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Positive solutions of an obstacle problem(*)

YANG JIANFU(1)

339

RÉSUMÉ. 2014 Dans cet article, nous considérons l’existence d’inegalites
variationnelles définies sur des domaines exterieurs. Nous obtenons deux

solutions positives s’annulant a l’infini.

ABSTRACT. - In this paper, we consider the existence of variational

inequalities defined exterior domains. Two decaying positive solutions
are abtained.

1. Introduction

The aim of this paper is to establish the existence and asymptotic
behaviour of positive solutions of the obstacle problem

defined on an exterior domain SZ = IRN B w, N > 3, where w is a bounded
domain in IRN with smooth boundary. The set K is defined by

which is convex; 1/; is the obstacle function.

The extensive scientific applicability of the obstacle problem is well

known (see [6], [11] and references therein), for example, in mechanics,
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engineering, mathematical programming, control and optimization. Math-
ematical interest in the problem ( 1.1 ) ~ arises in part because first the non-
linearity f we consider here is superlinear, so the corresponding variational
functional is neither bounded above nor below, we are unable to establish
the existence of positive solutions in a usual way by finding the minimum
of the functional in the convex set K. Instead, we shall try to obtain crit-
ical points of the corresponding functional of ( 1.1 ) a in K; second because
the problem is considered on unbounded domains, the injection in

is not compact in the case, therefore the variational functional fails
to satisfy the Palais-Smale (P.S.) condition.

The existence problem related to similar obstacle problems of ( 1.1 ) a
has been studied in [9], [10], [14] in bounded domains. A counterpart in
unbounded domains can be found in ~1~ . Among other things, it is required
in [1] that the positive part of the obstacle function has a compact support,
hence the key steps are essentially infered by the techniques for semilinear
elliptic problems. In present paper, more delicate results will be established
under assumptions for the obstacle function ~:

where 7* > 1, C > 0 are constants. We shall show that there exists a positive
number A*  +00 such that the problem (1.1);B has no positive solutions
for A > A*, while it has at least a minimal positive decaying solution for all
A E (0, A*). Furthermore, we prove that there exists A**, 0  a**  A*, such
that ( 1.1 ) ~, has at least two positive decaying solutions for all A E (0,A**).
It will be interesting to know if A** = A* and if A* is a turning point.
Precisely, suppose I (t) is a function satisfying:

(fl) f e C~, f(t) >0if~>0; /(~) = 0 if ~ 0 and f(0) = 0, /’(0) = 0;

(f2) there exists a positive constant C > 0 such that

(f3) ,f (t) is strictly convex and increasing for t > 0;

(f4) there is a number 8 E (0, 1) such that



Our main result is the following theorem.

THEOREM 1. Suppose (1.3)-(1.4) and (f1)-(f4) hold, there exists

~*, 0  ~1*  -f-oo such that (1.1~~ has at least a positive solution in

for a E (0, a* ), but it admits no positive solutions

for a > a* ; ; moreover, there ezists a**, 0  a**  a*, such that

possesses at least two distinct positive solutions 0  u(a)  U(a),
u(a), E rl for each a E (p, a**), where u(a) is a

minimal positive solution. Furthermore, if u is a positive solution of (1.1~~,
in .FIo (S2), then u E both and ~ have uniform
limits zero as -~ oo, and u satisfies

for R > 0 large enough and any ~ > 0, where ~‘2 are positive constants.

A minimal positive solution of the problem ( 1.1 ) a is defined to be the

positive solution u(A) of the problem (1.1)x such that u > for any

p ositive solution u of ( 1.1 ) ~ .
Theorem 1 is deduced in section 1 and section 2 by several propositions.

We first show in section 1 that there is a local minimum of the variational

functional in K, then a barrier device enable us to obtain the minimal

positive solution; the existence of a second positive solution is investigated
in section 2 by a variant of the mountain pass theorem. We shall infer that
the variational functional satisfies (P.S.)c condition for c in some intervals
via the concentration-compactness principle in [8], therefore we may find
nontrivial critical points of the functional.

2. Minimal positive solutions

In this section we show that there exists A* > 0 such that the problem
(1.1)a has a minimal positive solution for A E (0, ~*). Furthermore, a* is

verified to be finite; asymptotic decay laws are also established for positive
solutions of ( 1.1 ) ~ . .

Let be the completions of the sets CQ (SZ)
respectively in the norm



The energy functional is defined by

where F(t) = J~ ,f ~s~ ds. It is readily to verify that I is well defined and
differentiable on 

By a critical point u of I we mean that u ~ K and

Critical points of I(u) in K correspond to weak solutions of (1.1)a, the
maximum principle implies the solutions are positive.

LEMMA 2.1. - Suppose (f1)-(f3), (1.3), then there exists 03BB0 > 0 such
that the problem has a positive solution for all a E (0, ao), the solution
is a local minimum of I in the convex set K.

Proof . It follows from (f2 ) that for u E 

We may choose A > 0 small such that

Let

Since  (1/2)p, the set Kp = K n Bp is not empty for A E (0, 
For any u E Kp, ~ E (0, we have

Let be a minimizing sequence of the variational problem L :_
we know from (2.3) that is bounded in 

hence we may assume that

for some u E K.



By (f3) and a lemma of Brezis and Lieb [5] we get

it results

On the other hand

then (2.3) yields

This and (2.4) imply

By (2.3) we know that strongly in L is assumed by u.
We claim that u E Bp. In fact, by (2.3):

The proof is completed. D

Remark 2.2. It follows from (2.3) and ( 2 .5 ) that

Define

To obtain a minimal positive solution of ( 1.1 ~ a, we collect some facts for
the linear variational inequality



LEMMA 2.3. - Let qb be a function satisfying (1.3), f e then

(2. 6) has a unique solution u e H2,q(03A9) such that

where ~Au , ~ ~ := a(u, u) . .

Proof. - The existence and uniqueness of the solution to (2.6) are

consequences of the Lions-Stampacchia theorem the regularity of the
solution and (2.7) are deduced in a standard way in [6] and we omit

the details. 0

A function g is said to be a supersolution of A - f if g E H1 such

that

Obviously, any solution of (2.6) is also a supersolution of A - f .

LEMMA 2.4. - Let u be a solution of ~~Z. 6~, g E H1 be a supersolution
of A - f satisfying g > ~ and g > 0 on aS~ in sense of H1 (5~~, then

Proof . We refer to [6] for the proof. 0

LEMMA 2.5. - Under the assumptions ~1.3,~, ~~.1~~, (fl) and (f2), if u
is a positive solution of ~I.~~a, , then u E r1 C1e(~); moreover:

~i~ u(x) and I have uniform limits zero as -; oo;

for any b > 0, there exist positive constants Cl, C2 such that

where R1 > Ro large enough, Ro denotes the smallest positive number
such that cv C B~ _ { ae E  Ro) .

Proof . - We first prove (i) . . To this end, we claim that u E In

fact, by (f2) we have



Consider the following problems

We remark that Lemma 2.3 still holds if q > 2 N/ ( N + 2), hence (2.9) and
(2.10) are unique solved by ui and u2 in K. A bootstrap argument yields
ul, u2 ~ H2,q(03A9) for q > N, therefore u1 and u2 belong to for

some /3 ~ (0, 1).
Since ui and u2 are supersolution of A - CuP, A - Cu respectively,

W = ui + u2 is a supersolution of A - It implies by Lemma 2.4 that

hence E Lemma 2.3 leads to u E 

Fixed R > 0, it is known from the Sobolev embedding that for C 0
there exists a positive constant C independent of such that

then (i) follows.
Since u is a supersolution of Au - a,f (u), the inequality >

Ci exp ( - ( 1 + 6) for x ~ > R1, can be established as [13] and [16].
On the other hand, Au - a f (u) is a positive linear functional on

so there is a nonnegative Radon measure  with supp  C r :=

{x u(x) _ ~(~)~ such that

Furthermore, under our assumptions we obtain by (2.7) that

Let ~Q = ~1 - b~ ~ ~2 . Since ) --~ 0 as ( --~ +oQ, by (fl) there exists
Rz > Ro such that



The assumption (1.4) gives that there exist r > 1, C > 0 and R3 > 0

large such that

Fixing ~~ C T - 1 by the first part of (ii), we may find R4 > 0 such that

Let v(x) = m exp (-03B2(|x| - R5)), where R5 = max{R2, R3, R4}, m =
= > 0. For any M > R5 set

Then n(M) is open. By (2.11), (2.12) and (2.14) we have for x E n(M):

By the maximum principle, we have for z E 

Since = v(x) = 0, it yields by letting M - +00
that

hence the conclusion follows. 0

PROPOSITION 2.6. - Suppose (1.3), ~,fl~-(,f3~ hold, the problem ~1.1~a
has a minimal positive solution for all a E (0, a*) .

Proof . For any A E (0, A*), we may find A  A’  A* such that 
has a positive solution u E then u is a supersolution of A- a’,f ( ~ ),
that is for any ( E Ho (SZ), ~ > 0:



Thus u is also a supersolution of A - ~ ) .

We consider the problem

It is deduced by Lemma 2.3 that (2.15)1 has a unique positive solution
1~1 E q > N, ul E K. By Lemma 2.3

Since f is increasing

i. e. u1 is a supersolution of A - a f ( . ) .

Consider following problems

By (2.16), we know that E Therefore, it yields by iterating
that (2.15~~ has a unique solution uk satisfying

Let v = u in (2.15)k, then by (2.17) and (f3)

Therefore

By Young’s inequality



Then we may assume

We claim that uo is a solution of ~ 1.1 ) a, then is solvable for all

a ~ (0, a*~. In fact, by (2.15~~ one has

By (2.17) and Lebesgue’s monotone convergence theorem we get

The weak convergence implies

and

From (2.21)-(2.22), it concludes in taking limit in (2.20) that

hence ua is a solution of ( 1.1 ~ ~.
Denote by Q(A) the set of supersolutions of A - ), namely

Since solutions of ( 1.1 ) a are supersolutions of A - a f ( ~ ), is
not empty for A E ( 0, ~1 * ) . Define

We claim that W is a supersolution of A - ~,f ~ ~ ).



We note that ~  W  uo, f(W) E it is claritied by Lemma 2.3
that the problem

has a unique solution ( E H~’~(n). .
For any u E it satisfies

for v ~ Ho (S~), v > 4. Therefore u is a supersolution of A - Lemma

2.4 gives

hence

We remark that ( is also a supersolution of A - then for all

R~(~), ~ > 0

this means ( E Q(A); so ( > W, we conclude ~ = W and W e Q(A).
We claim that W is the minimal positive solution of ( 1.1 ) ~. In fact,

replacing u in (2.15)1 by W, we may construct a sequence of solutions ~uk~
of ( 2.15 ) k such that uk tends to a solution u( a ) of ( 1.1 ) ~ as k -~ oo, the
solution u( À) satisfies

Since includes all solutions ( 2.~7 ) implies that u( a ) is the
minimal solution of ( 1.1 ) ~, . Because of E ~ ( ~ ) , we have = W . C7

To show A*  oo, we consider the linear eigenvalue problem



LEMMA 2.7. - Suppose g ~ > 0 and ~ 0 as ~ae ( --~ oo,
then the problem (2.28) has a positive solution u such that

Proof. - It is obvious that 0  v  -I-oo, let be a minimizing
sequence of v, i. e.

we may assume vn > 0. Since ~vn~ is bounded in it may be assumed

that

Fatou’s lemma implies  . We claim that
o n o

By the assumptions of g, there exists a constant C > 0 such that  C

for all x E S~; for any c > 0, we may find R > 0 large enough such that
g(x)  e, for R, thus

By the Sobolev embedding, it follows that for n > no, 1 large

(2.30), (2.31) and the arbitrariness ofc imply (2.29). Hence v is attained
by v, the maximum principle yields v > 0. 0



Let u(a) be the minimal positive solution corresponding to A E ~o, x* )
obtained in Proposition 2.6, we remark that for A, (0, ~* ), correspond-
ingly we have  u ~ ~’ ~ (here and below "" means "" and "~" ) .
Define

then we have the following proposition.

PROPOSITION 2.8. - a* is finite.

Proof. 2014 First we claim that v(a) is nonincreasing in a for a E (0, a*).
Let A  A’, A, A’ E (0, a*), u(a) and u(a~) are corresponding minimal

positive solutions with u(())  u(a’). By Lemma 2.5 and Lemma 2.7, v(~)
is attained by some vx E vx > 0. Since f’(t) is increasing for t > 0

so there exists 0  t  1 such that

therefore

Next we show A*  +00.

Fixing Ao E (0, ~* ), for any a E ~* ) there exists ~ > 0 such that

Ao  Ai := Ao + c  A; correspondingly, we have minimal positive solutions

u(Ao), and verifying

and nonnegative Radon measures ~.c ( a o ) , satisfying

Therefore



Multipling both sides by vao and integrating by part, we deduce

If ~l  for any A E (Ao, A*), then we have done; if A > for

~ ~ ~*)~ by (2.34)

Since

it follows from (2.35) that there exists a positive constant C such that a  C
for all A* > ~ > v(ao) ~ . Thus the proof is completed. D

3. Existence of a second positive solution

The existence of a second positive solution of (1.1~~ will be established
in this section. We shall find a critical point of the functional

in the convex set

other than the minimal positive solution u(A), where 5 is the indicator

function of i.e. b(u) = 0 if u E 03BA03BB and _ +oo otherwise.

We need show that a critical point u of J (u) in is a solution 

Let u be a critical point of J(u~ in it satisfies



Denote by r = (z ~ Q = ~(.c)} the coincidence set, it is standard
to verify

Furthermore, since

by the Riesz-Schwartz theorem there exists a nonnegative Radon measure
~c such that

From (3.3) we derive supp ~ C r.

LEMMA 3.1.2014 Suppose u satisfies (3.,~~. Then u is a solution of (1.1~a .

Proof. . ~Ye remark that (3.3) is valid for the minimal positive solution
for all v C > 03C8}). For any 03C6 ~ C~0 ({u > 03C8}), by (3.3) and

above remark we deduce

It implies supp  ~ F = {x E 03A9 | u03BB(x) = 03C8(x)}. Then for any given v ~ K ,
we obtain



Therefore

LEMMA 3.2. - Suppose ~,fl~, (f3) and ~fl~~, then:

(i) there exists e E (0, (1/2)) such that et f (t) > F(t) for t > 0;
is monotone nondecreasing for t > 0 and is strictly

monotone increasing for t > 0;

(iii) for s, t E (0, 

For the proof of Lemma 3.2 we refer to that of Lemma 2.1 in [16].
A sequence ~un~ C is known as a (P.S.)c sequence for c E IR if

and

whete zn -+ 0 as n --~ oo.

The functional J satisfies (P.S.)c if and only if each (P.S.)c sequence of
J has a convergence subsequence.

Let u, v E LP, we denote v = ma.x~u, v ~, u /~ v = min~u, v ~.

LEMMA 3.3. - Let ~un~ be a (P.S.)c sequence of J. Suppose un weakly
converges to u, then u is a solution of (1.1~~ .

Proo,f . By Lemma 3.1 we only need show u satisfies (3.2).
By the assumptions, ~un~ satisfies

where n  0 as n -; oo.



Let v = 21Ln in (3.7) we obtain

L emma 3.2 and (3.6) yield

By (3.8) and (3.9)

so is bounded in Ho (SZ), we may assume un ~ u weakly in Ho (S~) and
2L~ a.e. in ~.

Denote ux = u(~1), let v,~ = un + (un - u - in (3.7), setting
iPn = un - u we get - u~~ + = SPn - S~n n ua, thus

We claim that

In fact for R > 0

Since cpn ̂  u03BB  0 a.e. in 03A9, we infer by Lebesgue’s dominated convergence
theorem that



In addition by (f2)

By (3.15) and (3.16), letting n --~ oo then R --~ oo, we obtain (3.12).
Similarly, we can prove (3.13).
We follow the argument in [10] to deduce (3.14). Let v = u + (Spn - u~~ 

+

in (3.7) then

that is

It results by noting Spn = Spn + - ux) + that

By (3.12)



On the other hand, 03C6n A 0 weakly in H10 (03A9), it implies

By (3.13)

Let xn be the characteristic function of the set {x E {1 > u~, ~x ~ ~ ,
then

since ~n n 0 almost for every ~ for which > 0. Therefore ( 3.18 ) gives

Hence (3.14) follows by (3.17) and (3.19).
We deduce by (3.11)-(3.14) that

therefore

The weak convergence yields

By Strauss lemma [12] for R > 0



Furthermore, it can be proved as (3.16) that

Consequently

Hence (3.21)-(3.23) give

From (3.7) and (3.24) for any v E 

satisfies (3.2). D
A ground state > 0 of the problem

will be used in our proofs. By a ground state w of (3.25) we mean a solution
of (3.25) such that the minimum of the energy functional of (3.25)

is attained by it among all solutions of (3.25), that is

It is well known ([4], [7], [12]) that there exists a ground state =

> 0 of (3.25) under the assumptions (fl)-(f2), and the ground state
w satisfies following estimates

and



The (P.S.)c sequence is precisely described by Proposition 3.4.

PROPOSITION 3.4. Under the assumptions ~,fl~-(fl~, suppose that

is a sequence for J. Then there ezists a subsequence (still
denoted by {un}) for which the following holds : there exist an integer
m > 0, sequences ~~e;~~ ~ for 1  i  m, a solution u of 
and solutions ~Z ~1  i  of (3.25) such that

where we agTee that in the case rrz = 0 the above holds without uz, ~n .

Proof . The boundedness of can be demonstrated as (3.10), then
we way assume

It is known from lemmas 3.1 and 3.3 that u is a solution of ~ 1.1 ~ ~, .
From (3.34)-(3.36) for cp E Ho ~S~t)

By Brezis and Lieb lemma [5]



Let _ (un - u)(x) if x E 03A9 and = 0 if x E S2. Then

by (3.34)-(3.36) n 0 weakly in and Since f is convex, by

applying Brezis-Lieb lemma and by taking account of (3.37) and (3.39) we
obtain for n large

The rest part of the proof is the same as that of Lemma 3.1 in [3], we
outline the proof. Suppose does not converges strongly to 0 in Ha
(otherwise we shall have done), then we may show that there is a sequence
~x~,~ C such that 0 weakly in and u1 solves

(3.25). Iterating this procedure we obtain sequences

and C such that weakly in I~1 (RN),
u~ solves (3.25). The proof then follows by induction. 0

Recall that Ro = > 0 ( w C let ~ : R+ U ~0~ --> ~ [0 , 1 ~ be a
C°° nondecreasing function such that

Set ~(x) _ = z,v(x -~-~(3e), (3 E (0, ~-oo), e is a fixed unit
vector in RN, w is the ground state of (3.25), then E Ha (St).
LEMMA 3.5. - If (1.3~: ~1..~~ and are satis fied, there exists a

v E HQ (~), v > 0, v  0 such that

where is the minimal positive solution of ~1.1~~, S°° is defined in
(3.27).

Proof. - We follow the arguments of [16]. For the simplity, u(a) is

abbreviated to u



Since u is a solution of ( 1.1 ~ a, there exists a nonnegative Radon measure ~c
such that

Therefore

So we may rewrite (3.41) as

It is clear that zu~ ) is uniformly bounded in Q. By Lemma 3.2

thus by the continuity of J we find that there exists ti > 0 such that

It can be showed by (f4) as in [16] that there exists t2 > 0 such that for
t > t2

where 1 = 1 + 8 -1 > ~ ~ In addition



Thus for t > t2, 03B2 > 2R0 + 1

thus we may choose t2 > 0 large enough such that t2 > tl and

The assertion then follows once we show

It is known that

with "=" holds if and only if t = 1. Hence for /3 > 2Ro + 1, tl  t  t2: :



By (3.28) and (3.29)

Hence

Since u is a solution of (1.1);B, (2.8) holds for u. We may infer as [16]
that for any b > 0 there exist C2 , ~Ci1 > 0 such that if (3 > 

By (1.4) and (3.44):

Using (3.49)-(3.51) we obtain



Choosing 03B4  T - 1 and /3 large enough, we obtain the result. 0

An application of the deformation lemma due to Szulkin [14] for func-
tionals of the form C1 + convex-proper-lower semicontinous enables us to

give a variant of the mountain pass theorem in ([2], [14]), it clarifies that if

(i) there exists an open set B such that 

(ii) there exists such that J(e)  J ~u(a)~ . .

Then there exists a (P.S.)c sequence C such that

where c := inf J sup0~t~1 J(03B3(t)),

For the functional h, (u ) defined by ( 2 a 1 ~ we remark that if the variational
problem

has a minimizer u for some Ao > 0 with u E Kp, then we know from the
proof of Lemma 2.1 that it has a minimizer for all a  Ao in . Define

According to Lemma 2.1 we know that A** > 0 and the minimizer of mx
is a solution of ( 1.1 ) ~" thus a**  A* . It will be interesting to know if A**
equals to a* . .

Proof of theorem 1

According to Lemma 2.5, Propositions 2.6 and 2.8, Theorem 1 will be
proved if we can show that there exists another positive solution of 
different from the minimal positive solution 

For any A E (0, A**), let u be the minimizer of ma.



If  u, the assertion follows.

If u(~1~ == u, since u is a local minimum of I, then (i) of the mountain
pass theorem is valid.

Set e = tu, then e E 03BA03BB and for t > 0 large enough. Moreover

Hence by the variant of the mountain pass theorem there exists a (P.S.)c
sequence C such that

where c = inf J sup J (03B3(t)),

Obviously we have c > J(u).

By Lemma 3.1, Lemma 3.3 and Proposition 3.4, we may assume un ri uo
weakly in and

where u2, 1  i  m, are solutions of ( 3.25 ), up is a solution of (1.1)x,
up > 

We claim that up > .

Suppose by contradiction that uo = u(A). If m = 0, then c = 

we get a contradiction; if m > 0, by (3.53) and Lemma 3.5

a contradiction. Hence the conclusion follows. 0
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