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Sparsely totient numbers(*)

ROGER C. BAKER(1) and GLYN HARMAN(2)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 2, 1996

Soit Pl (n) > P2 (n) ... la suite décroissante des diviseurs
premiers de l’entier n. Nous montrons le résultat suivant : si (m > n

> ~(n)~ alors Pl (n)  of C est une constante
absolue. Nous utilisons le crible de Harman et les estimations de Fouvry
et Iwaniec pour les sommes trigonometriques.

ABSTRACT. - Let P~ (n) be the j-th largest prime dividing n. We
show the following result: if (m > ~ =~ ~ ( m ) > ~ ( n ) ~ , then Pl ( n ) 
C(log n)37/20, where C is a an absolute constant. We use Harman’s sieve
and the estimates of Fouvry and Iwaniec for trigonometric sums.

1. Introduction

A positive integer n is said to be sparsely totient if

for all m > n. This definition was introduced by Masser and Shiu
[9], who proved several interesting properties of sparsely totient numbers.
Subsequently Harman [6] sharpened some results from [9]. In particular, he
showed that Pj(n), the j-th largest prime dividing n, satisfies
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for a given j > 2 and £ > 0. Here we suppose n > no ( j, ~) . For j = 1, the

corresponding bound is of weaker order [6, theorem 1] :

As regards Qj(n), the j-th smallest prime dividing n, Harman showed in
[6] that

for n > n1 (~, ~).
In the present paper we sharpen the bound { 1.2) . .

THEOREM . - Let n be a sparsely totient number. Then

where C is an absolute constant.

The key to the improvement is work of Fouvry and Iwaniec [4] on
exponential sums

vhere = 
. The sums we need here are of the particular form

It is well-known that there are devices for estimating this sum more

efficiently than (1.3) (e.g. Iwaniec and Laborde [7], Baker [I], Fouvry and
Iwaniec [4], Wu [10], Liu [8] and Baker and Harman [2]). These devices

would make no difference to the final result if we employed them here; see
the remark following the proof of Lemma 3.

We shall deduce the theorem from the following proposition.



PROPOSITION . - For all x, v with v sufficiently large and

there are

solutions in primes p to

The proposition is proved by the sieve method developed by Harman [5]
and Baker, Harman and Rivat [3]. We are able to use the same numerical
work as in [3] ; this saves a great deal of space. Sums (1.4) arise, as one
would expect, in bounding the remainder terms of the sieve.

The deduction of the Theorem from the Proposition follows [6] closely,
but we give it here for completeness. Suppose that n is a sparsely totient
number and 

,

so that n is large. By (1.2), we know that

Let pi = Pl (n) and write m = n/p1. We apply the Proposition with x = pl,
v = log n. It follows that there are

solutions to (1.5). From (1.1), there are at most three primes between 2v
and 3v which divide n. We deduce that (1.5) has a solution with p f n. Let

Evidently mrp > n. We now use (1.5) to show that  ~(~). We
have . 

, , ’" - ,



Now

from (1.5). Hence

Combining (1.6) and (1.7),

Since p is large, we have

which is absurd. The Theorem is proved. 0

2. Exp onential sums

Let £ be a sufficiently small positive number and let ~ = ~2. Constants

implied by 
" 
« ", " ~> 

" and " OE( ~ ) " will depend at most on 6;. Constants

implied by 
" O( . ) 

" will be absolute. We use the abbreviation 
" 
m - M "

for

We write a = 3/20.

LEMMA 1.2014 M~, lV~ be complex numbers of modulus

~ 1. Suppose that

Then



Proof. - This follows from Lemma 9 of ~1~, with H  va+5’~ and
Q = using the exponent pair (1/2, 1/2).

LEMMA 2. The conclusion of Lemma 1 holds if the hypothesis is

replaced by

Proof. - Using the technique in [1, lemma 15], it suffices to show that

for H  ?Ja+5’~, where as and bt have modulus ~ 1. We obtain this

bound by an appeal to Lemma 1 for [3] (a variant of a result in [4]), taking
(Ml, M2, M) to be either (H, M, N) or (H, N, ~). .

LEMMA 3.2014 Let M  v3i3~-~. We have

for any complex numbers as of modulus  1.

Proof. - Suppose first that

Then (2.5) follows from Lemma 2 of [3], with X, K replaced by v, M, and
with H  va+5’~. Now suppose that

Then Lemma 3 follows from Lemma 2.

We have not been able to improve the bound v3-3a-~ in Lemma 3 by
taking advantage of the fact that bt = 1 in (2.5), together with the special
features of sums (1.4) mentioned in the section 1. This is perhaps surprising.



3. Proof of the proposition

We write 6 = x/(16 v2). Let B be the set of integers in (2v, 3v), and let
A be the set of k in B for which

For [ = A or B, we write

Thus the number of primes in A is S’~A, (3v)1~2~ . We shall prove that

which establishes the Proposition.

LEMMA 4. Let as, s  2M, and bt, t ~ N, , by complex numbers with

|bt| « °

For M  v1-3a-~, we have

For M in any of the intervals

we have

Proof. - We prove {3 .1 ) by combining the argument of Lemma 2 of ~5~
with Lemma 3. The proof of (3.4) is similar, using Lemma 1 or Lemma 2
in place of Lemma 3.



We may now follow the analysis of [3] very closely indeed. In place of
Lemmas 6 and 7 of [3] we have Lemma 4, with v, a playing the roles of X
and 1 - y. We summarize the results obtained, leaving the details of proof
to the reader. Let

LEMMA 5. - For M  we have

Here 03BB = 30 ~, |am ( « 03C5~ and am = 0 unless (m, = 1.

LEMMA 6. - Let u > 1 be given and suppose that D C ~ 1, ... , u~ and
M lies in one of the intervals ~3.3~. Then

Here * indicates that pi ... , pu satisfy

together with no more than ~-1 further conditions which the form

LEMMA 7. _ Let M  We have

where v = 100 ~, 0  am « v’~ and am = 0 unless (m, P(vl/10-2~~~ = 1.
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We may now carry out the decomposition of S~,A, (3v)1~2~ in exactly the
same fashion as [3, sect. 5] with v in the role of X. A few changes by a
factor 03C5~ in the endpoints of intervals will occur. These will in turn alter the
coefficients in the inequalities defining the regions of integration by O{~).
this clearly does not alter the final result, which is the lower bound (3.1).
This completes the proof of the Proposition.
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