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Almost contact submersions with total space a

locally conformal cosymplectic manifold(*)

DOMINGO CHINEA(1), JUAN CARLOS MARRERO(1)
and JUAN ROCHA(2)

Annales de la Faculté des Sciences de Toulouse Vol. IV, nO 3, 1995

R,ESUME. - Dans cet article, nous etudions les submersions métriques
presque contact a espace total une variete localement conformement

cosymplectique. Nous obtenons des resultats sur la minimalite des fi-

bres sur Ie transfert a la base de la structure métrique presque contact,
sur la structure induite sur les fibres et finalement sur 1’integrabilite de la
distribution horizontale. Nous construisons le modele local des submer-

sions localement conformement cosymplectiques avec fibres totalement
ombilicales et nous montrons que 1’espace total d’une submersion locale-
ment conformement cosymplectique ne peut pas etre une PC-variété (i.e., ,
une classe particuliere de variete localement conformement cosymplec-
tique qui est feuilletée par des variétés de Hopf generalisees). Cepen-
dant, nous exhibons des exemples de submersions presque contact (qui ne
sont pas des submersions riemanniennes) avec une PC-variete comme es-
pace total. Ces exemples nous conduisent a definir les submersions 
conformement cosymplectiques. Nous en déduisons des conditions neces-
saires et suffisantes sur les fibres de ce type de submersions pour qu’elles
soient minimales et pour que la distribution horizontale soit intégrable.
Nous etudions une classe particuliere de submersion D(03C3)-conformément
cosymplectique qui est, dans une certaine facon, analogue a une submer-
sion cosymplectique triviale et nous montrons que cette submersion est le
modele des submersions D(03C3)-conformément cosymplectiques avec fibres
totalement ombilicales et champ de vecteurs de Lee horizontal. Enfin,
nous etudions les submersions D(03C3)-conformément cosymplectiques avec
une PC-variete comme espace total. Nous obtenons toutes les submer-

sions D(03C3)-conformément cosymplectiques a fibres totalement géodésiques
et qui ont comme espace total une classe particuliere de PC-variétés.
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ABSTRACT. - In this paper we study almost contact metric submer-
sions with total space a locally conformal cosymplectic manifold. We
obtain some results on the minimality of the fibers, transference of the
almost contact metric structure to the base manifold, the induced struc-
ture on the fibers, and on the integrability of the horizontal distribution.
We obtain the local model of locally conformal cosymplectic submersion
with totally umbilical fibers and we show that the total space of a lo-
cally conformal cosymplectic submersion cannot be a PC-manifold (i.e.
a particular class of locally conformal cosymplectic manifold which is fo-
liated by generalized Hopf manifolds). Although, we obtain examples
of almost contact submersions (which are not Riemannian submersions)
with total space a PC-manifold. These examples suggest us to define
the D(03C3)-conformal cosymplectic submersions. Necessary and sufficient
conditions for the fibers of a such submersion to be minimal and for the

horizontal distribution to be completely integrable are derived. A partic-
ular class of D(03C3)-conformal cosymplectic submersion which is in certain
sense, analogous to a trivial cosymplectic submersion is studied and is ob-
tained that this submersion is the model of D(03C3)-conformal cosymplectic
submersion with totally umbilical fibers and horizontal Lee vector field.
Finally, we study D(03C3)-conformal cosymplectic submersions with total
space a PC-manifold. We obtain all the D(03C3)-conformal cosymplectic
submersions with totally geodesic fibers and total space a particular class
of PC-manifolds. .

AMS Classification : 53 C 15.

KEY-WORDS : Cosymplectic manifolds Locally conformal cosymplectic
manifolds, PC-manifolds, Submersions, Almost contact metric submer-
sions, D(03C3)-conformal cosymplectic submersions.

0. Introduction

A smooth surjective mapping 1r between almost Hermitian manifolds is
said to be an almost Hermitian submersion if 1r is a Riemannian submersion

which is, moreover, an almost complex mapping [30].
In [30], Watson proves that if 1r is an almost Hermitian submersion with

total space a Kahler manifold then the base space is also a Kahler manifold,
the fibers of 1r are minimal submanifolds and the horizontal distribution

determined by 1r is completely integrable. Moreover, if the fibers of 1r are

totally geodesic submanifolds and the total space is complete and simply
connected then the submersion 1r is equivalent to a holomorphic projection.
Posteriorly, in [24], De la Torre shows that if 1r is an almost Hermitian

submersion with total space a locally conformal Kahler (l.c.K.) manifold
M then the base space M’ is also a l.c.K. manifold and M’ is a Kahler



manifold if and only if the fibers of 1r are minimal submanifolds. More

recently, in [17], we continue the study of almost Hermitian submersions
with total space a l.c.K. manifold, which we call locally conformal Kahler
submersions. We obtain some examples of l.c.K. submersions with total

space a generalized Hopf manifold and totally geodesic fibers and derive
necessary and sufficient conditions for the fibers of a l.c.K. submersion to be

minimal and for that the horizontal distribution to be completely integrable.
We also give relations between the Betti numbers of the total space and
the base space of a l.c.K. submersion and investigate the transference of
structures and some geometric properties on l.c.K. submersions with total
space a generalized Hopf manifold, especially for the case when the fibers
are totally geodesic submanifolds. Riemannian submersions from compact
complex Hopf manifolds also have been studied by S. Dragomir in [12]. .

On the other hand, a submersion : (M, ~p, ~, g) - (M’ rp’, ~’, g’)
between the almost contact metric manifolds and

(M’, ~’, g’) is said to be an almost contact submersion if 1r is an almost
contact mapping, i.e. cp’ o ~* _ x* o Moreover, if 1r is a Riemannian sub-
mersion then it is called an almost contact metric submersion ([5], [6] and
[31]). In [5] and [6], D. Chinea proves that if 1r is an almost contact metric
submersion with total space a cosymplectic manifold M then the base space
is a cosymplectic manifold, the fibers of 1r are minimal submanifolds and
the horizontal distribution is completely integrable. He also shows that if
M is complete and simply connected and the fibers of 1r are connected and

totally geodesic then M is a product space of a Kahler manifold with a

cosymplectic manifold and 1r is a projection.

Now, if M is a differentiable manifold endowed with an almost contact
metric structure ~, r~, g), a conformal change of the metric g leads to
a metric which is no more compatible with the almost contact structure

(~p, ~, This can be corrected by a convenient change of ~ and r~ which

implies rather strong restrictions. Such a definition is given by I. Vaisman
in [27]. Using this definition for the conformal change of an almost

contact metric structure I. Vaisman introduces, in [27], a class of almost
contact metric manifolds, called locally conformal cosymplectic manifolds.
An almost contact metric manifold (M, g~ is said to be locally
conformal cosymplectic if the structure (cp, ~, g) is conformally related
to a cosymplectic structure in some neighbourhood of every point of M

(§ 1.1). Recently, in [9], [11] and [16], we have continued the study of
the locally conformal cosymplectic manifolds, and we have obtained some

interesting examples of locally conformal cosymplectic structures on the



real Hopf manifolds [29] and on a compact quotient of a certain solvable
non-nilpotent three-dimensional Lie group. In [16], a particular class of
locally conformal cosymplectic manifolds is considered, which we call PC-
manifolds. A PC-manifold is a locally conformal cosymplectic manifold
(M, ~p, ~, r~, g) with Lee 1-form cv ~ 0 at every point and such that cv(~) = 0
and the leaves of the foliation ~ = 0 with the induced almost Hermitian
structure are generalized Hopf manifolds.

In this paper, we study almost contact submersions with total space
a locally conformal cosymplectic manifold. In section 1, we recall some
definitions and results on almost Hermitian, almost contact metric manifolds
and almost contact metric submersions. In section 2, we obtain some results
on almost contact metric submersions with total space a locally conformal
cosymplectic manifold, i.e. locally conformal cosymplectic submersions. We
prove that the horizontal distribution of a locally conformal cosymplectic
submersion is completely integrable. We also show that the fibers, with
the induced structure, are Kahler manifolds and that the base space is a

cosymplectic manifold if and only if the fibers are minimal submanifolds.
We obtain a general example of locally conformal cosymplectic submersion
with totally umbilical fibers and prove that, under certain conditions, this
example is the local model of locally conformal cosymplectic submersion
with totally umbilical fibers (corollary 2.1). Finally we show that the
total space of a locally conformal cosymplectic submersion cannot be a
PC-manifold.

If (M, ~p, ~, g) is a PC-manifold then the leaves of the canonical foliation
F, given by ~ = 0, 03C9 = 0, have an induced c-Sasakian structure, where 03C9
is the Lee 1-form of M and c = . The PC-manifold M is said to be

a PC(k)-manifold (k E IR) if every leaf F of the canonical foliation F is

of constant cP F-sectional curvature k, being ~~, gF) the induced c-
Sasakian structure on F (see [16]). In section 3, we obtain some examples of
almost contact submersions (which are not Riemannian submersions) with
total space a complete simply connected PC(k)-manifold and base space a
cosymplectic manifold. These submersions have totally geodesic fibers and
the horizontal distribution is not completely integrable.

is a real differentiable function on an almost contact metric manifold

(M, ~p, ~, g) and g is the Riemannian metric on M given by g = +

(1 2014 e2~)r~ ~ r~ then we say that (~p, ~, r~, g) is a D-conformal transformation
of the structure ~, r~, g). In section 4, we define a particular class of
almost contact metric manifolds called locally D-conformal cosymplectic
manifolds, which we will need later, and we obtain two characterizations of



such manifolds (propositions 4.1 and 4.2). Thus, we prove that an (2n + 1)-
dimensional almost contact metric manifold, with n > 2, is locally D-
conformal cosymplectic if the structure (~p, ~, r~, g) is D-conformally related
to a cosymplectic structure in some neighbourhood of every point of M (for
dim M = 3 is necessary that dr = ~(r)??). .

The examples obtained in section 3 suggest us to consider, in sec-

tion 5, a particular class of almost contact submersions with total space
a globally conformal cosymplectic manifold. An almost contact submersion

. (M~ ~P~ ~~ n~ g) -~ (M~~ SP~, ~~, g’) with total space a globally conformal
cosymplectic manifold (M, 03C6, 03BE, ~, g) is called a D(03C3)-conformal cosymplec-
tic submersion if

for all x E M and u, v horizontal vectors at x, being w = dr the Lee 1-form
of M. If dimM~ ~ 5 then we deduce that (M’, ~’, g’) is a locally
D-conformal cosymplectic manifold and we prove that M’ is a cosymplectic
manifold if and only if the Lee vector field of M is vertical or equivalently
if the fibers of 03C0 are minimal submanifolds of M. We also obtain the corre-

sponding results for dim M’ = 3 (corollaries 5.1 and 5.2). Finally, we show
that the horizontal distribution determined by 1r is completely integrable if
and only if the Lee vector field of M is horizontal (in this case the fibers of ~c, ,
with the induced structure, are Kahler manifolds). In section 6, we define
a globally conformal cosymplectic structure on the product of a globally
D-conformal cosymplectic manifold M’ and a Kahler manifold V, such that
the natural projection of M’ x V onto M’ is a D(03C3)-conformal cosymplectic
submersion. Such submersions are called trivial D(03C3)-conformal cosym-
plectic submersions. We prove that a trivial D(03C3)-conformal cosymplectic
submersion has totally umbilical fibers and the Lee vector field of the total

space is horizontal. These conditions, under certain restrictions, charac-
terize the trivial D(03C3)-conformal cosymplectic submersions (theorem 6.1).
In section 7, we obtain some results on D(03C3)-conformal cosymplectic sub-
mersions with total space a PC-manifold. We show that the base space
of a such submersion is a locally D-conformal cosymplectic manifold with

parallel Lee form or a cosymplectic manifold. We also prove that for a 
conformal cosymplectic submersion with total space a PC-manifold the Lee
vector field cannot be horizontal. Consequently, the horizontal distribution
is not completely integrable and the fibers, with the induced structure, are
not Kahler manifolds. Finally, in section 8 we study D(03C3)-conformal cosym-
plectic submersions with total space a PC-manifold and vertical Lee vector



field. As main result, we show that the only D(a)-conformal cosymplectic
submersions with total space a complete simply connected PC(k)-manifold
and with connected and totally geodesic fibers are the submersions which
we have obtained in section 3 (theorem 8.1).

1. Preliminaries

1.1 Almost Hermitian and almost contact metric manifolds

Let M be a Coo almost Hermitian manifold with metric g and almost

complex structure J. Denote by X ( M) the Lie algebra of C°° vector fields
on M. The Kahler form + is given by ~~X, Y) = g(X, JY); the Lee form
is the 1-form 8 defined by

where ð denotes the codifferential, and dim M = 2n; and the Lee vector field
is the vector field B on M given by g(X, B) = 8~X ), for all X E X(M).

Recall that M is said to be Hermitian if N = 0, being N the Nijenhuis
tensor of M; Kahler if it is Hermitian and d~ = 0; locally conformal Kahler .

(l.c.K.) if it is Hermitian, d~ _ ~ n 8 and d9 = 0.

Among the locally conformal Kahler manifolds, those such that the Lee
form 9 is parallel are called generalized Hopf manifolds ([26] and [28]).
On the other hand, an almost contact metric manifold is a quintuple

(M, ~p, ~, r~, g~ where (M, g) is a Riemannian manifold, ~p a tensor field of

type (1,1) on M, ~ a vector field and r~ a 1-form satisfying

for all X, Y E x(M), I being the identity transformation (the triple (~p, ~, r~)
is called almost contact structure and ~, r~, g) is called almost contact

metric structure). The fundamental 2-form + of an almost contact metric
manifold (M, Sp, ~, g) is defined by ~(.XB Y) = g(X, cpY), and the Nijenhuis
tensor of 03C6 is the tensor field given by



If V is the Riemannian connection of g and 03B4 the codifferential, it is easy
to prove that,

for all X, Y, Z E X(M), where g denotes the cyclic sum over X, Y, Z
and {X1, , ..., , Xn, 03C6X1, ... , 03C6Xn, 03BE} is a local orthonormal 03C6-basis of M,
b eing dim M = 2 n + 1.

For an almost contact metric manifold with dim M =

2n + 1 ~ 5, the 1-form w defined by

is called Lee form of M. If dim M = 3 the 1-form w is defined by
= (~~~)(~, ~pX ) + (br~~2~r~(X }. The vector field B on M given by
= g(X, B~, for all X E ~.’(M), is called the Lee vector field of M (~10~

and [11]).
An almost contact metric structure (w, ~, g~ is said to be ~2~: normal

if Ncp + 2d~ ~ 03BE = 0; cosymplectic if it is normal and d+ = 0, d~ = 0, or
equivalently if = 0.



Let (M, ~p, ~, r~, g) be an almost contact metric manifold. A conformal
change of the almost contact metric structure on M is a change of the form

where u is a real differentiable function on M. It is clear that ~cp’, ~’, g’)
is also an almost contact metric structure on M (see [27]).
We say that (M, ~p, ~, r~, g) is locally conformal cosymplectic (l.c.C.) if

every point z E M has an open neighbourhood U such that the almost
contact metric structure ( ~p’, ~’, r~’, g’) given in (1.9) is cosymplectic in U,
where : U -~ IR is a real differentiable function on U. If the open U is M

then ~M, ~p, ~, r~, g) is a globally conformal cosymplectic (g.c.C.) manifold.
We remark that w = do- on U. In [11], we have proved the theorem 1.1.

THEOREM 1.1.2014 The following are equivalent:

(1~ (M, ~p, ~, g) is a manifold;

(2) the Lee form 03C9 is closed (exact) and

~3~ the Lee form cv is closed (ezact) and

1.2 Almost contact metric submersions

Let (M, g ) and (M’, g’ ) be Riemannian manifolds with dim M = m,
dim M’ = m’ and m’  m. A smooth surjective mapping ~ : M -~ M’ is
called a submersion if 1r has maximal rank m’. The manifolds M and M’
are the total space and the base space respectively of the submersion 1r. If

: (M, g) --~ (M’, g’) is a submersion then, for all m E M the subspace
Ker is called the vertical space at m. Vectors on M which are in the

kernel of are tangent to the fiber 1rm = over m and are

called vertical vectors at m. Vectors which are orthogonal to the vertical
distribution are said to be horizontal. A vector field X on M is said to be

vertical (respectively horizontal) if Xm is vertical (respectively horizontal)
for all m E M. If X is a vector field on M then it may be written uniquely
as a sum

where vX is a vertical vector field and hX is a horizontal vector field.



A smooth vector field X on M is basic for the submersion M --i M’
if:

(1) X is horizontal, and

(2) X is 1r-related to a vector field on M’, which depends on X and is
denoted X*, i.e. = for all m E M.

There is a one-to-one relationship between basic vector fields on M and
vector fields on Af~.

Since the fibers of a submersion are regular and closed submanifolds,
the vertical distribution is completely integrable. In general, the horizontal
distribution is not completely integrable.
A submersion : (M, g) -~ (M’, g’) between the Riemannian manifolds

(M, g) and (M’, g~) is said to be a Riemannian submersion if (~* ) 
is a linear isometry for all m E M (see [19]).

Following O’Neill [19] we define the integrability tensor A associated with
a Riemannian submersion ~r : (M, g) - (M’, g’). For arbitrary vector fields
E and F on M, 

.

The horizontal distribution determined by 1r is completely integrable if
and only if A = 0. In fact, if X and Y are horizontal vector fields then

Ax Y = (1/2~v~ X , Y (see ~19~~.
Now, let (M, ~p, ~, g) and (M’ cp’, ~’, g’) be almost contact metric

manifolds. A Riemannian submersion 03C0 : M ~ M’ is called an almost
contact metric submersion if 1r is an almost contact mapping, i.e. cp’ o 
~r* .

An almost contact metric submersion ?r : : M 2014~ M’ such that M is
member of a class U of almost contact metric structure will be called U-

submersion.

If 03C0 : (M, 03C6, 03BE, ~, g) ~ (M’, 03BE’, ~’, g’) is an almost contact metric sub-
mersion then the vector field ~ is horizontal and the horizontal and vertical
distributions are cp-invariant [5]. In particular, the fibers of 1r are invari-
ant submanifolds of M and thus they carry an induced almost Hermitian
structure (for the definition and properties of invariant submanifolds of an
almost contact manifold see [32]). From the above considerations we deduce
that ~r*~ _ ~~’ (we shall suppose that ~t*~ _ ~’~.

Using (1.3), (1.4), (1.5) and lemma 1 of [19], it follows [5]



PROPOSITION 1.1. Let ~r : --~ ~M~, ~p~, ~~, rj~, g~~ be an

almost contact metric submersion, and let X, Y and Z be basic vector fields
on M. Then

~1~ ~pX is the basic vector field associated to 

(2) if and Ny are the Nijenhuis tensors of ~p and respectively,
then

(3~ if ~ and ~~ are the fundamental 2-forms of M and M’, respectively,
then

being ~ and ~~ the Riemannian connections of the metrics g and g’,
respectively.

1.3 c-Sasakian manifolds of constant cp-sectional curvature

An almost contact metric manifold is said to be c-Sasakian

[14], with c E IR, c ~ 0, if it is normal and c~, where + is the
fundamental 2-form of M. The manifold M is said to be Sasakian if it is

1-Sasakian.

Let (M, ~p, ~, r~, g~ be an almost contact metric manifold and x a point
of M. A plane section P in the tangent space to M at a;, is

called a cp-section if there exists a unit vector u in orthogonal
to ~~ such that ~u, is basis of P. Then the sectional curvature

= u, is called a 03C6-sectional curvature.

If K~ (u) is a constant for all unit vector u in orthogonal to ~~ and for
all point x 6 M, then M is called a space of constant cp-sectional curvature.
A complete c-Sasakian manifold of constant cp-sectional curvature is called
a c-Sasakian space form.



Examples of simply connected Sasakian space forms are provided on the
manifolds S2~’+1, IR2n+1 and R x CDn. In fact, the unit sphere S2n+1 has a
Sasakian structure of constant cp-sectional curvature k, for all k > -3 ([22]
and [23]); the real (2n + l)-dimensional number space )R~"+~ is a Sasakian
space form with k = -3 (see [18]); and the product manifold IR x CDn,
where CD" is the open unit ball of Cn with negative constant holomorphic
sectional curvature [15, vol. II, p. 169], has a Sasakian structure of constant
p-sectional curvature k, for all k  - 3 (see [23]).

Let (M, 03C6, 03BE, ~, g) be a Sasakian manifold with constant 03C6-sectional
curvature k. Put

where c E IR, c ~ 0. Then (M, ~p’, ~’, r~’, 9’~ is a c-Sasakian manifold of

constant cp-sectional curvature kc2. . We denote by M(c, the c-Sasakian

manifold with this structure.

1.4 PC-manifolds

In [16], J. C. Marrero studies a particular class of locally conformal
cosymplectic manifolds, which are called PC-manifolds. A PC-manifold
is a locally conformal cosymplectic manifold (M, ~p, ~, ~, g~ with Lee form
w ~ 0 at every point and such that ~(~) = 0 and the leaves of the foliation
r~ = 0 with the induced almost Hermitian structure are generalized Hopf
manifolds.

If (M, ~p, ~, r~, g) is a PC-manifold then c = is constant and

where B is the Lee vector field of M. Moreover, we have that [16] : :

being u = 03C9/c, and v = -u o ~p.
We remark that a compact manifold cannot be a PC-manifold.

Let (M, w, 03BE, ~, g) be a PC-manifold. Denote by F the foliation on M

given by r~ = 0, u = 0. ~’ defines on M a foliation of codimension two which
is called the canonical foliation of M.



Every leaf F of the canonical foliation ~ has an induced c-Sasakian
structure ~F (see ~16~ ~ which is given by

for all X E X(F), where U = B/c, V = and j : F - M is the

immersion of the leaf F onto M.

A P C-manifold M is called a P C ( k )-manifold (k E R) if every leaf F of
the canonical foliation F is of constant 03C6F-sectional curvature k (see [16]).

Now, let (S, 03BES, ~S, 9S) be an almost contact metric manifold and H2c
the 2-dimensional hyperbolic space, i.e. H; is the space of 2-tuples of real
numbers ~s, t) with the Riemannian metric given by dT2 = ds2 + ~

where c is a positive constant.

We define an almost contact metric structure ~~p, ~, r~, g) on M = S x ,

for all X, X’ E X(S) and a, a’, b, b’ differentiable functions on M, being
(s, t) the coordinates on . Then it follows

PROPOSITION 1.2 ~16~. If the structure on S is c-

Sasakian, then is a PC-structure on M with Lee 1-form 03C9 = cds. .
Moreover, if S is of constant 03C6S-sectional curvature k, then (03C6, 03BE, ~, g) is a

PC(k)-structure on M. .

We notice that if ~S, gs) is a c-Sasakian structure on S then,
using ( 1.14) and proposition 1.2, we have that the leaves of the canonical
foliation of the PC-manifold (M, cp, ~, g) are of the form S‘ x ~ (so, to) ~, ,
with (so, to) E H~ .
On the other hand, in ~16~ J. C. Marrero also proves

THEOREM 1.2. - The universal covering space of a (2n+1)-dimensional
complete PC-manifold M with Lee form 03C9, is a product space M = S x H~ ,



where S is the universal covering space of an arbitrary leaf of the canonical

foliation of M, c = and H~ is the 2-dimensional hyperbolic space. The

li,ft of the PC-structure to M is the PC-structure given in (1.11~~. Moreover,
if the structure of M is a PC(k)-structure, then considering the induced c-
Sasakian structure on S, we have:

(1~ if k > -3c2 then S is almost contact isometric to S2n-1 ~c, k) ;
(2) ifk = -3c2 then S is almost contact isometric -3~c2 ~ _

IR2n-1 (c);
(3) ifk  -3c2 then S is almost contact isometric to ~IR x .

We remark that an isometry F : (M, ~p, ~, g) --~ (M’ ~’, g’)
between the almost contact metric manifolds M and M’ is said to be an

almost contact isometry if F* o ~p = o F* and F*~ _ ~’.

2. Locally conformal cosymplectic submersions

In this section we shall obtain some results on almost contact metric

submersions with total space a locally conformal cosymplectic manifold.

Let (M, ~p, ~, r~, g) be a l.c.C. manifold, (M’, ~p’, ~’, g’) an almost contact
metric manifold and ~ : M --~ M’ be an almost contact metric submersion.
We denote by A the integrability tensor associated to 03C0 and by B the Lee
vector field on M. Then we have 

’

LEMMA 2.1

(1~ The Lee vector field B on M is horizontal.

(2) AX Y = 0, for all horizontal vector fields X and Y. .

Proo f . L et ~ be the Riemannian connection of ~ M, g ~ . From ( 1.10 )
we deduce that ~~~ = B - r~(B~~. Now, for all horizontal vector field X,
Ax X = 0 (see ~19~). Then A~~ = = vB = 0. Thus we obtain (1).

Let X and Y be horizontal vector fields. Then, from (1.10) we have

Taking vertical components in this equation, we obtain AX03C6Y -03C6AXY = 0.
Then, since that AXY = -Ay X we deduce that AX03C6Y + AY03C6X = 0 and
thus:



On the other hand, if V is vertical and X basic then [19],

Moreover, using that = 0, we have that

Therefore AX03C6Y = and thus, from (2.1), we deduce (2). []

From lemma 2.1 and using ~9, corollary 2.1 and proposition 3.2J, we
obtain

THEOREM 2.1. Let ~c : M - M’ be an almost contact metric

submersion and M a l. c. C. manifold. Then:

(1) the fibers of 03C0, with the induced structure, are Kähler manifolds;

(2) the fibers of ~r are minimal submanifolds of M M is cosymplectic;

(3) the horizontal distribution determined by ~r is completely integrable.

Also, we have the following theorem.

THEOREM 2.2. Let ~r : M -~ M’ be an almost contact metric

submersion and M a Lc.C. manifold. Then:

(I ) M’ is l. C e C,

(2) M’ is cosymplectic i,~ the fibers of ~ are minimal submanifolds of M .

Proof. - Suppose that dim M’ = 2m’ + 1 > 5. Let X and Y be basic

vector fields. From (1.6), (1.7), (1.8) and proposition 1.1, we deduce that

where w’ is the Lee 1-form of M’ and {Xl, ..., 03C6X1, ..., 03BE}
is a local orthonormal basis of the horizontal distribution of 1r such that XZ
is a basic vector field for all i = 1, ..., , m’. Thus, if cv is the Lee 1-form of
M then, using (1.1), (1.10) and lemma 2.1, we have that



Therefore, from (2.2), proposition 1.1 and theorem 1.1, we conclude that
(M’, ~p~, ~~, r~~, g’) is a l.c.C. manifold.

If dim M’ = 3 then the result is proved in a similar way.

Finally, we obtain (2) using (2.2), lemma 2.1, theorem 2.1 and the fact
that the base space of a cosymplectic submersion is a cosymplectic manifold

[5].D
Now, let (V, J, h) be a Kähler manifold and a globally

conformal cosymplectic manifold, with Lee form w = -d(ln f), being f > 0.
On the product manifold M = V x N we consider the almost contact metric
structure given by

for all X, Y ~ X(V) and X’, Y’ (E X(N).
Then (M, ~p, ~, g) is also a globally conformal cosymplectic manifold

with Lee form w = where ~ : V x N --~ N is the projection of M onto
N. Moreover ~t : V x N -~ N is an almost contact metric submersion and,
since M is a warped product, the fibers of 1r are totally umbilical (see for
instance [20]).

Next, we obtain that the preceding example is the local model of l.c.C.
submersion : M -; M’ with totally umbilical fibers.

Let : - (M~, ~p~, ~~, r~~, 9~) be a l.c.C. . submersion with
connected fibers and such that M is a simply connected manifold. Then,
the Lee form 03C9 is exact. Thus, if cv = d~ we deduce that the almost contact
metric structure (~p, ~, ~, g) on M given by

is cosymplectic. Moreover, since the Lee vector field B of (M, ~p, ~, r~, g) is
horizontal, 03C3 is constant on the fibers. Therefore, 03C3 projects to a function
~~ on M’ and the mapping ~r : (M, ~p, ~, ~, g) -~ (M’, ~p~, ~~, g~~ defined by
~r(~) _ is a cosymplectic submersion, where the structure (Sp~, ~~, g~)
on M’ is given by



Denote by V and V the Riemannian connections of the metrics g and 9
respectively. Then, if P is a submanifold of M and a (respectively a) is the
second fundamental form of P with respect to V (respectively V), we have

for all X, Y E X(P), where BN is the normal component to P of B.

Now, using proposition 2.2 of [9], we obtain that if the fibers of 1r are
totally umbilical submanifolds of (M, g) then B is the normal curvature
vector field of such fibers. Thus, from (2.3), we deduce, in this case, that
the fibers of 1f are totally geodesic submanifolds of (M, g~.
On the other hand, if M is a complete simply connected cosymplectic

manifold and 03C0 : M - M’ is a cosymplectic submersion with connected
and totally geodesic fibers, then M is a product space of a Kahler manifold
with a cosymplectic manifold and 1f is a projection, that is, 1f is a trivial

cosymplectic submersion [6]. Therefore, from the above considerations, we
have .

COROLLARY 2.1.2014 Let M be a simply connected locally conformal
cosymplectic manifold, with (M, g~ complete, and ~r : M -~ M’ a l.c.C.
submersion with connected and totally umbilical fibers. Then M is a warped 

’

product of a Kähler manifold with a l.c. C. manifold and 03C0 is the projection
onto the t. c. C. manifold. 

We also obtain the following proposition.

PROPOSITION 2.1.2014 If : M -~ M’ is an almost contact metric

submersion, then M is not a PC-manifold.

Proof. - We suppose that is a PC-manifold with Lee

vector field B. Then by lemma 2.1, the vector fields B and SpB are

horizontal. Denote by 03A8 the 2-form on M given by 03A8 = 03A6 2014 2v A u, where
+ is the fundamental 2-form of the structure (Sp, ~, r~, g~, u is the unit Lee
1-form and v = -u o ~p. Then, if Wand W’ are vertical vector fields and
c = ~w ~ from (1.12), we have

which is a contradiction. 0



3. Examples of almost contact submersions
with total space a PC-manifold

In this section, we obtain some examples of almost contact submersions
with total space a PC-manifold which are not Riemannian submersions

(corollary 3.2). First, we recall some results on almost contact metric

submersions of type II ( ~31~, ~25~, ~17~ and ~21’~ ) .

DEFINITION 3.1 ~ ~31~ and ~25~ ). - Let (S, ~p, ~, r~, g) be an almost contact
metric manifold and let ~r : S -~ V be a Riemannian submersion onto the

almost Hermitian manifold (V, J, h) which satisfies : :

for all z E S and v E Then, 03C0 is said to be an almost contact metric
submersion of type II.

In ~31~ (also ~25~ ) the author proves

PROPOSITION 3.1. - If : (S’, ~p, ~, r~, g) - {Y, J, h) is an almost contact
metric submersion of type II, then :

~1~ ~ is a vertical vector field;

(2) the horizontal and vertical distributions determined by 03C0 are 03C6-

invariant.

We also have ~21 ~~

PROPOSITION 3.2. Let ~r : -~ (V, J, h) be an almost

contact metric submersion of type II such that (S, ~p, ~, g) is a c-Sasakian
manifold. Then:

(1) (V, J, h) is a Kähler manifold;

(2) AXY = -c03A6(X, Y)03BE, where A is the integrability tensor of *, 03A6 is

the fundamental 2-form of S‘ and X , Y are horizontal vector fields.

Consequently, we deduce ~21~~

COROLLARY 3.1. . - If ~c : (,S, Sp, ~, r~, g) - (V, J, h) is an almost contact

metric submersion of type II and (S, cp, ~, ~, g) is a c-Sasakian manifold,
then the horizontal distribution of ~ is not completely integrable.



Next, we obtain some examples of almost contact metric submersions of
type II with total space a c-Sasakian manifold ~21~~. .

Let c be a real number, c ~ 0 and k > -3c2. Denote by 
the Hopf fibration of the c-Sasakian manifold S2n+1(c,k) onto the n-
dimensional complex projective space Pn(Cn+1)(k + 3c2 ) of positive con-
stant holomorphic sectional curvature k + 3c2 ~15, vol. II, p. 169~. Anal-

ogously if k  -3c2 denote by ~r3 (c, k, n) the natural projection of the
c-Sasakian manifold (~ x CDn ) (c, k) onto the n-dimensional open unit ball

+ 3c2 ) in C’~ of negative constant holomorphic sectional curvature
k + 3c2 ~15, vol. II, p. 169~. Finally, let ~r2(c, n, m) : R2n+1(c) --~ ^r

IR2’’’~(0), with m  n, be the canonical projection onto the flat

Kähler space Cm(0). Then

PROPOSITION 3.3 ~21~~. For all k > -3c2 (respectively k = -3c2
and k  -3c2~ the submersion ~rl (c, k, n) (respectively ~r2 (c, n, m) and
~r3 (c, k, n)~ is an almost contact metric submersion of type II with total
space a c-Sasakian manifold of constant 03C6-sectional curvature k and with
totally geodesic fibers.

Now, let ar : (S, ~S, gs) -~ J, h) be an almost contact metric
submersion of type II with total space a c-Sasakian manifold S. Consider
on the product manifold M’ = V x IR the almost contact metric structure
(~P~~ ~~~ n~~ 9~) defined by

for all X, Y vector fields on V and a, b differentiable functions on M’, where
t is the usual coordinate on R.

Then, since (V, J, h) is a Kähler manifold, we have that (M’, 03C6’,03BE’,~’,g’)
is a cosymplectic manifold (see for instance [3] and [7]). Moreover, if we
denote by ~, ~, g) the almost contact metric structure on M = S x H~
given by (1.14) and by 1r the mapping of M onto M’ defined by

being (s, t) the usual coordinates on H2c and x E S, then we deduce



PROPOSITION 3.4. - The mapping ~c : (M, ~p, ~, g~ ~ (M’ ~’, g’)
is a submersion of the PC-manifold M onto the cosymplectic manifold M’
which satisfies:

~1~ ~ is an almost contact mapping, i.e. ~r* o ~p = ~p’ o 

(2) for all y = ~x , (s, t)) E M and for all u, v horizontal vectors at y:

(3) the fibers of ~- are totally geodesic submanifolds of M if and only if
the fibers of ~ are totally geodesic submanifolds of ,S;

~1~~ The horizontal distribution of ~t is not completely integrable.

Proof - Let y be a point of M, y = , (s, t)) with x E Sand

(s, t~ E H~ , and Hy(M) (respectively the subspace of horizontal
vectors at y (respectively x~ of the submersion ~c (respectively ~r~. Then,

Now, from definition 3.1, proposition 3.1, corollary 3.1 and using (1.14),
(3.1) and (3.4) we deduce (1), (2) and (4).
On the other hand, if Fy (respectively is the fiber of ~r (respectively

Tr) over y (respectively x) then Fy is the submanifold Fa* xlRx ~t~. Moreover,
the induced metric by g on Fy is the product metric. Consequently, Fy is
a totally geodesic submanifold of M if and only if Fa? is a totally geodesic
submanifold of 

Now, let c be a real number, c ~ 0 and let the mappings J~, n),
n, m) and k, n): :

induced by k, n), , ~2 (c, n, m) and ~r3(c, k, n), , by using (3.2). . Then,
from propositions 3.3, 3.4 and 1.2, we obtain the main result of this section



COROLLARY 3.2. - For all k > -3c~ (respectively k = -3c2, k  -3c2~
the submersion (respectively and ~-3 (c, k, n)~ is an

almost contact submersion which satisfies ~3.3~ and such that the total

space is a complete simply connected PC(k)-manifold, the base space is

a complete simply connected cosymplectic manifold, the fibers are totally
geodesic submanifolds and the horizontal distribution is not completely
integrable.

4. Locally D-conformal cosymplectic manifolds

In this section, we study a particular class of almost contact metric

manifolds, which we call locally D-conformal cosymplectic manifolds. We
shall use these manifolds in the following sections.

Let be an almost contact metric manifold and c a positive
number. Define an almost contact metric structure (~, ~, ~, g) on M by

A such deformation is called D-homothetic (see for instance [1] and [22]).
In general, if A and  are differentiable functions on M such that A > 0

and A > 0 then we can define an almost contact metric structure

(~~~) on M by

We call this deformation a transformation [1].
then we say that (,, ,) is a D-conformal transformation

of the structure (~~?7~).
If A == 1 then  == e203C3 2014 1, being ?* a differentiable function on At. In

this case, we say that (,, ?y, ) is a D(03C3)-conformal transformation of the
structure (~~??~).



DEFINITION 4.1. . - An almost contact metric manifold (M, Sp, ~, g~ is
said to be locally (globally) D-conformal cosymplectic if the Lee

1- form cv of M is closed (exact~ and

where is the Nijenhuis tensor of ~p and ~ is the fundamental 2-form of
the structure ~, 9) .

Remark. Let (M, ~p, ~, r~, g) be an almost contact metric manifold of
dimension 2n + 1 and L the operator given by

for all p-form a. L is an injective homomorphism of the space of p-forms
into the space of (p + 2)-forms, for p  n - 1 (see ~8~ ~. Thus, is dim M > 7
and d+ = -2+ then w is a closed 1-form.

PROPOSITION 4.1.2014 Let (M, cp, ~, r~, g~ be an almost contact metric

manifold. Then M is a I~g~. D-c. C. manifold if and only if the Lee 1-form
of M is closed (exact~ and

for all X, Y E X(M), where ’~ and B are the Riemannian connection of
the metric g and the Lee vector field of M respectively.

Proof . If (M, ~p, ~, g) is an almost contact metric manifold then ~2~: :

where N1 and N2 are the tensors defined by

being ,C the Lie derivative operator.



Suppose that M is a 1(g).D-c.C. manifold. Then, from (4.3), (4.6) and
(4.7), we obtain (4.5).

Conversely, if (~p, ~, r~, g) is an almost contact metric structure which

satisfies (4.5) then, using (1.1), (1.3), (1.4) and (1.5), we deduce (4.3). D

Remark. - If (M, ~p, ~, g) is a I.D-c.C. manifold then, from (4.5), we
have that = 0. Thus, if dim M = 3 and w is the Lee 1-form of M, then
w = cv (~)r~.

Now, we justify definition 4.1.

PROPOSITION 4.2. Let be an almost contact metric

manifold.

(1~ If M is a l.D-c.C. manifold then every point x of M has an open
neighbourhood U such that the structure ~, g) is cosymplectic
on U, where ~ : U -~ IR is a certain real differentiable function on U
and g = + (1 - e2~)r~ ~ The converse is true if dim M > 5. .

(2) If dim M = 3 and for every point x of M there exists an open

neighbourhood U of x and a real differentiable function ~ on U such
that da = and the structure 03BE,~, 9), with g = + (1 _
e203C3)~ ~ ~, is cosymplectic on U then M is a I.D-c. C. manifold.

Proof . ~ Suppose that (M, ~p, ~, g) is a I.D-c.C. manifold. Since the

Lee 1-form cv of M is closed, then for every point z of M there exists an open
neighbourhood U of x and a real differentiable function ~ on U such that
cv = d~ on U. Denote (respectively ~) the fundamental 2-form of the
structure (c,,o, ~, g) (respectively (w, ~, r~, g), with g = e2~g-f-(1- 
on U. Then using (4.3) and the fact that

we have that the structure ~, r~, g) is cosymplectic on U.

Conversely, if dim M > 5 and every point a? of M has an open neighbour-
hood U such that the structure ~~p, ~, r~, g~, with g = + (1 - 2e2°~r~ ~ r~,
is cosymplectic on U, where 03C3 is a real differentiable function on U, then
we obtain that

Moreover, from (4.8), we deduce that on each U there is a closed 1-form
7~ = dr which satisfies d+ = A ~.



Clearly, on each U n U’ we have that n ~ = 0. Thus, since the

operator L given in (4.4) is injective, we obtain that on U n U’.

Hence, we get on M a globally defined 1-form T verifying

Therefore, using (1.1), (1.6), (1.7), (1.8), (4.6), (4.9) and (4.10), we
deduce that T is the Lee 1-form of M. This proves ( 1 ) .

The proof of (2) is similar. D

5. D(03C3)-conformal cosymplectic submersions

The results obtained in section 3 suggest us to consider a particular class
of almost contact submersions with total space a g.c.C. manifold which
are not Riemannian submersions. For these submersions we study the

minimality of the fibers, the transference of structures to the base space and
to the fibers and the integrability of the horizontal distribution (corollaries
5.1, 5.2 and 5.3).

Let (M, ~p, ~, g) and (M’ ~’, g’) be almost contact metric mani-
folds and a~ a real differentiable function on M.

DEFINITION 5.1. A smooth surjective mapping 03C0 : -

(M’, 03BE’, ~’, g’) is called D(03C3)-conformal almost contact submersion if:

~1~ ~r is a submersion;

~2~ ~t is an almost contact mapping, i. e. ~r* o ~p = ~p’ o 

(3) for all x E M and for all u, v E orthogouals to the vertical

space at x,

Let ?r : : (M,03C6,03BE,~,g) ~ (M’,03C6’,03BE’,~’,g’) be a D(03C3)-conformal almost
contact submersion. From (2) of definition 5.1, we deduce that the fibers
of ?r are invariant submanifolds of M. In fact, if (~~~7) is the almost
contact metric structure on M given by



then (, , , g) is a D(03C3)-conformal almost contact transformation of the
structure ~, g), and the mapping ~r defines an almost contact metric
submersion, which we shall denote by ~r, between the almost contact metric
manifolds (M, ~p, ~, g) and (M~, ~p~, ~r, g~). . It is clear that the fibers and
the horizontal distribution of 03C0 coincide with the fibers and the horizontal

distribution of ~r, respectively. Therefore, if X is a vector field on M then
the vertical (respectively horizontal) component of X with respect to ~r

coincides with the vertical (respectively horizontal) component of X with
respect to ~r.

Since ~r is an almost contact metric submersion, we shall suppose that
~c* (~) _ ~c* (e-~~) _ ~~. Moreover, from (5.1) and proposition 1.1, we deduce

PROPOSITION 5.1. Let ~r : - (M~, ~p~, ~~, r~~, g~) be a

D(03C3)-conformal almost contact submersion. Then:

(1) the horizontal and vertical distributions determined by 03C0 are cp-
invariant. Thus, the fibers of 03C0 are almost Hermitian manifolds with
the induced structure;

(2) for all X Y and Z basic vector fields on M: :

where N~ (respectively N~~~ is the Nijenhuis tensor of y~ (respectively
and ~ (respectively ~’~ is the fundamental 2-form of the structure

(03C6,03BE, ~, g) (respectively (03C6’,03BE’,~’, g’)).

Now, proposition 3.4 and corollary 3.2 suggest us to introduce a particular
class of D(03C3)-conformal almost contact submersions, which we call 
conformal cosymplectic submersions.

DEFINITION 5.2. - A D(03C3)-conformal almost contact submersion 03C0 :

(M, ~p, ~, r~, g) - (M’, ~p’, ~’, r~’, g’) between the almost contact metric man-
ifolds and (M’,03C6’,03BE’,~’,g’) is said to be a D(03C3)-conformal
cosymplectic submersion if M is a g.c.C. manifold with Lee 1-,form = d~.



Let be a g.c.C. manifold with Lee 1-form 03C9 = da~ and

~~p, ~, r~, g) the almost contact metric structure on M given by (5.1). Then,
it is clear that

where ~ is the fundamental 2-form of the structure (~p, ~, ~, g). Thus

proceeding as in the proof of proposition 4.2, and if dim M > 5, we obtain
that w is the Lee 1-form of {M, ,, 9) and therefore (M,, , , g) is a g.D-
c.C. manifold. Analogously, if dim M = 3 then we deduce that w = w 
is the Lee 1-form of (M,,,, g). Consequently, if the 1-form  = 
is closed we have that (M, ~p, ~, ~, g) is also a I.D-c.C. manifold.

PROPOSITION 5.2. Let ~c : -~ {M’, c,p’, ~’, r~’, 9’) be a

D(03C3)-conformal cosymplectic submersion such that w and w’ are the Lee
1-form of M and M’, respectively.

(1) If dim M’ > 5 and X is a basic vector field then w’(X* ) o 03C0 = w{X ) .

(2) If dimM’ = 3 and X is a basic vector field then w’{X* ) o ~r =
w (~)~?(X ) .

Proof - Let {~p, ~’, ~, g) be the almost contact metric structure on M
given by ( 5.1 ) and  : (M,, , , g) ~ (M’, 03BE’,~’, g’ ) the induced almost
contact metric submersion by ~r. Suppose that dim M’ = 2m’ + 1 > 5. From

(1.6), (1.7), (1.8) and proposition 1.1, we obtain that .

for all X basic vector field on M, where V and 03A6 are the Riemannian
connection of  and the fundamental 2-form of the structure (,,,)
respectively, and ..., .... ~} is a local orthonormal
basis of basic vector fields of the horizontal distribution of ?.

Now, if  is the Lee 1-form of (M,,,,) then, using (1.1), (4.5) and
(5.3), , we deduce that ~(~) o ~r = S(X). This proves (1). .

On the other hand, since = V~,~ and 0 we have that

V~,~ = 0, being V~ the Riemannian connection of the metric ~. Thus, from



(1.1) we conclude that (~’03BE’,03A6’)(03BE’, X* ) = 0, where 03A6’ is the fundamental 2-

form of the structure (03C6’,03BE’, ~’, g’).

Therefore, if dim M’ = 3 and ~~ is a local orthonormal basis
of basic vector fields of the horizontal distribution of  then, using (1.6) and
proposition 1.1, we obtain that

Finally, from (1.1), (4.5) and (5.4), we deduce that w~(X*) o ~ =
w (~)r~(X ), which shows (2). 0

Next, we prove a result which will be useful in the sequel.

PROPOSITION 5.3. 2014 If ?t : (M, cp, 03BE, rj, g) - (M’, 03C6’,03BE’,~’, g’) is a D(03C3)-
conformal cosymplectic submersion and X Y horizontal vector fields on M,
then:

where ~ is the fundamental 2-form of the structure (~p, ~, r~, g) and B is the
Lee vector field of M. .

Proof. - If dim M = 3 then dim M’ = 3 and v ~ X , Y ~ = vB = 0.

Consequently (5.5) is true.

Suppose that dim M > 5 and let (~p, ~, ~, g) be the almost contact metric
structure on M given in ( 5.1 ) and ~r : - ( M’, c,p’, ~’, r~’, 9’)
the induced almost contact metric submersion by ~r. Then, from (5.2), we
obtain (4.5) and thus if X and Y are horizontal vector fields we deduce that

being 03C9 and + the Lee 1-form of M and the fundamental 2-form of the
structure (~,~,??,~) respectively and V and B the Riemannian connection
of the metric ~ and the Lee vector field of (M, ~, ~ ~), respectively.

Denote by j4 the integrability tensor of the submersion ?. Taking vertical
components in (5.6) we have that



Using (5.7) and the fact that ÃxY = -AyX we show that

On the other hand, from (4.5), we obtain that

Next, we shall prove that

Suppose that X is a basic vector field and V a vertical vector field. Then,
since ~V = A(VyX) and ~) = (see [19]),
we deduce that V) = Now, using (4.5),
we have that = 0 and thus V) == V),
which, by (5.9), implies that == ~V.

From (5.8), (5.9) and (5.10), we obtain that ~[X, Y] = 
and therefore, using that

we deduce (5.5). 0

Let ?r : : (M,03C6,03BE,~,g) ~ (M’,03C6’,03BE’,~’,g’) be a D(03C3)-conformal cosym-
plectic submersion. Then the fibers of 1r are l.c.K. manifolds with the in-
duced structure [9, proposition 2.2]. Moreover, if dim M~ > 5 then, from
theorem 1.1 and propositions 5.1, 5.2 and 5.3 we have that

where and +’ are the Lee 1-form of M’ and the fundamental 2-form of
the structure (~p’, ~’, r~’, g’), respectively, and N~~ is the Nijenhuis tensor of

Thus, (M’, 03C6’,03C6’,~’, g’) is a l.D-c.C. manifold. If dim M’ = 3 and the 1-
form 03C9(03BE)~ is closed, being 03C9 the Lee 1-form of M, then, using propositions
5.1 and 5.2, we also obtain that (M’, ~p’, ~’, r~’, g’) is a 1.D-c.C. manifold.

Consequently, we conclude



COROLLARY 5.1. Let ~r : --~ (M’, ~p’, ~’, r~’, g’) be a

D(03C3)-conformal cosymplectic submersion and w the Lee 1-form of M.

~1~ The fibers of ~ are I. c.K. manifolds with the induced structure.

(2~ If dim M’ > 5 then (M’, ~’, g’) is a I.D-c. C. manifold.

(3) If dim M’ = 3 and the 1-,form w(~)r~ is closed then (M’, ~’, g’)
is also a I.D-c. C. manifold.

A I.D-c.C. manifold (M’, ~’, g’) with Lee 1-form w’ is cosymplectic
if and only if w’ = 0 ( definition 4.1 ) . .

On the other hand, if : (M, 03C6, 03BE, ~, g) - (M’, 03C6’,03BE’,~’, g’) is a 
conformal cosymplectic submersion then, from proposition 2.2 of [9], we
obtain that

where U and V are vertical vector fields on M, V is the Riemannian
connection of g and B is the Lee vector field of M. Thus, we have that
the fibers of ~r are minimal submanifolds of M if and only if B is a vertical
vector field on M (see also ~9, proposition 3.2~).

Using the above facts and proposition 5.2 and corollary 5.1 we deduce

COROLLARY 5.2. Let ~r : -~ {M’, ~p’, ~’, r~’, g’) be a

D(03C3)-conformal cosymplectic submersion and w and B the Lee 1-form and
the Lee vector field of M, respectively.

(1~ The fibers of ~r are minimal submanifolds of M if and only if B is a
vertical vector field on M.

(2~ If dim M’ > 5 then (M’, ~’, g’) is a cosymplectic manifold if
and only if B is a vertical vector field on M.

(3) If dim M’ = 3 then (M’, Sp’, ~’, g’) is a cosymplectic manifold if
and only if w~~) = 0.

Let (M, ~p, ~, ~, g) be a l.c.C. manifold with Lee vector field Band M an
invariant submanifold of M such that ~ is normal to M.

If B is normal to M then M is a Kähler manifold with the induced

structure [9, corollary 2.1]. Conversely, if M is a Kähler manifold with the
induced structure and dim M > 4 then B is normal to M ~9, proposition
3.1~ . Using these facts and proposition 5.3 we obtain the following corollary.



COROLLARY 5.3. Let ?t’ : --~ be a

D(03C3)-conformal cosymplectic submersion and B the Lee vector field of M.
Suppose dim M = 2m + 1 and dim M’ = 2m’ + 1. . Then:

(1~ the vector field B is horizontal on M if and only if the horizontal
distribution determined by ~r is completely integrable. In this case the

fibers of 03C0 are Kähler manifolds with the induced structure;

(Z~ if m > m’ + 1 and the fibers of ~r are Kcahler manifolds with the
induced structure then the horizontal distribution determined by ~ is

completely integrable.

6. D(03C3)-conformal cosymplectic submersions with
horizontal Lee vector field and totally umbilical fibers

In this section we obtain the local model of a D(03C3)-conformal cosymplec-
tic submersion with horizontal Lee vector field and totally umbilical fibers

(theorem 6.1).
Let (M’ ~p’, ~’, g’) be a g.D-c.C. . manifold and (V, J, h) a Kahler

manifold. Suppose that ~’ is a real differentiable function on M’ such that
d~’ = cv’, where cv’ is the Lee 1-form of M’. On the product manifold
M = M’ x V, we define the almost contact metric structure (cp, ~, r~, g)
given by

, ,

for all X Y vector fields on V and X’, Y’ vector fields on M’.

Let ’ be the Riemannian metric on M’ defined by ’ = g’ + (e-203C3’ -
® ~’. Then, the Riemannian manifold (M, g) is the warped product

(M’, g~) (Y~ h) (see ~24~).
We shall denote by ~r the canonical projection of M onto M’ and by

(M’, ~p~, ~~, r~’, g~) (V, J, h) (or simply by M’ x V ) the manifold
M with the almost contact metric structure (c,p, ~, r~, g). We have

PROPOSITION fi.l

~1~ The almost contact metric manifold M = M’ V is a g. c. C.
manifold with Lee 1-form 



(2) The projection ~r is a o ~}-con,formal cosymplectic submersion
of M onto M’ such that the Lee vector field of M is horizontal and
the fibers are totally umbilical submanifolds of M.

Proof. - Let N J and be the Nijenhuis tensors of J and ~p,
respectively. From (6.1) and by a direct computation we deduce that

for all X’, Y’ vector fields on M’ and X Y vector fields on V.

Now, if + is the fundamental 2-form of the structure ~, r~, g) then

where +’ and H are the fundamental 2-form of the structure (~p’, ~’, r~’, g’)
and the Kahler 2-form of the structure (J, h), respectively, and T is the
canonical projection of M onto V.

Thus, using (6.2) and (4.3), we obtain that d+ = -2(~r*w’) n~. Therefore
M = M’ is a g.c.C. manifold with Lee 1-form 

On the other hand, it is easy to prove that 1r is a D(u’ o 03C0)-conformal
cosymplectic submersion. Moreover, if B and B’ are the Lee vector

fields of M and M’, respectively, then, from (6.1) we have that B =
B’ + (e2~~ - 1)w’(~’)~’. Consequently B is a horizontal vector field on
M = M’ V.

Finally, it is clear that the fibers of 1r are ~m’~ x V, with m’ E M’.
Thus, by a well-known result of warped products [20], we deduce that 1r is
a submersion with totally umbilical fibers. 0

Remark. - Let (~p, ~, ~, g) be the almost contact metric structure on
M = M’ given and 9
the Riemannian metric on M’ defined by g’ = Then, the almost con-
tact metric manifolds (M, ~p, ~, ~, g) and (M’, ~’, g’) are cosymplectic
manifolds. In fact, (M, ~p, ~, ~, g) is the product of the cosymplectic mani-
fold (M’, Sp’, 03BE’, ~’, g’) with the Kähler manifold (V, J, h) and 03C0 is a trivial

cosymplectic submersion of (M, ~p, ~, ~, g) onto (M’, ~p’, ~’, r~’, g’). .
Proposition 6.1 and the above remark suggest us to introduce the

following definition.



DEFINITION 6.1. A D(03C3)-conformal cosymplectic submersion 03B3 :

M - N is said to be trivial if there exists a g.D-c.C. manifold M’ and
a Kcihler manifold V such that the following diagram is commutative

where T and ~’ are almost contact isometries and cv’ = d~’ is the Lee 1-form
of M’, being ~’ a real differentiable function on M’.

From proposition s.l we obtain the following corollary.

COROLLARY 5.1. - If : M ~ N is a trivial D(03C3)-conformal cosym-
plectic submersion, then the Lee vector field of M is horizontal and the fibers
of ~y are totally umbilical submanifolds of M. .

Let (M, ~p, ~, g) be a connected l.c.C. manifold. Then the universal cov-
ering space M of M has an induced g.c.C. structure {~p, ~, ~, g). Thus, there
is a real differentiable function ~ on M such that ( M, ~p, e -~ ~, 
is a cosymplectic manifold. In fact, if is a real differentiable function

on M such that is a cosymplectic manifold then
= a~ + c, with c constant { ~10~ and ~11~ ).

DEFINITION 6.2. A l. c. C. manifold is said to be locally
conformal complete cosymplectic if the Riemannian manifold (M, g’ = 
is complete.

Let : ~ (M’,03C6,’03BE’,~’,g’) be a D(03C3)-conformal cosym-
plectic submersion of the connected manifold M onto M’, M the universal
covering space of M and (~p, ~, ~, g) the induced g.c.C. structure on M by

Then 03C0 induces a D(03C3)-conformal cosymplectic submersion of
{M, ~p, ~, ~, g) onto (M’, cp’, ~’, g’) which we shall denote by ~. We shall
suppose that the fibers of 03C0 are connected submanifolds of M.

Now, we shall prove a converse of corollary 6.1.

THEOREM 6.1. Let ~ (M’,03C6’,03BE’,~’,g’) be a 

conformal cosymplectic submersion such that M is a globally conformal
complete cosymplectic manifold, the Lee vector field of M is horizontal
and the fibers of ~r are totally umbilical submanifolds of M. Then, the

induced submersion 03C0 of (M, 03C6, 03BE, ~, g) onto M’ is a trivial D(03C3)-conformal
cosymplectic submersion.



Proof - Let w and B be the Lee 1-form and the Lee vector field

respectively of (M, ~p, ~, ~, g). Then there is a real differentiable function
a~ on M such that (M, e-~~, is a cosymplectic manifold and
r;v = d~.

Since B is a horizontal vector field then there exists a differentiable

function u’ on M’ which verifies u = u’ o ~r. Thus, from definition 5.1
and proposition 5.1, we have that 1f is a cosymplectic submersion between
the cosymplectic manifolds (M, e-~ ~, and (M’ ~’, r~’, 9’ =
e2~r9’ -~-- (1 - e2o~r )?~’ ~ ?~i) . .

Now, using (5.12), we obtain that the fibers of 03C0 are totally umbilical sub-
manifolds of (M, g) with normal curvature vector field B. Then, from (2.3), ,
we deduce that the fibers of the submersion ~r are totally geodesic subman-
ifolds of Therefore, since ( M, is a complete Riemannian
manifold, we have that ~r is a trivial cosymplectic submersion which implies
that (M, e-03C303BE,e03C3~,e203C3g) is the product of a Kähler manifold (V, J, h)
with the cosymplectic manifold (M’, ~’, r~’, g’) and that ~r is the natural
projection of M onto M’ (see [6]).

Consequently, the g.c.C. . manifold (M, ~, ~, g) is the product
M’ V.

This ends the proof of theorem. 0

7. D(03C3)-conformal cosymplectic submersions
with total space a PC-manifold

In this section, we shall study D(03C3)-conformal cosymplectic submersions
with total space a PC-manifold. For this purpose, we prove the following
result.

LEMMA 7.1.2014 Let 03C0 : ~ (M’,03C6’,03BE’,~’,g’) be a 

conformal cosymplectic submersion, Band B’ the Lee vector fields of M
and M’, respectively, and cv the Lee 1-form of M. If dim M’ > 5 and
cv (~) = 0 then hB is a basic vector field and (hB) * = B’ .

Proof - Denote by (~p, ~, ~, g) the almost contact metric structure on
M given by (5.1) and by ( M, ip, ~, ~, 9 _ ) - ( M’, ~ p’, ~’, r~~, g’ ) the almost
contact metric submersion induced by 1r.

The 1-form 03C9 is the Lee 1-form of (M, ~p, ~, r~, 9) Moreover, using (5.11),
we deduce that B is the Lee vector field of (M, ~, ~, g).



On the other hand, if C is the basic vector field associated to B’ then,
from proposition 5.2, we obtain that g(C, X ) = g(hB, X ), for all basic vector
field X on M. Consequently, C = hB. 0

Next, we show that the base space of a D(03C3)-conformal cosymplectic
submersion with total space a PC-manifold is a l.D-c.C. manifold with

parallel Lee form or a cosymplectic manifold.

PROPOSITION 7.1.2014 Let : (M, c,p, ~, r~, g) - (M’, ~’, g’) be a

D(03C3)-conformal cosymplectic submersion such that M is a PC-manifold.

5 then (M’, ~’, g’) is a I.D-c. C. manifold with

parallel Lee form.

(2~ If dim M’ = 3 then (M’, ~p’, ~’, ~’, g’) is a cosymplectic manifold.

Proof . Suppose that dim M’ > 5. . Let (~p, ~, ~, g) be the almost
contact metric structure on M given by (5.1) and  : -

(M’, ~’, g’) the almost contact metric submersion induced by ~c. De-
note by 03C9 and B the Lee 1-form and the Lee vector field of M, respectively.
Since w(~) = 0, we have that B is the Lee vector field of (M, ~, ~, g) (see
(5.11)).

Now, using (5.1), theorem 1.1, the Koszul formula [15, vol. I, p. 160] and
the fact that c,~ (~ ) = 0, we deduce that

for all X, Y E X(M), where V and V are the Riemannian connections of
the metrics g and g, respectively and c = Thus, from (1.11) and (7.1),
we obtain that VB = 0. Therefore, if X is a basic vector field of M then

From (7.2), we have that

being A the integrability tensor of the submersion ?r.



On the other hand, if Y is a horizontal vector field then, using (5.5) and
since

we prove that Y ) = 0. This implies that ÃxvB = 0 and thus, by
(7.3), we deduce that

Let B’ be the Lee vector field of M’ and V’ the Riemannian connection
of the metric g’. Since ~c is a Riemannian submersion, we have that

= for all basic vector fields Y, Z on M (see ~19~).
Therefore, from (7.4) and lemma 7.1, we conclude that = 0.

Consequently the vector field B’ is parallel which shows that the Lee
1-form of M’ is parallel.

Finally, if dim M’ = 3 then, using corollary 5.2, we obtain that M’ is a
cosymplectic manifold. 0

We also deduce 
"

PROPOSITION 7.2. - Let : ~M, ~p, ~, rj, 9~ -~ ~M’, ~p’, ~’, r~’, g’~ be a

D(03C3)-conformal cosymplectic submersion such that M is a PC-manifold and
dim M > dim M’. Then the Lee vector field of M can not be a horizontal
vector field.

Proof. - Let w and B the Lee 1-form and the Lee vector field of M,
respectively, and + the fundamental 2-form of the structure (cp, ~, r~, g).
Then, we shall use the following notation

Suppose that U is a horizontal vector field. We shall prove that

~(W, W’) = 0, for all vertical vector fields W and W’, which is a con-
tradiction since dim M > dim M’.

In fact, if U is a horizontal vector field then it is clear that

Thus, from (1.12) and (7.5), we have that



Now, using that the vector field [ W , W ~ is vertical, we deduce that

Consequently, by (7.6), we obtain that ~(W, W’) = 0. 0

Finally, from corollary 5.3 and proposition 7.2, we have that

COROLLARY ?.1. Let ~r : -~ (M~, cp~, ~~, rj~, 9~) be a

D(03C3)-conformal cosymplectic submersion being (M, 03C6, 03BE,~, g) a PC-manifold
and dim M > dim M’. Then the horizontal distribution determined by ~ is
not completely integrable. Moreover, if dim M = 2m -E-1, dim M’ = 2m’ -~-1
and m > m’ + 1 then the fibers of ~r, with the induced structure, are not

Kähler manifolds.

8. D(03C3)-conformal cosymplectic submersions with
total space a PC-manifold and vertical Lee vector field

Firstly we recall and prove some results on cosymplectic manifolds and
cosymplectic submersions.

If ~r : (M, cp, ~, g) --~ (M’, ~~, 9~) is an almost contact metric

submersion we shall denote by K the 03C6-sectional curvature of M and by H
the holomorphic sectional curvature of the fibers.

An almost contact metric manifold is said to be quasi-K-
cosymplectic (or quasi-cosymplectic) if ([4] and [21]):

It is clear that a cosymplectic manifold is quasi K-cosymplectic. In ~6~,
D. Chinea shows the following proposition.

PROPOSITION 8.1. . - Let ~c : (M, ~p, ~, r~, g~ - (M’, ~~, g’) be an

almost contact metric submersion such that (M, 03C6,03BE, ~, g) is a quasi-K-
cosymplectic manifold. Then : :

~j~ K(V) > H(V), for all vertical vector V, and equality holds if and
only if the fibers of ~ are totally geodesic submanifolds of M.

~2~ If (M, Sp, ~, g~ is a quasi-K-cosymplectic manifold of constant
p-sectional curvature k then (M’, 03C6’,03BE’, ~’, g’) is also a quasi-K-
cosymplectic manifold of constant p’-sectional curvature h. .



Let (V, J, h) be a Kähler manifold of constant holomorphic sectional
curvature k and M the product manifold V x IR. Consider on M the almost
contact metric structure (~p, ~, r~, g~ given by (3.1~. . Then is a

cosymplectic manifold of constant 03C6-sectional curvature k. In fact, in [13],
S. Eum proves

PROPOSITION 8.2. Let be a (2m -~-1~-dimensional com-
plete simply connected cosymplectic manifold of constant 03C6-sectional curva-
ture k .

(1~ If k > 0 then M is almost contact isometric to x IR.

(2) If k = 0 then M is almost contact isometric to x IR.

~3~ If k  0 then M is almost contact isometric to x R.

Now, we introduce the following definition.

DEFINITION 8.1. . - Two mappings

between almost contact metric manifolds are equivalent if the following.
diagram is commutative:

where T and T’ are almost contact isometries.

We obtain the following result.

PROPOSITION 8.3. Let : --~ (M ’ ~SP ’ ~~ ’ !~l ’ ~9 ’ ) be a

cosymplectic submersion with connected and totally geodesic fibers and such
that M is a complete simply connected cosymplectic manifold of constant 03C6-
sectional curvature k . Suppose that dim M = 2m +1 and dim M’ = 2m’ +1,
m > m’.

(1~ If k ~ 0 then ~c is almost contact isometry.
(2) If k = 0 then ~r and the natural projection of x IR onto

C’’’1 (0) x IR are equivalent.



Proof. We have that (M, 03C6, 03BE,~, g) is the product of a complete simply
connected Kähler manifold ( M1, Jl , gl ) with a complete simply connected
cosymplectic manifold , 9i ) and that ~r is equivalent to a

projection,

Moreover, using proposition 8.1, we deduce that is a

Kahler manifold of constant holomorphic sectional curvature k and that

( Mi ,03BE’1,~’1 , gl ) is a cosymplectic manifold of constant 03C6’1-sectional cur-
vature k.

If k = 0 then there exists an almost complex isometry Tl of Mi onto

C’’’2-"z~ (0) and an almost contact isometry r~ of Ml onto C’’’’’~~ (0) x IR
(proposition 8.2 and [15, vol. II, p. 170]) such that the following diagram is
commutative

. 

where T2 ( m, m’) is the pro j ection of x IR onto C’’n’ ( 0 ) x IR. This

proves (2).
Now, suppose that k ~ 0 and 2. Then, if a~i E Mi and

zi E M{ we obtain, by a straightforward computation, that

being u1 and u’1 unit tangent vectors to Mi and Mi at xl and xi respec-
tively, H1 the holomorphic sectional curvature of Mi and K (respectively

the cp-sectional (respectively 03C6’1-sectional) curvature of M (respectively
M{). .

Using (8.1) we deduce that k = k/2 which is a contradiction since A; ~ 0.

Therefore, dim Mi = 0 and thus 1r is an almost contact isometry. 0

Next, we shall study D(03C3)-conformal cosymplectic submersions with total
space a PC-manifold and vertical Lee vector field.

Let (M, ~p, ~, ~, g) be a l.c.C. manifold with Lee vector field B and Lee
1-form w and M an invariant submanifold of M. Then the mean curvature



vector field of M is BN, where BN is the normal component to M of if
[9, proposition 3.2~ . Consequently the vector field B is tangent to M if and
only if M is a minimal submanifold of M.

If the vector field ~ is normal to M and (~p, g) is the induced almost
Hermitian structure on M, then (M, ~p, g) is a l.c.K. manifold with Lee
1-form -2cv, being w the 1-form induced on M [9, proposition 2.2].

Moreover , we have

PROPOSITION 8.4.2014 Let (M, ~p, ~, ~, g) be a PC-manifold and M an
invariant submanifold of M such that the vector is normal to M.

Then, are equivalent:

(1~ M is a J.c.A’. manifold with parallel Lee form;
(Z~ the Lee vector field of M is tangent to M;
(3~ M is a minimal submanifold of M.

Proof . Denote by B the tangent component to M of B. Then 20142.8
is the Lee vector field of the l.c.K. manifold (M, ~p, g).

Suppose that (M, ~p, g) is a l.c.K. manifold with parallel Lee 1-form.

Using (1.11) and the Gauss formula we obtain that ~XBN = -a(X, B),
for any X E ~(M), where V is the Riemannian connection of the metric g
and a is the second fundamental form of M.

Thus, if X and Y are vector fields on M then, since V), , BN) =
Y) we deduce that a(X, Y) is normal to B. As B is the mean

curvature vector field of M, we conclude that BN =0.
Conversely, if the vector field B is tangent to M then, from (I.ll) and

using the Gauss formula, we have that ~XB = 0, for any X C a.’(M), being
V the Riemannian connection of the metric g on M.

Therefore, the 1-form 03C9 on M is parallel and (At, ip, g) is a l.c.K. manifold
with parallel Lee form. ~

From proposition 8.4 and corollary 5.2 we obtain

COROLLARY 8.1.2014 Let : - (M~, c~~, ~~, r~~, 9~) be a

cosymplectic submersion with M a PC-manifold.

(a) If dim M’ ~ 5, then are equivalent:
~1~ the fibers of ~r, with the induced structure, are manifolds
with parallel Lee form;



(2) the fibers of ~ are minimal submanifolds of M;

(3 ) (M’, ~~, ~~, g’) is a cosymplectic manifold;

(l~~ the Lee vector field of M is vertical.

(b) If dim M’ = 3 then (M’, ~~, r~~, g’) is a cosymplectic manifold and

~1~, ~,~~ and (4) are equivalent.

Let (M, ~p, ~, r~, g) be a PC(k)-manifold with Lee 1-form 03C9 = dim M >
5, z E M and j : F 2014~ M the immersion of the leaf F over z of the canonical
foliation ~’ on M.

Consider on F the almost contact metric structure (cp F, ~F, 9 F) given
by (1.13). (F, 03BEF,~F, 9 F) is a c-Sasakian manifold of constant 

sectional curvature k, being c = ~03C9~ ] (§ 1.4).
On the other hand, denote by (~p, ~, the almost contact metric

structure on M given by (5.1) and by F the foliation defined by 1j = 0,
w = 0. Then the 1-form 03C9 is the Lee 1-form of (M, ~p, ~, ~, g), (M, ~p, l, r~, g)
is a g.D-c.C. manifold with parallel Lee form (VB = 0) and it is clear that
the foliation ~ coincides with the foliation ~’.

Since w (~) = 0 then, if V is the Riemannian connection of the metric g,
from (1.1), (1.2) and (4.5), we deduce that V?? = 0. Thus, the foliation T
on the Riemannian manifold (M, g) is totally geodesic. Moreover,

Now, if v is a tangent unit vector to M at z such that = wr(v) =

(w~ o = 0 then, v is tangent to F at z and, from ( 1.13), we obtain
that v is normal to and = = Therefore, using (8.2)
and the fact that the foliation T on the Riemannian manifolds (M, g) and
(M, g) is totally geodesic ~16~, we have

where KF is the 03C6F-sectional curvature on F and K (respectively K) is
the ~-sectional (respectively ~-sectional) curvature (respec-
tively (M~~7)). .

Next, using (8.3), we shall prove that the base space of a D(03C3)-conformal
cosymplectic submersion ?r : : -~ (M~,~?/~) with total
space a PC(k)-manifold and vertical Lee vector field is a cosymplectic
manifold of constant ~-sectional curvature.



PROPOSITION 8.5. - Let ~r : (M, Sp, ~, Q, g) -~ (M’, ~p~, ~~, g’) be a

D(03C3)-conformal cosymplectic submersion of a PC(k)-manifold M onto
M’ such that the Lee vector field of (M, ~p, ~, r~, g) is vertical. Then

(M’, 03BE’, ~’, g’) is a cosymplectic manifold of constant 03C6’-sectional cur-
vature k + 3c2, , being c = ] and w the Lee 1-form of (M, ~p, ~, r~, g) .

Proof.- Denote by K’ the 03C6’-sectional curvature of M’, by :

(M, ~, ~, g) --~ (M’, ~~, g’) the almost contact metric submersion
induced by 03C0 and by B the Lee vector field of (M, cp, 03BE, ~, g).

Let x~ be a point of M’ and v’ a tangent unit vector to M’ at x~, which
is normal to ~~, . .

From theorem 4.5 of ~6~, we obtain that

where A is the integrability tensor of  and v is a horizontal vector at x E M
such that

It is clear that = 0. Then, using (5.5) and the fact that B is
vertical, we deduce that

On the other hand, since v is a horizontal vector then it is normal to Ba?
and Thus, from (8.3), (8.4) and (8.5), we have that

Now, we shall prove a result which will be useful is the sequel.

be almost contact metric submersions such that the fibers of r o x are totally
geodesic submanifolds of {M, g). Then the fibers of T are totally geodesic
submanifolds of (M’, g’ ) (see (17~ ) .
We shall show that this result is also true if 1r is a D(03C3)-conformal

cosymplectic submersion.



LEMMA 8.1.2014 Let

be a D(03C3)-conformal cosymplectic submersion and

an almost contact metric submersion such that the fibers of  o 03C0 are totally
geodesic submanifolds of (M, g). Then the fibers of T are totally geodesic
submanifolds of (M’, g’) .

Proof. - A straightforward computation shows that the mapping r o 1r
is a D(03C3)-conformal cosymplectic submersion.

Denote by (~p, ~, ~, g) the almost contact metric structure on M given
by (5.1~ and ( M, ~p, ~, ~, g ) - ( M’, ~p’, ~’, r~’, g’ ) (respectively T o c :
(M, ~, ~, g) --~ (M" g")) the almost contact metric submersion
induced by 1r (respectively T o 1r).

It is clear that 03C4 o 03C0 = T o and that the fibers of the submersion T o 03C0

are the fibers of the submersion T o ~.

Let U and V be vertical vector fields with respect to T 0 1r and X a

horizontal vector field.

We have that = = o. Moreover, using (5.1) and the Koszul
formula, we deduce that

where V and V are the Riemannian connections of the metrics g and g
respectively.

Thus, from (8.6) and since the fibers of T o 1r are totally geodesic
submanifolds of (M, g), we obtain that X ) = 0. Therefore, the
fibers of the submersion T o ~r are totally geodesic submanifolds of (M, g).

This ends the proof of our assertion. D

Let c be a real number, c ~ 0. In corollary 3.2 we show that for all
k > -3c2 (respectively k = -3c2 and k  -3c2) the total space of the
submersion k, m -1 ) (respectively m -1, m’) and k, m -1 ) )
is a PC-manifold product of a c-Sasakian manifold with the 2-dimensional

hyperbolic space H;. In fact, if (s, t) are the coordinates on H~ then the



submersion k, m -1 ) (respectively m -1, m’) and k, m -1))
is a D (cs )-conformal cosymplectic submersion with total space a complete
simply connected PC(k)-manifold and base space a complete simply con-
nected cosymplectic manifold and such that the fibers are totally geodesic
submanifolds.

Next, we shall prove a converse of this corollary, which is the main result
of this section.

Let 03C0 : (M, 03C6,03BE,~,g) ~ (M’, 03C6’,03BE’~’, g’) a D(03C3)-conformal cosymplectic
submersion of the connnected manifold M onto M’. We shall denote by M
the universal covering space of M, by (~p, ~, ~, g) the induced almost contact
metric structure on M and by : (M, ~, ~, g) -~ (M’ ~’, g’) the
induced D(03C3)-conformal cosymplectic submersion of M onto M’ (sect. 6).
We shall suppose that the fibers of x are connected submanifolds of M.

THEOREM 8.1. Let 03C0 : (M,03C6,03BE,~,g) - (M’,03C6’,03BE’,~’,g’) be a 

conformal cosymplectic submersion such that (M, 03C6,03BE, ~, g) is a complete
connected PC(k)-manifold with Lee 1-form w and the fibers of ~ are totally
geodesic submanifolds of M. . Let ~ : (M, ~, g) -~ (M’, w’ ~’, g’)
be the induced D(03C3)-conformal cosymplectic submersion of the universal
covering space M of M onto M’. Suppose c = dim M = 2m + 1

and dim M’ = 2m’ -~-1. .

Proof . If k > -3c2 then, by theorem 1.2, we deduce that there
exists an almost contact isometry T of (M,03C6,03BE,~,g) onto the PC(k)-
manifold x H2c,, , , ), where the almost contact met-
ric structure (c~, ~, is given by (1.14). Moreover, if B is the Lee
vector field of x H~ and (s,t) the coordinates on H~ then,
from corollary 5.2, we have that Band B are vertical vector fields of
the D(cs)-conformal cosymplectic submersion ~r o T-1 ; ,S2m-1 (c, ~) x
H~ - ( M’, c,p’, ~’, ~’, 9’ ~ . Thus, since the vertical bundle of the sub-

mersion k, m - 1~ ; k) x H~ - + 3c2) x IR
is generated by B and there exists an almost contact metric sub-
mersion T’ : + 3c2 ~ x IR --~ (M’, such that
T’ o J~, m - 1) _ ~ o T-1. . In fact, ~r’ is a cosymplectic submersion.



The following commutative diagram illustrates the above situation.

Now, using lemma 8.1, we obtain that r’ is a submersion with connected
and totally geodesic fibers which, by proposition 8.3, implies that r~ is an
almost contact isometry. This proves (1).

(3) is proved in a similar way.

Analogously, if k = -3c2, then we deduce that there exists a cosymplectic
submersion

of C’’n’-1 ~0) x IR onto M’ with totally geodesic fibers and such that T" o
m - 1, m - 1 ) = ~ o r, being T an almost contact isometry of

IR2m-1(c) x H~ onto (M, ~p, ~, ~, g). . Thus, from proposition 8.3, we have
that ~r" and the projection T2 (m - 1, m’) of C’’n-1 (o) x R onto x IR

are equivalent submersions, i.e. the following diagram:

is commutative, where r’ C’’’z~(o) x R --~ M’ is an almost contact isometry.
Therefore the D(03C3)-conformal cosymplectic submersion 03C0 and the D(cs)-
conformal cosymplectic submersion 1r2(c, m - 1, m’) are equivalent. 0
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