
below a, the intersection of B+ (c) with f ~ ~ (b) is a smooth submanifold (not
necessarily compact) of ,f -1 (b). Exactly in the same way as in [5, lemma
5.3], we find an isotopy cp of f -1 (b), close to identity, such that cp (N(v)) is
transversal to all the B+(c). By [5, lemma 4.6], we obtain the vector field w
which coincides with v everywhere, except , f -1 ([ b, b -f- ~ ~ ) , such that N(w)
equals ~p ~N(v)) . Thus the intersection B- (c) r1 B+(c’) for c, c’ below b did
not change and the intersections B+ (c) r1 B- (c’) are transversal if f (c’) = a.

Now the easy induction argument proves the lemma. D

Note that for the principal part of our paper we do not need to apply this
lemma since the gradient-like vector field satisfying transversality assump-
tion is provided by the gradient-like vector field for the form c,~, satisfying
the assumption. We give here the proof for the sake of completness.

From now on the vector field v, satisfying the transversality assumption,
will be fixed.

LEMMA A.2. - There ezists a Morse function g : W --~ ( c , d ~, such
that v is a gradient-like vector field for g and that all the critical points of
the same index have the same value, increasing with the index.

Proof . Apply several times [5, Theorem 4.1~. D

Such functions will be called regular with respect to v.

LEMMA A.3.2014 Let cl and c2 be the zeros of v of the index p and,
respectively, p - 1. Then there is at most a finite set of trajectories of
(-v), , starting at c1 and finishing at c2.{*~

Proof . Choose the Morse function g so as to satisfy the conditions of
Lemma A.2. Let d be any value in the interval {g(cl ), g(e2 )) . The set of
(-v)-trajectories going from ci to c2 is in bijective correspondence with the
set of points in the intersection of ~B- (cl ) r1 g-1 (d)) and (~~(c2)r)~’~(d)). .
These manifolds both are compact submanifolds of transversal to

each other and the sum of dimensions is m - 1. D

~*~ We identify the trajectories, which differ by a parameter change.



Now we shall describe two versions of Morse complex and prove that they
are isomorphic. To define the first version we need to fix the following data:

(1) A g.-I. vector field v for the function ,f , satisfying the transversality
assumption.

(2) For each critical point c of f an orientation of the manifold .B- (c).
(3) A regular covering p : W -; W with the structure group G (we do

not assume, that W is connected).
With these data fixed we proceed as follows. The lift of the vector field

v to W will be denoted by the same letter v. It is a gradient-like vector
field for the Morse function f = fop. If c, d are two critical points of f
such that ind c = ind d + 1, y is a v-trajectory, joining c and d, and z is
a point, belonging to ~y, then the tangent space (c) is oriented, the

tangent space TzB+ (d) is cooriented, their intersection is of dimension 1,
generated by the vector v, hence oriented. Thus we obtain a sign ~, which
is easily seen not to depend on z, and is denoted e(A). Lemma A.3 implies
easily, that there is only a finite number of (v)-trajectories, joining c and d.
The sum of the signs e(A) corresponding to these ~, is denoted n(c, d).
We denote by Cp the free abelian group, generated by the critical points

of f of index p. For each generator c of Cp we denote by 8pc the element
~d n(c, d)d, where d runs over all the critical points of f of index p - 1.
(Again Lemma A.3 implies that the sum is well defined.) Note that C* is a
right ZG-module and that the operator 8 commutes with the ZG-action.
Thus we get a map 8p : Cp-1 of ZG-modules. Now we fix:

(4) For each critical point c of f a lifting ê of c to W .

It is obvious, that these ê form a free basis of C*, and thus, with (4)
we obtain the homomorphism 8p : Cp ---~ Cp-i of the free based right ZG-
modules. If we want to stress the role of the choices (1)-(4) we write 
or even C* (v, W, e?, .~), where ~? is the choice of orientations, .~ the choice

of liftings.

Remark A.4. - If g is another Morse function with the same g.-I. vector
field v, the corresponding modules and homomorphisms are the same.

THEOREM A.5. - ~p o ap+1 = 0 and the resulting free based ZG-complex
C*(v) is simply homotopy equivalent to the chain complez of (W, ~p),
induced by any smooth triangulation of the pair (W, ~a) .~*~

( *) For a subset X of W we denote by X the preimage of X in W .



Before beginning the proof we shall present another version of Morse
complex, which will be of use.

If for a Morse function : W -~ ] there is a sequence of regular
values a = ao  al  ...  am  = /3, such that all the critical
points of c~ of index p lie in ~p-1 ((ap, then we say that cp is ordered

[3, p. 95] and that is a ordering sequence for cp. (We do not suppose,
that the critical points of the same index belong to the same level.)

The following lemma is standard.

LEMMA A.6. - Let p : W -i ~ cx , ~Ci ~ be an ordered Morse function with
an ordering sequence and a gradient-like vector field v, satisfying the
transversality assumption. Then:

(1) for every critical point c of c~ of indez p the pair

is diffeomorphic to (DP, ); it will be denoted by (DP ( c), (c)) ;
(2 ) The pair

where c runs through the critical points o,f index p is a deformation
retract ap+1 ~) . O

Now for an arbitrary Morse function / : : W --> [0,6] ~ with a gradient-
like vector field v, satisfying the transversality assumption, we choose an
ordered Morse function cp : W --> ~ a , ~ J with the same gradient-like
vector field and with a ordering sequence {o:p}. We denote and

the preimages ~-1 ( ( a , ap ~ ) by Wp. The above lemma implies, that the
homology , Wp) vanishes for * 7~ p. Denote , Wp) by

It is obviously a ZG-module. The differential d ---~ 

of the exact sequence of the triple (Wp_}_i , Wp , commutes obviously
with the ZG-action and determines the Z G-complex C* ( cp ) . If for each

critical point c of f of index p we choose an orientation of B - (c) and a
lifting 6 of c to W, the corresponding liftings of the pairs , Sp-1 (c))
will give a free Z G-basis of C’p(y)). .

Thus, having fixed an ordered Morse function cp with the same gradient-
like vector field v as for f , as well as the choices (2)-(4) above we construct
a free based Z G-complex 



The following lemma is an extension to the non-simply connected case
of the assertion of [5, corollary 7.3]. The proof is similar to that of [5] and
will be omitted.

LEMMA A.7. - There is an isomorphism J : C*(v) - ~‘*(cp~ of graded
ZG-modules, such that it preserves the chosen bases and that J o a = do 

Proof of Theorem A.5. - The property ap o = 0 follows from

Lemma A.7, which implies also that it suffices to prove the simple homo-
topy equivalence ~- C~ (W, ~o~, where 0 stands for some smooth
triangulation of W, such that V~o is a subcomplex.

First we note that by the standard argument the simple homotopy type
of C~ (W, indeed does not depend on the chosen triangulation ~, (see
~4,. th. 10.4~ and [6, th.7.1]). Thus we can choose any smooth triangulation
of (W, Yo~.

LEMMA A.8. - There exists a smooth triangulation of (W, V0) such that:

(1~ ~o, ~V1 and all the ~ 1 (a2~ are simplicial subcomplezes;
(2) for each critical point c of index p the disc is a simplicial

subcomplez;

(3) the embedding

where c runs through all the critical points of index p, is a simple
homotopy equivalence.

Proof. - Of course this lemma is essentially well known, and in a sense
it is implicit in [6, sect. 9]. We give a proof for the sake of completeness.

Fix a natural number p: 0  p  m. We assume for simplicity that
there is only critical point c of index p in , ap+1 ~~ . We assume

= 0. We start with triangulating the manifold U = ([ -E , e ~~
in such a way that DP(c) n U is a subcomplex. To do that we suppose
that e is small enough and consider the standard coordinate neighborhood
U(c) C x IRP around c (fig. Al). Here



Fig. Al

Denote I by a ~ ~ , y ~ and consider the set C = Sp-1 ~ ~ -F , ~ ~ ~ D
a-1 {~ 0 , c]) (shaded on the fig. A1). It is the conical subset ofRm with the
boundary, split into three parts:

and

We denote by V the intersection:

The vector field v = grad ~p = ~-2 i , -~-2 y ~ is tangent to 81C and

determines a diffeomorphism V x [0, 1] % 81 C, which is restriction of



Note also that 82C is diffeomorphic to x by means of a
diffeomorphism, which sends ~?2 G‘ n IRP to x ~0~ and to

x c~D"z--~ _ Sp-1 x 

Now we choose (by [4, th. 10.6 ]) any smooth triangulation of ~-1 (~),
such that V (and, henceforth and is a subcomplex. We
triangulate U B Int C as a product. Now the intersection (-e) r1 81 C =
a(a2c) is triangulated. We expand this triangulation to a triangulation of
~2C in such a way, that RP D 82C is a subcomplex.

Now we have triangulated 8C completely and we take a cone on this
triangulation to get the triangulation of C. Note that the DP(c) D U, being
a cone over Sp-1, is a subcomplex, and that our triangulation fits with the
product triangulation of ~7 B Int C, so that we can expand it to triangulate
all the U.

Now using the shift along the (-v)-trajectories one easily constructs a
diffeomorphism cp-1 (~ -E , E ~~ to which leaves c~-~ (E) fixed
and sends DP(c) rl ([ -~ , ~ ~~ to DP(c) r1 ~-1 ([ ~~ .

Applying the same procedure to all the critical levels ys E [ as , as+l ],
0  s  m (we assume, that all the critical points of the same index belong
to the same level) we get the triangulations ~- ~ ~~ . Now we
triangulate the manifolds + E arbitrarily by [4, th. 10.fi~,
and the proof of (1) and (2) is finished.

The proof of (3) is reduced, by the homeomorphism invariance of

Whitehead torsion to the proof of simple equivalence p-1 (-~) U D(c) ~
([ -~ , E ~ ) in the situation above. This is done in sect. 3~ . D

We can now finish the proof of Theorem A.5. It is obviously enough to
prove it for W connected and in this case for the covering W --~ W being
universal.

The filtration of ( W, by the pairs ( Wp, where Wp = ~p-1 ( ~ a ap ~ )
is now a filtration by subcomplexes, hence it induces a filtration in

~’~ (W, ~o) which is nice. By the preceding lemma it is even perfect. In-

deed, denote by C* the chain complex C~ (W, , VQ~ by the sub complex
cf (W ~1, ~o) , by Yp the simplicial subcomplex



We give the ZG-module = 
, Wp) the basis, formed by the

liftings A(c) of the discs (DP(c), , ,Sp-1 (c)~ to (Wp 1 , where c runs

through the critical points of f of index p. Note, that the map

which sends the homology class of each lifting A(c) to A(c) itself, induces the
identity in homology, therefore it is homotopic to the homotopy equivalence

: -; (in the notations of section 3). To check, that

~p is a simple homotopy equivalence, consider the following commutative
diagram:

The middle vertical arrow is a simple homotopy equivalence by A.8,
therefore Kp is a simple homotopy equivalence, and the filtration 
is perfect.

Now Lemma 3.6 implies our theorem. 0

Note that the resulting homotopy equivalence C*~v~ --~ C~ ~W 
depends on the choice of c~. To be able to compare the equivalences for
different choices of 03C6 (and A) we denote by the composition

(where the latter module is the singular chain complex) and formulate one
more version of Theorem A.5.

THEOREM A.5~.2014 Let Sp : W -~ [x, , ~3 j be an ordered Morse function
on the cobordism W, v be a gradient-like vector field cp, = U4,

03C6-1(03B2) = V1 and Iet a  cxl  ... -  03B1m  03B2 be the ordering sequence. Let

~ : W -~ W be a regular covering with the structure group G and denote ~y
Wp the space 03C6-1 ([03B1,03B1p]) .



Then there exists a homotopy equivalence : G’* (v~ ~ C* (W , ’~~~ ,
such that:

(1~ .~(~P) (~‘p(~’)) C Vo~ f
(2) for each critical point c o,f of index p the image of 

in the group equals the class of descending disc

, (c)) of the point c.
The homotopy class of is uniquely determined by ~1~ and (~~.

All the statements of this theorem are already proved, except the

uniqueness of which follows from Lemma 3.2. ~

PROPOSITION A.9. - Let 03C6 and 03C6’ be two ordered Morse functions on
the cobordism W with the same gradient-like vector field v, and p : W ~ W
be a regular covering with the structure group G.

Then the chain homotopy equivatences : C*(v~ --> C* (W , ~o~
are chain homotopic.

Proof. - 

the ordering sequences for ~p and r~~. Let:

and denote by Up the union Wp U Wp. The pairs (Up, form a filtration of

(W, Note that the corresponding filtration Vo) in the singular
chain complex is nice. Indeed, by the definition of ordering sequence, there
are no critical points in the domain

which implies that the shift along the (-v)-trajectories defines the defor-
mation retraction of Up onto Wp. (Similarly, there is a deformation re-

traction of Up onto Wp.) Now the five-lemma implies that the inclusion

(Wp, Wp_ ~ ~ ~ ( Up, Up-i induces an isomorphism in the homology of the
coverings.

Now the maps J(~p’) preserve the filtrations (where C*(v) is filtered
trivially), thus we have only to show, that for each critical point c of cp
(or of index p the images and in the homology of

, Up) are the same. An easy argument, using the shift along



the v-trajectories shows that the intersection of the descending disc of c
with ([ ap, , ~Ci ~~ is homotopic to its intersection with ([ a~ , ,C3 ~) r1

~r-1 ([ , ~C3~ ~ ) , In the course of this homotopy the boundary of the disc
rests always in ( ( a , a~, ~ ) U cp~-1 ( ( cx~ , a~ ~ ) . The same for the disc

D ( c) r1 Sp~-1 ( ( cxp , ~3~ ~ ) . . The lemma is proved. . 0

Suppose now, that f : W -~ IR is a Morse function, and (a, b) is a
regular value. By Theorem A.5~ there are chain homotopy equivalences

and

We want to establish relations between these maps. For that we need one

more notion.

Suppose that W is a compact cobordism, 8W = Vo U Vi, f : W --~ IR
is a Morse function, v is a gradient-like vector field for f, such that v is
transversal to aW and points inwards W on Vo and outwards W on Vi . We
do not suppose that f is constant on Vo or on Vl. . For a small c consider

the diffeomorphism Fo to 0 , ~ ~ ] onto a neighborhood of Vo in W,
defined by t~ = where is the v-trajectory, starting in x at
the moment t = 0. Similarly consider the diffeomorphism Fi of Vi x [0 , c] J
onto a neighborhood of V1 in W, given by

where y is the (-v)-trajectory, starting in x at the moment t = 0. Denote
Im Fo by Uo, Im F1 by Ul .

PROPOSITION A.10. - There exist two functions f and f on the cobor-
dism W, satisfying the following properties:

~1~ >_ f (x), and if x ~ U1, then f(x) = f (x),
f(x)  ,f (x), and if x ~ Uo, then f(x) = f(x);

(2) f and f are Morse functions and v is a gradient-like vector field for
both; 

-

(3) f is constant on V1 with the value maxx~V1 ,f (x). f is constant on

TTo with the values minx~V0 f (x).

The proof is easy and will be omitted. 0



The functions f and _f will be called upper damping and lower damping.
The result of two consequent operations, applied to f will be called damping
of f and denoted by I. . These dampings depend on some choices (as Uo, 
but we never consider more then one, so no possibility of confusion occurs.

Consider now a cobordism W, 8W = Vo u Vi, f : W -> ~ a , b ~ a Morse
function, f -1 (a) = Yo, f -1~b) = V1. Let v be an arbitrary gradient-like
vector field for f. . Let ~ a , b ~ be any regular value for f . Denote by
Va the preimage by Wo the cobordism f -1 ~~ a , by Wl the
cobordism f -1 ([03B1 , b]). Any ordered Morse function 03C6 on W (with the
same gradient-like vector field v) defines a chain homotopy equivalence:

Any ordered Morse function ~ on Wi defines a chain homotopy equivalence

where C* (v ) is the Morse complex of f ~ W1, which is a natural quotient of
C* (v), the projection denoted by ~.

PROPOSITION A.11. - The following diagram is commutative up to a
chain homotopy : :

~io and il are the natural inclusions).



Proof. - By Proposition A.9, the chain map J~~) does not depend on
particular choice of 1/J. Thus we can take as 03C8 the lower damping of W1.
It is easy to verify, that if a  a1  ...  am  b is an ordering sequence
for ~p, then the sequence o:  ar  ...  am  b, where is an
ordering sequence for ~. All the three complexes ~‘* ~W , ~‘* ~W , Wo) ,
C* are nicely filtered: the first - due to the ordering sequence
of the third - due to the ordering sequence of 1/;, the second obtains
the filtration from the third. The homomorphisms io, i1 obviously preserve
the filtrations, io - because Sp  ~ on Wi, il by the obvious reasons.
Therefore Io = io o and II = il 0 J(~) 0 7r preserve the filtrations
and to prove that they are homotopic, we are left to prove that the Io and
I1-images of each critical point c of index p of  in the homology group

are the same. But these images are: the intersections of D(c) with
~"~([a? , , b ]) modulo the boundary D(c) r1 (ap) and the intersections of
D(c) with modulo the boundary D(c) , b~) . They
are obviously homotopic by means of the shift along the (-v)-trajectories. []
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