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Representations of the Whitehead manifold Wh3
and Julia sets(*)

VALENTIN POÉNARU(1) and CORRADO TANASI(2)

R,ESUME. - Quand on etend a la variete de Whitehead le theoreme
de representation pseudo-spine collapsible pour les spheres d’homotopie,
les transversales tendues a l’ensemble des lignes doubles presentent un
comportement chaotique bien connu. Ce comportement est engendre par
une boucle de feedback dynamique qui engendre aussi des ensembles de
Julia.

ABSTRACT. - When one extends to the Whitehead manifold the col-

lapsible pseudo-spine representation theorem for homotopy 3-spheres, the
tight transversals to the set of double lines present chaotic dynamical
behaviour of a very well-known type. This behaviour is generated by a
dynamical feedback loop which also generates Julia sets.

KEY-WORDS : Representations of open simply connected 3-manifolds,
Whitehead manifolds, tight transversals to the set of double lines, Chaotic
behaviour, Julia sets, Mandelbrot set. .

AMS Classiflcation : : 57M30, 58F13.

Introduction

The present paper exhibits, posssibly in the simplest form, something
which many people expect to happen, namely a connection between wild
differential topology in dimension 3 and chaotic behaviour of dynamical
systems (see for instance section 6 from [FL]).

( *) Recu le 18 juillet 1993
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The first author has hiven a certain kind of representations for homotopy
3-spheres the so called collapsible pseudo-spine representations ~Pol~. . Sub-
sequently the same author has extended this kind of representations to arbi-
trary open simply connected 3-manifolds. Completely new features occur in
this set up, namely the possibility of infinite accumulation of double points
at the source of the representation; we will describe these things in detail
later on in the present introduction, but right now let us say already that
the point which this present paper makes, is the following. When you try to
represent the celebrated Whitehead manifold by the procedure in question
and if you take the most natural road for doing so, then the well known Ju-
lia sets from the iteration of quadratic polynomials appear very naturally.
We will explain these things a bit more in detail. We will briefly review
now how the collapsible pseudo-spine representations ~3 from [Pol]
are generalized. In the present paper we consider an open simply connected
3-manifold V3, in lieu of E3 and an infinite but locally finite 2-dimensional
simplicial complex X in lieu of K2 ; this X will be almost arborescent (this
notion, which we will define precisely later on, is the subtitute for almost-
collapsibility in the context of infinite complexes).

With this we will be able to construct a non-degenerate map V3

having properties:

(i) The map f is a generic immersion except at a set Sing( f) C X
of singularities; but caution we will need to leave the simplicial
category, f X wil not be a simplicial complex, not even a non-locally
finite one, and accordingly f will not be simplicial. But f X will
be a generalized polyhedron, in a sense which will be made explicit
later on; it suffices to say here that the open regular neighbourhood
Nbd( fX) C ~3 continues to be well-defined.

(ii) The double points of f are again commanded by the singularities
(with the notation of [Pol] this means that = ~( f )). In

plain english this also means that if you start zipping away from
the singularities, then you catch all the double points.

(iii) The open regular neighbourhood Nbd(fX) C Y3 is isotopic to

V3 - {a closed totally discontinous subset which is tame} (and this
will also be made completely explicit later on).

So far we have for V3 a not completely trivial extension of the (almost-)
collapsible pseudo-spine representation theorem for ~3, from [Pol].



But now we have a completely new phenomenon; the set of double points
of f i.e. of points x E X such that > 1 which we will denote

by M2 ( f) C X is, generally speaking, no longer closed and the main concern
of [Po2] and also of the present paper is the study of the set of limit-points
of M2 ( f). In order to get our hands on this set, we will consider the various
smooth lines A C X which are transversal to M2( f) and look at the set
of limit-points of A n M2 ( f ), which we denote by lim(A n M2( f)) ; here
p E lim(A n M2( f )) C ~ iff there exists an infinite sequence of distinct
p oints pl , p2 , ... E An M2 ( f) such that lim pn = p.

Before we go on, some more notations will have to be introduced.

By definition a generalized polyhedron of R3 is a subspace Y C R3
which up to a global diffeomorphism of R3, can be described as follows.
We are given to begin with, a countable (or possibly finite) collection of
distinct affine planes Rf, R2, ... C R3 such that Y C Ui R2 . Moreover our
collection of planes has fulfill the following conditions.

(A1) No infinite subcollection of the has a common point.

(A2) There are positive numbers e1, e2, ... such that the open subsets
Rf x (-el, E1), R2 x (-~2, e2), ... . of .R3 meet ezactly like the

Rf, R2, ... In particular this implies that if p E Ra n R~ _ R2
then dist (p, R2 ) > Also the set of planes is discrete in the
sense that there ar no "topological relations" (in the space planes
of R3 ) of the type R ~ = . Similar.y, the set of lines

n R~ ~ and the set of points ~R2 n Rj n Rh~ are also discrete.
(A3) For each R2 we give 2-dimensional piecewise linear submanifold

with boundary Lr C R2 C R3. We will assume these Lr’s to
be of simplest type, like for instance R2 itself, a half plane, a
quarter plane or rectangle (possibly with some edges at infinity,
or simply deleted). But even in the case when each p E Y has a

neighbourhood in Y which is a locally finite simplicial complex (or,
more generally, a neighbourhood which is a closed subset of R3),
Y C R3 itself is not assumed to be a closed subset.

We do not have to go into more details here and now, since the generalized
polyhedra considered in the present paper will be complety explicit.
We consider now in lieu of R3, a smooth 3-manifold M3, with 8~V13 = ~.

A subset Z C M3 will be called a generalized (sub-)polyhedron of M3 if
locally, i.e. in each coordinate chart R3 C M3, the object Z n R3 is a
generalized polyhedron in the sense of (Al) to (A3).



We will define now the notion of a singular generalized polyhedron which is
locally finite at the source (which we will just call a "singular" locally finite
generalized polyhedron). This is a triple {X , f , M3) where the following
conditions are fulfilled.

(Bl) M3 is a smooth 3-manifold without boundary, X is a locally finite
simplicial 2-dimensionnal complex and M3 is a continous
map which restricted to each simplex of X is a smooth embedding.
The image f X C M3 is a generalized subpolyhedron of M3 (which
also means that, generally speaking, the map f cannot be made
simplicial). We will assume f to be generic.

(B2) There is a closed discret e subset Sing(/) C X which is such that if
z E X - Sing( f ), then there exists an open neighbourhood x E Y C
X and a smooth coordinate neighbourhood f (x) C R3 C M3 such
that flY is an embedding of Y into R3. So, outside the discrete
and closed set Sing(/), f is an immersion.
Caution : Y is a locally finite simplicial complex while f (Y) C R3
is generally speaking (although isomorphic, abstractly speaking, to
Y) only a generalized subpolyhedron of R3.

(B3) For each singularity (1’ E Sing(/), we have the admissible local model
from [Pol] (and [Po2]). Explicitely, this means the following (this
is a reminder). For each singularity ~ E Sing( f ), there are two
rectangles Pi P2 of X such that Pi U P2 C X is a neighbourhood
of ?’, with the following properties: at the level of X, P1 and P2
are glued together along a common half-line, the restrictions f ~ ps
(i = 1, 2) are embeddings, and at the target f P1 and f P2 meet
transversally (fig. 1.1).

There is a line of double points of f, which starts at the singularity r.
Such points as we have just described, will be called undrawable singularities
(or admissible singularities). It is assumed that f is injective, and
also that f(Sing( f)) C M3 is a discrete subset which, generally speaking,
need not be closed; it is only Sing( f ) C X which is closed, at the source. On
the other hand through each singularity (1’ E X go now exactly two smooth
sheets of X namely Pl and P2 . .

We will say that the singular generalized polyhedron X is arborescent if
we can obtain it by a sequence of Whitehead dilatations starting with a
point. Also "arborescent" does not imply "collapsible" (R2 for instance is
arborescent). We will say that X is almost arborescent if it can be obtained



Fig. 1.1 Admissible or "undrawable" singularity.

by a sequence of Whitehead dilatations and of additions of 2-cells along their
boundaries, starting with a point. In other words, X is almost arborescent
if it admits an exhaustion by finite simplicial complexes

such that Xo = and that each inclusion Xz C Xi+1 is a Whitehead
dilatation or the addition of a 2-cell along its boundary.



Let us consider a generalized polyhedron R3 D Y = U2 L2 with quantities
Ei > 0 like in (A2) at the beginning of this section. Consider for every L;
an open tubular neighbourhood of width r~2  ~i, let us call it Lf x .

The open manifold:

which up to diffeomorphism only depends of ~R3, Y) is, by definition, the
(open) regular neighbourhood of ~’. With this we can define the regular
neighoorhood of any : :

as soon as Sing(f) = 0 (i.e. with an immersive f) in particular for

generalized polyhedra Z C M3.

If V3 is any open 3-manifold, a singular locally finite generalized polyhe-
dron : 

#

will be called an (almost) arborescent representation of V3 which is locally
finite "at the source" if the following conditions are fulfilled:

(Cl) X is (almost) arborescent.

(C2) ~(f ) = ~(f ).
(C3) For the open submanifold Nbd(fX) C V3 there is an isotopy

of smooth embeddings Nbd(f X)  V3, where t E [0,1], such
that io is the standard embedding and ii is a diffeomorphism

Nbd( fX ) ~ V 3.

Remark. - Our it is not an ambient isotopy.

For a given open 3-manifold V3 we will define a type of submanifolds,
which we call generically Vh which are defined by : :

where the Cn are two-by-two disjoint compact discontinuous tame subsets,
not accumulating at finite distance. Up to isotopy, the ~h is uniquely
defined once the topological type of Cn is determined.



Let L ~ X be a smooth sheet and l C L a smooth line meeting
transversally the stratified set M2 ( f) C X . We will say that the transversal
.~ is tight if we cannot find any 2-cell D2 C L resting with half of its boundary
an .~ and with the other half on a smooth line in M2 ( f ). In other words, for
a tight transversal figure 1.2 is forbidden.

Fig. 1.2 This figure (supposedly living inside the smooth sheet 
is forbidden for a tight transversal .C.

We will only be interested in the following situation as far as singular
X 2014~ are concerned. In any sufficiently small smooth sheet L C X
the set M2 ( f ) n L is a finite union of subsets (actually only one or two),
each of them contained in a family F C L of "parallel" lines with the

following property. For any tight transversal .~, the set F n I is discrete, i.e.
F n lim(F n .~~ = 0 (this behaviour is at the opposite pole with respect to
laminations).

All this having been said we can state now the following theorem which
is proved in [Po2] and which gives the general context for this paper. What
we will call the representation theorem below is actually only part of the
theorem proved in [Po2] but this part is the only relevant one for this
context. So here is the theorem.

REPRESENTATION THEOREM. - Let Y3 be an open simply connected
3-manifold. We can always find a Vj~ (like in (1.3~~ and a locally finite
almost arborescent representation of ~~

with the following property.
For any tight precompact transversal .~ C X the limit set of M2( f ) n .~,

i. e.

is finite . .



This statement should be compared with the following.

(ALMOST) COLLAPSIBLE PSEUDO-SPINE REPRESENTATION THEOREM
(see [Po1]) .2014 Let 03A33 be a homotopy 3-sphere. We can always find a

finite (non-void) set E C E3 and an (almost) collapsible representation of
~3-E:

(Here K2 is a bona fide finite simplicial complex and g a non-degenerate
simplicial map.)
We will make now a few comments, first about the representation theorem

itself. In some sense this theorem is the best possible, since one can

prove the following fact. If V3 C V3 is like in the representation
theorem and such that for any tight transversal lim ~M2 ~ f ) n ~~ = 0 (i.e.
card (M2( f) n l)  ~) then 03C0~1V3 = 0. This fact is proved, among other
things, in [Po2] . Only tight precompact transversals will be considered.

Now the representation (1.4) is, generally speaking, highly redundant in
the sense that any a given double point

of the map f can be reached in many distinct ways, via zippings starting
from the singularities of f . Very much linked with this redundancy is the
fact that in order to get the finitenes condition for our almost arborescent

representation, we had to go from y3 to ~h thereby (highly) increasing
the second homotopy group x2. In the same spirit, when we realize f by
elementary O(i) moves [Pol], many of these will be 0(3)’s and each of these
creates a new x2-generator.

In Theorem A below we consider a non-redundant representation of the
classical Whitehead manifold and what we find is that if this representation
"is the simplest possible" (that is what (c) in Theorem A is supposed
to tell us), then there are tight transversals l such that lim (lVl2 (, f ) n .~)
is uncountable (it actually exhibits chaotic behaviour). To put things
slightly differently, a high redundancy is very likely unavoidable for a wild

3-manifold V3 (with 0 like the Whitehead manifold), if one insists
in getting an (almost) arborescent representation satisfing the finiteness
property from the representation theorem above. It will turn out that the

set M2 (, f ) n A, where A is a certain tight transversal, is generated by a

dynamical feedback loop which is the same as the one which generates



the Julia set of a quadratic polynomial which has the property that under
iteration the unique critical point escapes to infinity. In other words again,
the finiteness property in our representation theorem is achieved only at
the price of a lot of redundancy.

As far as the representation theorem itself is concerned, it is part of
a general approach developed by the first author in connection with the

problem of the simple connectivity at infinity for the universal covering
space M3 of a closed 3-manifold M3, and our Theorem A is an addendum
to the representation theorem in question; but it is not part of the approach
to the proof of = 0.

Before we can state our result we have to open another parenthesis. We
will consider a real quadratic polynomial fx which is such that iterates of
the unique critical point go to infinity. We consider also a certain set of
cardinality two E = C R (fig. 2.1~ and for this set we consider the
set

As we will see in the next section, the set of limit points of E u U

f ~ 2 EU ~ ~ ~ is the Julia set (see for instance ~B~ ) of the quadratic polynominal
fa~

The goal of the next section of this paper is to exhibit the following fact
which we believe to reflect a general kind of a pattern and which we will
call.

THEOREM A. - We cas find an arborescent representation, which is
locally finite at the source, of the Whitehead manifold Wh3.

with the following features:

~a~ We will have

where each D~ is a 2-disk, for every i the disks and Dz are glued
together along a common arc and, in K, these arcs are two-by-two
disjoined.

~b~ The map g has no triple points, each connected component is

a finite tree starting at a singular point, and for each tight transversal
.~ we have



(c) Each g (aDZ) is the middle curve ,S1 x pt C S‘1 x D2 = Ti of the i’th
solid torus Ti ofWh3, g(Di) C Int Ti+1 and g(DZ) is a spine of T2+1.

(d) We can find a tight transversal A C Do to M2(g) with a disjoined
partition

so that there is an order preserving bijective map

which sends onto 

(e ) The set of limit points of An M2(g) is a Cantor set, actually it is the
Julia set the polynomial fx .

The following section owes a lot to the friendly help of John Hamal
Hubbard who showed the first author how his algorithms concerning double

points fitted into the context of the Julia sets.

2. Whitehead and Julia algorithms

The point we are trying to make in the present section is the following.
As already said, the finitess in the representation theorem quoted in the
introduction to this paper (and which is proved in [Po2]) was achieved at
the cost of a lot redundancy (i.e. by going from V3 to Vh ). We will show
here that for the simplest possible representation of the Whitehead manifold
Wh3 (i.e. for a non-redundant representation of a wild simply-connected
open 3-manifold), the set of limit points of double points, on a transversal
to the double lines exhibits chaotic behaviour, in fact a chaotic dynamical
behaviour of a very well-know type.

But before we can state exactly our result we need to recall a number of
facts about holomorphic dynamics. Consider a (real) quadratic polynomial

= ax ( 1 - z) - ~c (with a fixed small ~ > 0 ) with the parameter value
A > 0 fixed in such a way that the sequence of iterates of the (unique)
critical point of f a is unbounded . Figure 2.1 shows the graph of such a

f a (with a = 6.185 and  = 0.5); in this figure the critical point of f a is
a; = 1/2 and as we can see, by iterating,



Fig. 2.1 The iterates of the unique critical point of f a escape to infinity.

we get an unbounded sequence. If we let things become complex, rather
than real, and go to the = z2 + c representation then one defines
in general Jc = {the filled Julia of where J~ = {the set of z’s such
that P~ ~z ) stays bounded} and the Mandelbrot set M = { those c’s which
are such that c E (Note that while Jc lives in the complex z-plane,
M lives in the c-plane.) One also shows that c E M if and only if Jc is



connected. One defines the Julia set as ale but outside at the Mandelbrot

set ~Jc = Jc = {a Cantor set}. . Our polynomials (fig. 2.1) correspond to
those real values of c living outside the Mandelbrot set in the open half-line
contained between -00 and M (see [B]).

Fig. 2.2 Here the iterates of the critical point of ~a do not escape
to infinity but are trapped at finite distance by an attractor.

For the Julia set Jx of our (fig. 2.1) we can take any of the following
equivalent definitions.

~a~ The Julia set Jx is the set of limit points of

for any finite set E C R.



(,Ci) If, in terms of figure 2.1, we think of as being a not everywhere
well-defined map o , 1 J --> ~ 0 , 1 ~, then our Ja C ~ 0 , 1 ~ is exactly
the subset where all the iterates of f a are well-defined.

(y) The Julia set JÀ is the subset of the complex z-plane (z = z + iy)
which is such that if Zo E Jx then there is no neighbourhood N of
zo such that, when restricted to z E N, the set of iterates of is
a normal family. In other words this is the chaotic set, as far as fa
is concerned.

(6) Ja is also the set of points the iterates of which do not escape to
infinity (which, of course, is another way to say that the action of f j,
on this set is chaotic).

It is a weel-known fact that Ja is a Cantor set for any polynomial f a
which is like in figure 2.1 and as long as this is so, all those are the
same object, up to a quasi-conformal homeomorphism of complex plane.
By constrast with what we see in figure 2.1, the f a from the figure 2.2 has a
connected "filled" Julia set and it corresponds to a value of the parameter
living in the Mandelbrot set M (unlike our 

’

For more details about all these things, one can consult [B] or any other
standard reference on this subject.

Remark. - The dynamical behaviour displayed in figure 2.1 is very much
related to the Smale horseshoe [S] (unlike the more subtle dynamics from
figure 2.2, which is connected to the Feigenbaum cascade of period-doublings
and transition to chaos [B], [F]). But for the discussion which follows the
Julia set standpoint seems more natural than the horseshoe description; we
will see this very soon.

Fig. 2.3



In the figure 2.1 we can see two points x0,y1 which are such that

0, == 1, the value a?o being chosen as small as possible
while yl is as large possible. We will denote E = and consider the

set

As already said before the set of limit points of f, is the Julia set of our 
Let us consider now some arc A and a countable subset ~’ C A endowed

with a disjoined partition into finite subsets

We will say that the partition (2.2) obeys to the Julia algorithm if there is an
order preserving bijective map sending ~’ onto ~ in such a way that for each
n we have = All this having been said, we consider now
the simplest Whitehead manifold Wh3 ~R~, which is obtained by iterating
the embedding To C Tl, or more explicitely

{solid torus of genus one} = To C Int Tl C Tl = {solid torus
of genus one}

from figure 2.3 (with null-framing). It is a well-know fact that for the open
contractible 3-manifold Wh3 we have 03C0~1 Wh3 ~ 0.

The goal of this section is to prove the theorem A from the introduction,
which we restate below in a slightly modified form.

THEOREM A. - We can find an arborescent representation of the
Whitehead manifold Wh3

K  Wh3, ,

with the following features:

(1~ (Reminder) The space K is a locally finite simplicial complez which
can be obtained starting with a point, by an infinite sequence of
Whitehead dilatations (which is itself locally finite ).

~,~~ Actually we will have

where each DZ is a 2-disk, for every i the disks Di_ 1 and Di are glued
together along a common arc and, in K, these arcs are 
disjoined.



(3) The map g has no triple points and each connected component of
MZ (g) is a finite tree, starting at a singular point. Moreover, for any
tight transversal .~ to the M2 (g) we have M2(g) n lim (M2(g) n l) = ~.

(l~~ (This point, which will be ezplained in much more detail, later

on, is supposed to tell us that K Wh3 is the simplest possible
representation of Wh3~. Each g(aDi) is the middle curve S1 x pt C
Sl x D2 = T2 of the i’th solid torus Ti ofWh3, g(D2) C Int Ti+1 and
g(Di) is a spine o,f TZ+1 (fig. 2.3.1~.

(5) We can find a tight transversal A C Do to M2 (g) with a disjoined
partition

so that there is an order preserving bijective map sending onto

Fn+1 
_ _ _

and hence ~,~. 3~ obeys the Julia algorithm.
~6~ The set of limit points A ~1 M2~g~ is a Cantor set, it is actually the

Julia set the polynomial fx .

All these things will be looked at in detail in the rest of this section

Fig. 2.3.1 g(Di ) ,~ i.e. g(Di ) is a spine of Ti+1.



LEMMA 2.1. - There is an arborescent representation of the Whitehead
manifold Wh3

which is such that g has no triple points.

Proof - We will explicitely construct such a K ~ wh3 which in some
sense is the simplest possible one, before analyzing its further features. But
it will be easier to start with another representation

Which is not arborescent any longer, but which still has the following
properties.

(a) The space Ki is a locally finite contractible simplicial complex; but
this K1 will not be arborescent (i.e. it is no longer obtainable from
a point, via Whitehead dilatations). We also have = ~. The
next three points are just a reminder.

(b) Except for admissible singularities like the ones in figure 1.1, gi is a
generic immersion without triple point.

Fig. 2.4 Ki is a quotient space of the disjoined union ~o Dn and points of ~o Dn
with the same image in Kl carry the same letters in this figure.



(c) We have ~~gl ) _ ~(gl ).

(d) The subset g1K1 C Wh3 is a non-singular generalized polyhedron and
there is an (improper, i.e. non-ambient) isotopy of

changing it into a diffeomorphism Nbd(g1K1) ~ Wh 3 .

We will eventually get our (2.4) by a very easy pertubation of the simpler
object (2.5). From a purely abstract viewpoint (i.e. if we forget the map

the space K1 will be obtained by glueing together infinitely many copies
of the 2-disk, namely Do, Di D2, ... , (fig. 2.4). We actually will have to
quotient the Di’s before glueing them together.

Fig. 2.5 M2 (91 ~ Dn); the double points are dotted; also. = singularity;
this figure is at the source of the map 91. .

The quotient and glueing pattern is the following (see again fig. 2.4).



Fig. 2.5.a This figure which is at the target corresponds to figure 2.5;
the fat arc , a’n’ ] is not a double line;
the a~,, an are undrawable singularities

Fig. 2.6 M2(~i~(D~uD~+i)). .



To begin with, at the level of each Dn (for n = 0, 1, 2, ...) we identify
(in the orientable fashion) the two copies of the arc , a~ ~ which are
contained in the interior of Dn.

Fig. 2.7 CK2 = M2 ~91 ;
the points are not yet singular;

they will become so at the level of K (fig 2.8).

It is understood that the two middle points ( 1 /2 ) ~an + are glued
together in this process. Let us denote by Do, D1, D2, ... the quotient
spaces of Do, D1, D2, ... obtained in this way. The image of the arc
Cn C D~ (which joins the middle points of the two arcs , an ~ ) becomes
a circle, which we denote by the same letter Cn C Dn.



Fig. 2.8 Du U C K; all the dotted lines are double points of g;
they include M2 (g ~ ~Dn U , but they are far from exhausting

M2 (g) n ~Dn U , as we shall see explicitely later on.

Notice that 8Dp = ~Dp. Next we glue for each n + 1 (n = 0, 1, ...) the
boundary 8Dn+1 = 8Dn+1 to the circle Cn C Dn via a homeomorphism.
In terms of figure 2.4 it will be assumed (in order to make things precise)
that the arrows of Cn and ~Dn+1 correspond to each other. The result of
this operation is our Kl = Do U Di U ..., which will be the source of the
map 91. ~

Consider now the sequence of embedded solid tori of genus one, each one

inside the interior of the next, which defines Wh3

The map Wh3 will be subjected to the following list of conditions.

Conditions on gl

(0) The image of aDn C K1 is contained in Int Tn and g1~Dn C Tn is a
spine of Tn .

(1) The image of Dn C Kl is contained in Int and g1Dn C is

a spine of Tn+l. .



(2) The double points of the map g1 | Dn are like in figure 2.5 and the
singularities of g1 are exactly

In figure 2.5 (and also in figure 2.6) we use the convention that points
on the dotted lines denoted with the same letter (like bn, cn, ...) are
identified to each other via the map Wh3.

(3) The set g1Dn is very thin with respect to gl Dn+1 for each n; in more
precise terms giDn is concentrated inside a thin tubular neighbour-
hood of g1~Dn+1 and the double points of g1 |(Dn U Dn+1 } are like
in figure 2.6.

These conditions still leave a lot of margin of maneuver but they
completely determine the subset M2 (gl ) C Kl modulo a not necessarily
ambient isotopy. (Our "margin of maneuver" allows for an arbitrary
reparametrization of the source, and also for an arbitrary non-ambient
isotopy of the image g1K1 C Wh3 inside the target.) We will make
this set M2 (g~ completely explicit later on. It should be abvious that

is acyclic and with M3(gl ) _ Ø. Moreover Nbd(g1K1) C Wh3
is completely determined modulo an isotopy of embeddings which is not

ambient; proprieties (a), (b), (c), (d) are satisfied. It will be convenient to

change Wh3 into a variant Wh3 before our real K ~ Wh3
can be defined. In going from K1 to K2 we keep the same principle
K2 = Do U Di U D2 ... but the glueing pattern of Dn to Dn+1 will be

slightly different. In terms of figure 2.7, Cn C Dn will be identified now
with the curve 

contained in Dn+1 and which coincides with 8Dn+1 = 8Dn+1 ezcept for
the small arc 

, ,

which is close to the arc

but sits in the interior. Also the arc [the lower (1/2)(ari + Tn~ C Dn is
glued now to ~(1/2~(an + Tn, C 8Dn+1. . It is understood that the arc



is very short so that the passage K2 is far from the double points
of the map gl. . The double points of g2 are rigorously the same as those
of gl. One finally gets (K, g) from (K2, g2) by keeping fixed the image
g2 K2 = Wh3 but by unglueing K2 along each tripod

So, in passing from (KZ, g2) to (K, g), figure 2.7 changes into 2.8. The arc
[Tn, an, sn] C Dn is glued now isomorphically (at the level of K) to the fat
curve p, C for n = 0, 1, 2, ... and this defines the space
K which is arborescent. This K is again a quotient of Dn but now

each Dn injects into K. The pair of singularities an, an is replaced by
the unique singularity sn and we continue to have M~(~) == 0 (the lower
(1/2)(an -~- an) E Dn continues to be glued to (1/2)(an -~- an) E at the

source of g). This finishes the description of K ~ Wh3.

Rermarks

(A) The double point stiuctures of g and gl (g2 ) differ only in the neigh-
bourhood of sn (n = 0, 1, 2, .... In particular, in the neighbourhood of

[lower (1/2)(an + C Cn, the double points of g and of gl are ex-

actly the same.

(B) The construction of (K  Wh3) leaves a lot of margin of maneuver;
actually exactly the same as for Wh3). We will give now.

The algorithm which generates the transverse structure M2(g) C K

We will consider in Do a line A parallel to the [lower (l/2)(oo + (To]
(see the left side of figure 2.7, with n = 0) and which is slightly shorter than
our ~(1/2)(ao + . This line which is contained inside the smooth

part of K is a transversal to M2 (g) which is tight with respect to M2 (g)
and it is disjoint from M2(g ~ Do). Moreover our tight transversal A (which
we can also see in figure 2.4) is supposed to be long enough so that it meets

(exactly once) every arc in

Fig. 2.9 This figure (next page) and figure 2.9b) which continues it shows the recursive
rules for building C K1; to simplify matters we made as if

the double points appear as dotted lines and we are really interested in what happens





Fig. 2.9b) We see here t = 3.



We will investigate the set M2(g) n A. Clearly (see remark (A) above) this
is exactly the same thing as investigating M2 (gl ) n A = M2 (g) n A. So what
we will do will be to pick up, with much more details the issues started by
figure 2.6 with the help of which we generate figure 2.9. At each time t = n
in this figure we have an isomorphism Cp  8Dp+1 for all p ~-1  n. Points
on Cp and 8Dp+1 which are indicated by the same symbols, have the same
image at the source (i.e. they are the same point in K).

Here is the recursive procedure for constructing MZ (gl ) C K1. . At time
t = 0 we consider Do and M2(gl Do) C Do C K1. . This is shown on the left
upper corner (line t = 0, column Do) of figure 2.9. At time t = 1 we consider
both Do and Di and we look for M2 (gi (Do U D1)). . The situation on

(line t = 1, column Di) is forced by (line t = 0, column Do) which it is
imitating (i.e. D1 ) is isomorphic to M2(gl ~ Do ) ); this accounts for
the diagonal arrow. But then the situation on (line t = 1, column Dl ) forces
the situation of (line t = 1, column Do ) which enriches what we already had
at (line t = 0, column Do); this accounts for the horizontal double arrow.
(Of course (line t = 1, column D1) contains some extra details with respect
to (t = 0, column Do), like the lines (ql, qo), (pl, po) which appear for
(t = 1, Dl ) but are absent for (t = 0, Do) ; these details come from {the
double points of gi which involve both Di and Do} n Di.) Figures 2.9
and 2.9b) (line t = 3) suggests how this process continues recursively for
all t’s. The situation (t = n, Dn) forces (t = n + 1, Dn+1), which then
in turn forces (t = n + 1, Dn), (t = n + 1, Dn_1), ..., (t = n + 1, Do).
Here again (t = n + 1, Dn+1) contains some extra details with respect to
(t = n, Dn). These come from {the double points of gl involving both Dn+1
and 03A3n0 Di} n Dn+1. . But these kind of details are completely irrelevant for
our main discussion, which focuses on M2 (g) n A and on the set of limit
points of M2 (g) n A; we will, generally speaking, ignore them hereafter.

For each t = n and p  n the situation on Cp and 8Dp+1 are canonically
isomorphic, as one can see it in figures 2.9 and ,~. 9b~. Also the various

points of M2(gl) successively appearing on Cp and/or on 8Dp+1 at times
t = 0, t = 1, ... carry some lower indexes and we will define the flavour of
the respective double point as being

(so that, for instance, flavour(pO) = 1, flavour(q321) = 3, ...). If x C

M2 (g) n Cp and if the flavour of x is q, this means exactly that z considered



as a point in Cp, is a double point involving Dp and Dp+q Our double points
also carry a letter (like p and q) and an upper index, which together, will be
called the colour of the corresponding double point. Notice that colour and
flavour together determine completely the set of indices (upper and lower,
with their order, and of course the letter p/q too) which accompany the
double point. (But colour does not determine flavour, nor the other way
around.) In other words any

is completely identified by its combinaison of flavor and colour. The

geometric meaning of the lower indexes should also be clear, for intance

q2la = {the result of the q3 E D2 n aD3 on Di and then finally on Do} . .

The upper index corresponds to the first time t when the double point in
question (without its lower indices) appears.

The canonical isomorphism 8Dn+1 (see for instance Co and 8D1
in figure 2.9b)) sends double points to double points with the same colour
and flavour (like a p21 E Co to a p21 E 8Di (fig. 2.9b)).

The important feature of this recursive procedure is the following.
Consider two consecutive columns (we will focus from now on Do and

D1~ after the inductive procedure (t = 0) => (t = 1) ~ ~ ~ ~ has been

completed, i.e. at time t = ~. Infinitely many horizontal dotted lines
passing through points endowed with colour and flavour will be contained
now both in Co C Do and Ci C Di (the small irrelevant details like

qo ), ( po , po ) contained in Int Dl will be, of course, forgotten from
now on). We make the following claims:

Alg-0. - Our whole infinite construction is invariant under the unilateral
shift

as long as colours are ignored. Both the drawing and the flavours are shift
invariant. . Of course, the shift can be accompanied by a precise, well-defined
trasformation of the colours which the reader can explicit easily. We also
have a colour and flavour conserving monomorphic inclusion map



Alg-1. - The situation of (Int Co) n (horizontal dotted lines) at the time
t = oo is exactly the M2(g) n A we are looking for.

Alg-. - Before we state the next claim let us notice the following
feature which is build into the detailed construction of the figure 2.9 and
figure 2.9b. When for a given t = n (like for instance t = 3 and for two
consecutive columns i, i+1 (like for instance Do and Di) two horizontal lines
are drawn exactly at the same level (like for instance Do and

~ p2 C D1) they correspond to the same flavours f for the middle
point and f + 1 for the two extreme points, i.e. these two lines go from
a point of flavour f + 1 to another point of flavour f + 1 passing through
a middle point of flavour f. . On the column i the lines in question are in
the image of the inclusion (2.9) and all this is consistent with the following
"commutative" diagram (which is flavour preserving) but where the left
horizontal translation is not colour preserving (see Diagram 1). Actually
the p/q part of colour is preserved, but this is irrelevant. Our figures, as far
as the horizontal alignement is concerned, have been drawn exactly so as
to make the diagram above commutative. This has nothing to do with the

8Dj+1 isomorphism. On the other hand the two horizontal lines in
question correspond, respectively, to the double points involving {both Di
and and/or {both Di+1 and Dz+ f+1 y

Diagram 1



Fig. 2.10 The dynamical figure (t = oo, D);



- - - (where no numbers are indicated)= [6, 5, 6]; in order not to make the drawing too
messy, most of the symbols 5 and all the 6’s are lacking on C and aD; for similar reasons,
the numbers 1, 2, ..., for the points of C have been shifted to the right, on the same
dotted horizontal line; the vertical parenthesis suggests the self similar pattern which
this figure starts to build.

Remark. . - As already said, the device of drawing at the same horizontal
level lines which correspond to each other under (2.9) does not keep track
of the flavour (and colour) conserving isomorphism

But it makes possible what comes next.

As a consequence of all this (and this is finally our claim Alg-2, if we
forget about the colours and keep only the flavours (1, 2, ...) then the
figures (t = oo, Do) and (t = oo, Di) are canonically isomorphic. Let us call
this infinite object (t = oo, Do) ~ (t = oo, Di) "the figure (t = oo, D)".
The isomorphism (t = oo, Do) ~ (t = oo, Di) comes, of course, from
the shift (2.8). At the level of (t = oo, D) the isomorphism C0 ~ 8Di,
becomes C  aD and this isomorphism conserves flavour. We will draw the
transversal A inside the figure (t = oo, D) and consider

Fn double points of A n M2 (g) which have flavour n
= { the double points of An M2 (g) which come from g Do ~1 .

(2.10)
Figure 2.10 suggest how one builds, inductively our figure (t = oo, D). .

The important point is that now we are in the presence of a feedback
C 4=~ aD which generates the following.

Dynamical rule for construction (t = oo, D) (and hence the set
A n M2(g))

We start by drawing the bare lines C and 8D like in figure 2.10. "Bare"
means without any details other than their orientations, in particular
without any double point of g and/or gl. . Then, as an input we draw the
(asymmetrical) horizontal lines (aup,1 ), 1 ) . Now 8D is no longer
bare since it contains two points with flavour 1. The rule that there is
a flavour conserving isomorphism C z 8D forces then, by dynamical self



consistency, two points with flavour 1 on the line C. From these two points
we draw horizontals symmetrically in both direction until we hit aD at four
points with flavour 2. By dynamical self-consistency these points have to
exist also on C so that

From the points with flavours 2 on C we draw, symmetrically, horizontals
which hit 8D in eight points with flavour 3. By dynamical self-consistency
these have to be drawn on C too, and so on.

By now this dynamical process of feedback between C and aD should
be clear and hence, within the margin of freedom which this construction
leaves, we know now our C0 ~ M2(g) which comes equipped
with an obvious disjoined decompositon

where, like in (2.10), we have Fn = ~ double points of flavour n, i.e. double
points which involve Do and D~ ~

.Remark.2014 Let us denote by aD 2014~ C the canonical homeomorphism

8D ~ C and b y aD --h~ C the not everywhere defined horizontal projection
from aD to C, so that C 2014~ aD is the double-valued map which attaches
to p G C two points of c?D sitting on the same horizontal line. With

these notations our feedback loop via which the infinite figure 2.10 has been
constructed is represented in Diagram 2.

Diagram 2

If we denote generically by n E aD the points with flavour n, then our
dynamical rule for building up the Fi + F2 + ... (as a subset of aD) is
schematized by the formula



W def h_ld
Here aD ~D and, by definition, formula (2.10c) is the "White-
head algorithm".

In order to analyze A n M2 (g) we go back to the quadratic map from
figure 2.1. On the real axis we can see four points 0  xo  yo  yl  x 1  1

such that f j, ( x o ) = f a ( x 1 ) = 0 and f a ( yo ) = f a ( y1 ) = 1. The following
things happen.

LEMMA 2.2

~1~ Our dynamical rule for construction A n M2 (g) is ezactly the same
as the dynamical rule for constructing the set (see ~2.1~~:

where E = and where f a is the quadratic map from figure
2.1.

~2~ Whit in the margin or freedom allowed by our construction of the
representation

we can choose g so that:

~ the set of limit point A n M2 (g~ ~ _
= ~ the Julia set of the quadratic map . 

(2.12)

It is well-known that the Julia set in question is a Cantor set. But
anyway we also have the following.

(3~ For any choice of g (within the margin of freedom for the construction
of K 9 Wh3) the { set of limit points of A n M2 (g) } is always
uncountable (in fact it always contains a Cantor set).

Proof. - Before we start constructing the set (2.11) we will redraw the
graph of f a (or rather the interesting part of this graph) in figure 2.11,
which the reader should compare with the bare figure 2.10 (i.e. that figure
before the dynamical process starts). On the figure 2.11, we perceive two
isomorphisms 8D {graph ~ A given by j (z, = z and A ~ C
going from pEA vertically to the diagonal x = y and then to C, via the
horizontal projection (see the figure 2.11). Let us denote generically by n
the points in A which belong to , f {n-1 ~ E (fig. 2.12).



Fig. 2.11 The isomorphism aD d-~ C. .

Fig 2.12 In this figure (next page), on the segment A, points marked with 1 are in E, those
with 2 in f ~ 1 E, those with 3 in f a 2 E, and so one; the dynamical feedback between

C and 8D, in this figure, is exactly the same as in figure 2.10; for typographical reasons
this figure differs from 2.1 by a homothety which brings the diagonal closer to the x axis.





In that figure we also have denoted with the same letter n the correspond-
ing points in aD via j-1, or in C via i. The dynamics of the transformation

can be expressed by the following graphical rules which we can see displayed
in figure 2.12.

Go from n E A to i(n) E C, then draw the horizontal line through
i(n), take its two intersection points with graph ,f j, and finally take
the images of these intersection points via j back to A. This defines the

{n + 1} C A. So we can define

and passing from aD to A via j, we have the obvious commutative diagram

which = jW (x) and hence also = jWp(x) for all

p’s and a? E aD. This shows that if we start with j ( 1 ) = E (where "1" is the
same now as in formula (2.10c)) then the "Whitehead algorithm" (2.10c)
and the "Julia algorithm"

are conjugate via aD 2014~ A. In other words via the isomorphism A ~ C,
the rule we just have for building (2.11) is exactly the dynamical rule for
constructing (t = oo, D) and hence A n figures 2.10 and 2.12 are

basically the same, and with this our (1) is proved.
Notice now that in passing from t = n - 1 to t = n via the

(see also (2.9)) one has to add at level (t = n) all the horizontal lines of the
form



with .~ = p or q, which correspond exactly to

{the double points of gl involving both Do and n Do , (2.14)

But once g1 |(D1 + D2 + ... + Dn-1) has been fixed (and hence also all
the lines (2.13) for i  n - 1 we can fix arbitrarily the position of (2.3i)
in a compatible way with the already existing situation. This is archieved
by an obvious isotopy of g1 | Dn, keeping fixed. In other words
within our allowed margin of maneuver we can realize a homeomorphism
A - 0 , 1 ~ sending onto ~ and preserving the graduation by the
n’s. This proves (2). Notice that there is no dynamical feedback at the level
of this discussion. For the proof of (3) we start by noticing that the points
of A n M2 (g), as presented by the dynamical process which accompanies
figure 2.10, come naturally in pairs of points with the same flavour. (See
the vertical curved brackets parallel to C, in figure 2.10.) So we find in C
one segment h with (endpoints of) flavour 1, two disjoined segments 12 with
(endpoints of) flavour 2 and generally speaking 2n-1 two-by-two disjoined
segments In with (endpoints of) flavour n. The point (3) from lemma 2.2
is now a consequence of the following.

LEMMA 2.3

(1~ The nested system of segments In C C satisfies the following condi-
tions.

(a) The arc h contains ezactly one of the arcs I2. .

(b~ Each arc 12 contains ezactly one of the arcs 13 and as far as the
two remaining 13 arcs are concerned, one is contained in h - 12, the
other one is disjoined from I2~ .

(n) From the 2n = 03A3n-1i=0 2i+1 arcs the , first 2n-1 are contained
each one in an In arc, the nezt 2n-2 each one in an In-1 arc

but not in In, ..., the nezt 22 each one in an Ii+1 arc but not in

h+2 + ... + In ..., and finally, the last one is outside h + ... + In .

(2~ As an immediate consequence of ~1~, the set of limit points of

is uncountable.



Before proving our lemma let us notice that our dynamical rule building
the figure 2.10 produces for each n a collection of 2n-1 details like the one in

figure 2.13a). In passing from n to each of the arcs In+1 gives itself rise
to a detail like the one in figure 2.13b). This kind of self-similarity which
is expressed by (1) is, of course, a well-known feature of chaotic behaviour.
This remark enhances on (1) in lemma 2.3. The reader will not find it hard
to work out in detail the combinatorics of the nested system ~In~, including
the orientations of the details like the one in figure 2.13a) with respect to
C. But the only thing we need in order to get (3) from lemma 2.2 is the
numerical estimate from (1) in our present lemma.

Fig. 2.13a)

Fig. 2.13b)

Proof of the lemma 2.3. We go back to the context of figure 2.1 and
we consider now E~ _ yQ~ instead of E = yl ~. Our first claim is
that the dynamical rule for constructing our A n M2~g) is exactly the same
as the one for producing

This can be shown exactly like in the proof of (1) from lemma 2.2. We will
deduce the combinatorics of (2.15) (and hence the combinatorics of (2.11),
i.e. of our A n M2(g)) from the much easier combinatorics of



where E~~ _ yo, yl, ae1}. Just like AnM2 (g), i.e. like (2.11) or (2.15), the
set (2.16) can be described by a system of nested intervals ... J~, ~ ~ .

If we denote by A1 and A2 the arcs A1 = A2 = f03BB[y1,x1] then a

typical Jn has the form

where i1, i2, ... ~1, 2~. This means that now there are 2n arcs Jn and
each In contains exactly two In+1 ’s. One obtains the system attached
to (2.15) from the system by eliminating, individually, each Jn which
is such that in = 2 (see (2.17)). This changes something like figure 2.13c)
into 2.13a). This proves lemma 2.3 and hence also finishes the proof of
lemma 2.2.

Fig. 2.13c)

Comments

(I) We make the following conjecture.

CONJECTURE . - Consider any arborescent representation of the form

for the Whitehead manifold. One can always find smooth tight transversals
A C X to such that the set of limit points of ~M2(03C6) is uncountable.

We conjecture actually that the situation we have just analyzed is the
best possible as far as A n M2 (~p~ is concerned.
Of course, if we move from Wh3 to a highly non-aspherical

(see formula (1.3)) then the representation theorem provides us with almost
arborescent representations



where the set of limit points of An M2 (~) is finite. In the other words, via
redundency we can get rid of the chaotic behaviour.

(II) It has been speculated by several people that there is a connection
between exotic low-dimensional topology and chaotic dynamical systems
(see for instance the first lines in chapter 6 of [FL]). Our previous discussion
is a hint of possible connections between wild open 3-manifolds and real 1-
dimensional dynamics. This might be part of a more general picture: John
Hubbard conjectures that complex 2-dimensional (or already complex I-di-
mensional ?) dynamics can be connected to wild behaviour in 4-dimensional
differential topology, in particular to the fake ~FL~ . Here is a more
precise conjecture of John Hubbard.

Consider the Hénon map ~2 2014~ ~2:

With precisely tuned values of the parameters a, c (like for instance c = o,
a = 0, 3) so that H has an attractive fixed point with a basin U for which
there is a biholomorphic surjection ~2 ~ U conjugating H to the linear
part at the fixed point).

CONJECTURE . The manifold Lim (C2, L), produced by glueing the
n’th C2 to the (n -f- 1)’th C2 via C2 ~ U ~ CZ is a nonstandard C2 

N

the analytic standpoint).

Fig. 2.14

(III) The kind of dynamics which appears in this paper is the relatively
simple dynamics z -~ z2 + c with c outside the Mandelbrot set (which is
also akin to the Smale horseshoe, see figure 2.15).



Fig. 2.15

Is there also a topological role for the more subtle dynamics z ~ z2 + c
with c inside the Maldebrot set and/or for something like the Hénon map ?

Fig. 2.16 Schematical view of the Henon map.

(IV) Here is an explicit conjecture of John Hubbard. We consider the
following map ~2 -~ (2

which has 0 as an attractive fixed point.

CONJECTURE (John Hubbard) . - For any c on the boundary of the
Mandelbrot set the basin of 0 is a nonstandard R4. Moreover, for distinct
c’s these manifolds are distinct.
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