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Shearing hyperbolic surfaces,
bending pleated surfaces

and Thurston’s symplectic form(*)

FRANCIS BONAHON(1)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 2, 1996

RÉSUMÉ. 2014 L’article présente un systeme de coordonnées locales holo-
morphes pour l’espace des variétés hyperboliques de dimension 3 qui
ont le groupe fondamental d’une surface. Ces coordonnées dependent
du choix d’une lamination géodésique sur la surface, et forment une

complexification des coordonnées de décalage introduites par Thurston
pour l’espace de Teichmuller. La partie imaginaire de ces coordon-
nees mesure la courbure d’une surface plissée realisant la lamination
géodésique. De plus, nous montrons comment ces coordonnées sont re-
liees, par Fintermediaire de la forme symplectique de Thurston sur l ’espace
des laminations géodésiques mesurées, a la fonction longueur complexe et
a sa differentielle.

ABSTRACT. - The article develops a system of local holomorphic co-
ordinates for the space of hyperbolic 3-manifolds with the fundamen-
tal group of a surface. These coordinates depend on the choice of a
geodesic lamination on the surface, and are a complexified version of
Thurston’s shear coordinates for Teichmuller space. The imaginary part
of these coordinates measures the bending of a pleated surface realizing
the geodesic lamination. We also show how these coordinates are related,
via Thurston’s symplectic form on the space of measured geodesic lami-
nations, to the complex length function and to its differential.
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Introduction

Given two hyperbolic metrics mi and m2 on a closed oriented surface
S, W. P. Thurston described a way to pass from one to the other, called a
left earthquake ([Th2], Such an earthquake has a fault locus
A which is a geodesic lamination, namely a closed family of disjoint simple
mi-geodesics in S. The earthquake process splits S along A, then glues
it back together so that any two pieces of S - A are shifted to the left of
their original position with respect to each other. In this way, we obtain a
new surface S’~ which is homeomorphic to S, and where the metric of S - A
uniquely extends to a hyperbolic metric which is isotopic to m2. If k is an
arc transverse to A, the amount by which the pieces of S - A meeting k
are shifted to the left with respect to each other associates to k a number

0. It turns out that the map k ~--> a(h) is countably additive, so that
a defines a transverse measure for A. The combination of A and a forms

what is known as a measure lamination. It is quite remarkable that this
measured lamination completely determines the earthquake and is uniquely
determined by the metrics m1 and m2 .

In the first half of this paper, we consider a generalization of earthquakes,
where we allow the pieces of S - A to be shifted to the right as well as to the
left with respect to each other. Thurston calls this operation a cataclysm,
although we will prefer the terminology of shear map. The amount of

shifting to the left again associates a number a(h) ~ R to each arc transverse
to A, where a shift to the right is counted as negative. However, the map
k ~ is not countably additive any more, but only finitely additive.
This a defines what we call an R-valued transverse cocycle for a.

The R-valued transverse cocycles for A form a finite dimensional vector
space M) which is well understood, for instance in terms of weights on
a train track carrying A; see [B04].
We use these shear maps to parametrize the Teichmüller space 7(5) of

S, namely the space of isotopy classes of hyperbolic metrics on S’. For this,
we fix a maximal geodesic lamination A; there are various ways to define
this in a metric independent way. Then, we associate to each m E a

shearing cocycle E such that, if rn1 is transformed to m2 by a
shear map with fault locus A, the transverse cocycle measuring the shifts to
the left of this shear map is exactly ~r,-L2 - We then prove the following
results.



THEOREM A. - The map m ~ 03C3m defines a real analytic homeomor-
phism from T(S) to an open convex cone C{a) bounded by finitely many
faces in 

In particular, given two metrics my, m2 E T(S) and a maximal geodesic
lamination A, there is a unique shear map with fault locus A that sends mi
to m 2 .

The vector space II$) carries a natural symplectic form T, called the
Thurston symplectic form. The convex cone in Theorem A can be explicitly
described in terms of this form and of the space of transverse measures for

A. More precisely, we prove in section 6 the following theorem.

THEOREM B. - The transverse cocycle is the shearing cocycle
of some hyperbolic metric if and only if T(a, > 0 for every transverse
measure ~C for ~.

Theorems A and B were essentially proved by Thurston in [Th3], al-

though the connection to shearing cocycles and to the Thurston symplectic
form is only outlined there (see also [Pa2]). The approach we use here is
analytic, as opposed to Thurston’s more topological point of view. One ad-
vantage of this analytic point of view is that it makes it easier to write down
the details of a rigourous proof. But its main advantage is that the tech-
niques developed also apply to another situation, where transverse cocycles
can be used to measure the bending of pleated surfaces.

Indeed, there is another celebrated occurrence of measured laminations,
as bending measures of locally convex pleated surfaces. A pleated surface
with pleating locus the geodesic lamination A is a map f : S --~ M from S
to an oriented hyperbolic 3-dimensional manifold M such that f is a totally
geodesic immersion on S - A and sends each geodesic of A to a geodesic in
M. Pleated surfaces have proved to be a very valuable tool to study the
topology and geometry of hyperbolic 3-manifolds (see for instance [Thl],
[CEG], [Mi], [Ca]). What prevents a pleated surface f from being totally
geodesic is the fact that it may be bent along its pleating locus A. It f is
locally convex, namely if it always bends in the same direction, the amount
of bending defines a transverse measure for A ([Th1], [EpM]). In section 7, we
show how to measure this amount of bending in the general case, expressed
in terms of an R/203C0Z-valued transverse cocycle which we call the bending
cocycle of the pleated surface f. .

The local geometry of a pleated surface f : S‘ --~ M is not modified if we
lift or project it through covering maps. It is therefore convenient to lift



the situation to universal coverings. We can then generalize the notion of
pleated surface by defining an {abstract) pleated surface with pleating locus
the geodesic lamination A as a pair f = ( f , p), where p : 03C01 (S) ~ Isom+ 
is a homomorphism from the fundamental group of ,S into the group
of orientation preserving isometries of the hyperbolic 3-space where

f : S ~ H3 is a pleated surface from the universal covering S of 5 into
JHI3, with pleating locus the preimage A of A, and where f is equivariant
with respect to p in the sense that f (yx) = p(y) f {x) for every x ~ ,

. When the image of p acts freely and properly discontinuously
on H3, this is clearly equivalent to the previous definition. From now on,
"pleated surface" will always mean "abstract pleated surface" .

In this generalized sense, a pleated surface also has a bending cocycle
03B2f E H(03BB; R/203C0Z). A pleated surface also has a pull back hyperbolic metric
mf on ,S’. We prove in sections 8 and 9 the following result.

THEOREM C. - For every geodesic lamination 03BB on S, the map f ~

(rrt f, induces a homeomorphism from the space of all pleated surfaces
with pleating locus a to the space x II~/2~r~). In addition, the

space is homeomorphic to the union of 0 or 1 tori, whose
number and dimension can be explicitly computed from a.

In the particular case where A is maximal, a pleated surface f = { f p)
with pleating locus A is completely determined by the homomorphism p.
The space of such pleated surfaces is therefore identified to an open sub-

set of the complex algebraic set of homomorphisms p : : 2014~

Isom+(H3) = PSL2(C). By Theorems A and C, an element p of 
is characterized by the bending cocycle 03B2f E R/203C0Z) of the corre-
sponding pleated surface f, , and by the shearing cocycle E of

the pull back metric m f of f. . We can combine these two cocycles in a com-
plex cocycle Fp = + i03B2f E called the shear-bend cocycle.
Because A is maximal, the space is the disjoint union of two
copies of where x(S) is the Euler characteristic of S. In

section 10, we prove:

THEOREM D. - The map p ~ Fp induces a biholomorphic homeomor-
phism from 7Z(a) to the open subset C(a) ® ,

where C is the open cone of Theorem A.

It is not hard to see that the two components sit in different com-

ponents of the space of all homomorphisms p : 03C01 (S) ~ Isom+(H3), because
the corresponding principal Isom+(H3 )-bundles are non-isomorphic.



We have already encountered the Thurston symplectic form in Theorem
B. One reason for its occurrence is that it is strongly related to a certain
complex length 1-form on the manifold ~(a). More precisely, given a
hyperbolic metric m on S, there is a unique continuous function :

.lt~,C(,S’) -~ I~+ defined on the space of measured laminations .M~C{S’) such
that, if a consists of a simple closed m-geodesic endowed with the Dirac
transverse measure of weight a > 0, .~m ( a) is a times the length of this closed
geodesic ([Th1], [Bol], [Bo2]). This length function has a straightforward
extension to geodesic laminations with transverse cocycles [B03], where it
can be interpreted as the differential of the original function on .Nt,C{,5’). In
section 3, we prove the following theorem.

THEOREM E. - If a is a transverse cocycle for the maximal geodesic
lamination 03BB, and if 03C3m E is the shearing cocycle of the hyperbolic
metric m,

Similarly, if y is a closed curve on S and if p : 7ri(S) -~ is a

homomorphism such that is a hyperbolic glide rotation, we can consider
the translation length and the rotation angle rot p {y) E of this

glide rotation. The fact that the rotation angle is defined only modulo 27r
turns out to be a problem, so it is better to consider a tangent vector p
based at p for the space of all homomorphisms --~ Isom+ {IHI3 ) . Then,
we have a well defined variation E R of rotp(y) E as well

as a variation .~p (y) of ~(7). . If a is the measured lamination on S

consisting of a closed geodesic aa with transverse Dirac measure of weight
a > 0, we can then define .~p(a) = and = Note

that the use of p is necessary for the rotation number to be defined since it
is not possible to multiply an element of by a real number.

In section 11, we extend this to the case where a is a transverse R-valued
cocycle for a geodesic lamination A which can be realized by p, namely
which is in the pleating locus of some pleated surface ( f, p). We associate
to a and to a tangent vector p at p a rotation number E R . We

show that, for transverse measures, this extension is quite natural because
it is continuous on the open subset of .Il~t,~{S‘) consisting of those measured
laminations which are realized by p.

THEOREM F. - Given a homomorphism p : --~ Isom+(IHI3) and
a tangent vector p, the map cx ~ rot(03B1) is continuous and differentiable



on the open subset U of .,~I~C(,5‘) consisting of those measured laminations
which transversely cross every geodesic lamination that is not realized by p.
In addition, if we interpret a tangent vector a of U as a geodesic lamination
with a transverse R-valued cocycle, the image of a under the differential of
this map is exactly 

Theorem F is particular relevant when p is injective and has discrete
image. In this case, there are only finitely many geodesic laminations which
are not realized by p, and LI is dense in [Bol].

Theorem F is the analog for rotation numbers of a similar result which
we proved in ~Bo3~ for the length function .~p (compare ~Bo 1~ ) .
We can also combine and into a complex length

If we fix A and a, this complex length can be interpreted as a closed

holomorphic 1-form on the space of those p that realize A.

As in the real case of Theorem E, this complex length is strongly related
to the Thurston symplectic form and to the complex shear-bend cocycle
I‘P = + . Consider a transverse R-valued cocycle a for the maximal
geodesic lamination A, and let p E 7Z(~1) . If we differentiate the shear-bend

cocycle Fp E in the direction of the tangent vector p, we get
a C-valued cocycle I‘p E C). Then we have the following result.

THEOREM G. - For every a E = T{a, particu-
lar,

All of these results have been stated for a compact connected orientable
surface S without boundary, and most of the paper is written in this context.
However, we can relax these hypotheses by allowing S to be non-orientable
and to have non-empty boundary. For hyperbolic metrics, we have the
option to require that each boundary component of ~S‘ either is totally
geodesic or corresponds to a cusp. Also, we can allow pleated surfaces
to arrive in non-orientable hyperbolic 3-manifolds, or more generally to
correspond to homomorphisms p from ~r1 (S) to the group of all isometries
of H3. In section 12, we briefly indicate how to extend our results to these
various contexts. These extensions are fairly straightforward. They involve
transverse cocycles valued in various coefficient bundles twisted by the
appropriate local orientations, and satisfying certain boundary conditions.



1. Transverse cocycles for geodesic laminations

Consider a closed connected orientable surface S of negative Euler
characteristic.

To define measured geodesic laminations on the surface S, one starts by
endowing S with an auxiliary Riemannian metric m of negative curvature;
such a metric exists because of our assumption that the Euler characteristic
of S is negative. Then, an m-geodesic lamination of S is a partial foliation of
5’ by m-geodesics, namely a closed subset A C ,S’ decomposed as a union of
disjoint geodesics which are simple and do not transversely hit the boundary.
Recall that a geodesic is simple if it does not cross itself; it may be closed
or infinite. A geodesic lamination A C S covers only a small part of 8, in
the sense that it has Lebesgue measure 0, and even Hausdorff dimension 1
([Thi, sect. 8], [BiS], [Th3, sect. 10]). In particular, the decomposition of
the subset A as a union of disjoint simple geodesics is unique; these geodesics
are the leaves of ~.

It turns out that this definition can be made independent of the choice of
the metric m. Indeed, consider another negatively curved metric m’. Every
leaf g of A is quasi-geodesic for the metric m’, and consequently there is a
unique m’-geodesic g’ which can be homotoped to g by a homotopy moving
points by a bounded amount. These m’-geodesics form an m’-geodesic
lamination A’, and this establishes a natural correspondence between m-
geodesic laminations and m’-geodesic laminations.

So, formally, we will define a geodesic lamination as an equivalence class
of pairs (A, m) where A is an m-geodesic lamination for the negatively curved
metric m on ,S, and where we identify two such (a, m) and (A’, m’) when A’
is the m’-geodesic lamination corresponding to A. In practice, if there is a
clear metric m under consideration, we will identify a geodesic lamination
to its m-geodesic representative.

A geodesic lamination A is maximal if it is contained in no larger geodesic
lamination. This is easily seen to be equivalent to the property that the

complement ,S’-a consists of finitely many triangles with vertices at infinity.

On the surface S, consider a geodesic lamination A and let G be an
abelian group. A G-valued transverse cocycle for 03BB is a map associating an
element a(k) E G to each unoriented arc k transverse to a, which satisfies

. the following properties: a is additive in the sense that a(k) = 



if we split k into two subarcs ki and k2 with disjoint interiors; and a is A-
invariant in the sense that a(k) = a(k’) whenever the arc k can be deformed
to the arc k’ by a homotopy respecting A. The reason for the use of the
word "cocycle" is that a defines a 1-cocycle twisted by the local orientation
of A on a neighborhood of A (see [Bo4] and compare sect. 3).
We will mostly be concerned with the case where the group G is either

the real line M or the circle When G = a transverse cocycle for
A is just a finitely additive transverse signed measure for A. If, in addition,
the transverse cocycle is non-negative, then it is countably additive (see for
instance [Bo4, Proposition 18]) and it defines a transverse measure for a.
We refer to [Thi], [CaB] and [PeH] for the theory of geodesic laminations
with transverse measures.

A geodesic lamination has relatively few transverse measures, but many
more transverse cocycles. More precisely, let G) be the group of G-
valued transverse cocycles for A, and let x(A) be the Euler characteristic of A,
defined as the alternating sum of the ranks of its Cech cohomology groups
(see [Bo4, sect. 4] for a more practical definition of x{~)). A relatively
elementary combinatorial argument shows:

PROPOSITION 1. - If the geodesic lamination a is connected, the group
G) is isomorphic to G-xt~~+1 if a is orientable, and to ®

{g E G 2g = 0} if a is non-orientable. In particular, if 03BB is maximal, then

G) is isomorphic to ® ~g E G ~ 2g = 0~.

Proposition 1 is proved in detail in [Bo4, Theorem 15] and (essentially)
in [PeH, § 2.1] when G = M, and these proofs straightforwardly extend to
the general case. By comparison, the dimension of the space of transverse
measures for A is at most (3/2) I (see [Ka], [Pal]), and is equal to 1
for most geodesic laminations ([Ma], [Ve], [Re], [Ke2]).
We will frequently use another description of transverse cocycles by lifting

the situation to the universal covering S of S, where A has preimage A. Let
a plaque of S - a be the closure in S of a component of S - a .

Then, a G-valued transverse cocycle corresponds to a map associating an
element Of(P, Q) E G to each pair of plaques P, Q of S‘-a, and which satisfies
the following three properties: a is symmetric, namely P) = a(P, Q);
a is invariant under the action of on S; and a is additive, namely
a(P, Q) = a(P, R) + a(R, Q) whenever the plaque R separates P from Q.



The correspondence is obtained by setting a(P, Q) = a(k), where k is the
projection to S of any arc k in S which joins P to Q, is transverse to ~, and
does not backtrack in the sense that it meets each leaf of 03BB at most once.

In [Bo4], it is shown that an R-valued transverse cocycle for 03BB is also

equivalent to the analytic notion of transverse Holder distribution for a .

Incidentally, this explains our notation for G). . A Holder distribution
on a metric space is a (continuous) linear form on the space of Holder
continuous functions on this space. A transverse Hölder distribution for a

is the data of a Holder distribution on each arc I~ transverse to ~1, which is
invariant under homotopy respecting a in the sense that, if the arc k is sent
ot the arc k’ by a Holder bicontinuous homotopy respecting ~, this homotopy
sends the Holder distribution defined on 1~ to the Holder distribution defined

on k’.

THEOREM 2 [Bo4]. 2014 There is a natural correspondence between R-

valued transverse cocycles and transverse Holder distributions for a geodesic
lamination ~, defined as follows. Given a transverse Holder distribution cx,
the corresponding transverse cocycle associates to each transverse arc k the
a-integral of the constant function 1 on k. Conversely, given an R-valued
transverse cocycle a, the corresponding transverse Holder distribution is

defined by the formula that, for every ~older continuous function ~o : k --~ II8

defined on a transverse arc k,

where, having chosen an arbitrary orientation for k, ~~ is the positive end
point of k, the sum is over all components d of k - ~, kd is any subarc of k
joining its negative end point ~~ to any point in d, and ~d and xd are the
positive and negative end points of d.

In this paper, the correspondence between R-valued transverse cocycles
and transverse Holder distributions will not be used very much, except in
sections 3 and 11. However, we will definitely use the spirit of this corre-
spondence. In particular, sections 5 and 8 are based on non-commutative
analogs of the formula of Theorem 2. In addition, what makes everything
converge in this paper are the following relatively simple estimates, which
were also among the key ingredients of [Bo3] and [Bo4].



LEMMA 3.2014 In S’ endowed with a hyperbolic metric m, let k be a

simple geodesic arc transverse to the geodesic lamination .1. Then there

is a constant A > 0 and a number N such that every geodesic arc in ~
which cuts k at least n > N times has length at least (n - 1 )A.

Proof. - This immediately follows from the fact that there is a positive
lower bound to the length of any arc in A going from k to itself. D

Note that, by adjusting the value of A, it is always possible to take N = 2
in the conclusion of Lemma 3. This also immediately follows from the proof
of this lemma. However it is more convenient to state the lemma in this

way, since we will later be interested in optimum values for A satisfying this
precise statement.

Consider a geodesic arc k transverse to A. Two arcs of A - k which are
close enough are parallel with respect to k, namely the union of these two
arcs and of two suitable arcs in k bounds a rectangle in S.

Now, let d be a component of k - A which does not contain an end

point of k, and consider the two leaves gd and gd of A that pass through
the end points of d. Orient these two leaves so that they determine the
same transverse orientation for k , and identify the correspondingly oriented
discrete sets k n gd to Z so that the end points of d correspond to 0. The
divergence radius r(d) of d with respect to 1~ is the largest r such that, for
every n with -r  n  r, the arc in g) - k separating the (n - I)-point
from the n-point is parallel with respect to k to the corresponding arc of

gd -1~. By convention, r(d) = 0 for the two components of k - A containing
the end points of k.

LEMMA 4. - There is a uniform upper bound, independent of r, for the
number of components d of k - a of such that r(d) = r.

Proof. - Consider the hyperbolic surface with boundary 5’ - a obtained
from S - A by adding the (finitely many) leaves of A which are adjacent to
it. This is a surface of finite type, with finitely many spikes on its boundary
(see for instance [CaB, sect. 4] or [CEG, sect. 4]). The components of
k - A give arcs in ,S - a going from the boundary to the boundary (with
the exception of the two components containing the end points of k). Since
S - A has finite topological type and finitely many spikes, these arcs break
into finitely many parallelism classes. By definition of r(d), each of these
parallelism classes contains at most one d with r(d) = r, for every r > 0.
This proves the lemma. D



LEMMA 5. If A and N are constants satisfying the conclusions of
Lemma 3, there exists a constant B such that the length of .each component
d of k - a is bounded by B ,

Proof. - This immediately follows from a hyperbolic geometry estimate.
The constant B depends on a positive lower bound for the angles made by
k and ~l at their intersection points, and on the lengths of the finitely many
components d of k - a with r(d)  N. D

Fix a norm ]) . )] on the (finite dimensional) vector space II8 ) . Also,
fix an arbitrary orientation for h. As in the statement of Theorem 2, for
each component d of k - ~, let kd be a subarc of k joining the negative end
point of k to any point in d.

LEMMA 6. - There is a constant C, depending only on the transverse
geodesic arc k and on the norm ~~ . ~~, such that, for every transverse cocycle
a E H(03BB; R) for 03BB and for every component d of k - a,

Proof. - We will have to refer to combinatorial arguments in ~Bo4~ .
The components of A - k can be broken into finitely many parallelism

classes with respect to k . This provides a train track T carrying A, consisting
of one switch located at k, and of one edge for each parallelism class. A
transverse cocycle a associates a number a(e) to each edge e of T. Namely
a(e) = where ke is an arc transverse to A that cuts each arc of the

corresponding parallelism class in one point and avoids A everywhere else.

In [Bo4, Lemma 6], it is shown that, for any component d of k - A, the
number a(kd) is a certain linear function of the edge weigths a(e). This

linear function is determined by the pattern of intersection with k of the
leaves gd and gd passing through the end points of d, and its norm is
bounded by a constant times r(d) + 1. The lemma immediately follows. 0

2. The shearing cocycle of a hyperbolic metric

On the surface S, consider a hyperbolic metric m and a maximal geodesic
lamination A. Lift the situation to the universal covering S, where A has
preimage A. Recall that a plaque of S - A is the closure in S of a component



of S - A. Since A is maximal, each plaque of S - A is an ideal triangle,
namely a hyperbolic triangle with its vertices at infinity.

Given two leaves g and h of A, the geodesic lamination A gives a preferred
isometry 89~ : g --~ h defined as follows.

Indeed, consider the closure E of the component of S - g U h that is

adjacent to both g and h. The leaves of A that separate g from h provide
a partial foliation of the strip E, which can be uniquely extended to a
global foliation ~ of E by geodesics as follows: since A is maximal, every
component of the complement of these leaves of A in E is a hyperbolic wedge,
bounded by two asymptotic geodesics; and such a wedge admits a unique
foliation by geodesics, all asymptotic on one side. An estimate in hyperbolic
plane geometry shows that two disjoint geodesics which pass through two
nearby points do so with directions differing by at most a constant times
the distance between these two points (see for instance [CEG, § 5.2.6]). It

follows that the normals to the leaves of G form a Lipschitz vector field on
E. We can therefore integrate this vector field, to get a foliation ~-l of E
which is everywhere orthogonal to g. Each leaf of 7~ goes from g to h, and
this defines a map 8~’~ : g -1- h. Also, ?~ respects distances on the leaves of ~
by the formula for the first variation, and it follows that 99~ is an isometry.
Note that 03B8gh = (03B8gh) -1.

Now, consider two plaques P and Q of S - A. Let g be the leaf of A
in the boundary of P which is closest to Q, and let h be the leaf in the
boundary of Q which is closest to P. Orient h as part of the boundary of
Q with the orientation induced by the orientation of ,S’. The plaque Q also
determines a preferred base point on h, namely the projection to h of the
third vertex of the ideal triangle Q. Similarly, the plaque P determines an
orientation and a base point on the geodesic g. For the oriented isometric
parametrization of h by R which sends 0 to the base point, let u(P, Q) ~ R
be the coordinate of the image of the base point of g under --~ h.

In other words, for the isometric parametrization of g and h defined by the
choices of orientation and base point, the isometry 89~ : g --~ h corresponds
to the map t ~ u(P, Q) - t.

Since = ~69~) 1, u(Q, P) is equal to u(P, Q).
Also, consider three plaques P, Q and R of S - A such that Q separates

P from R. Let g be the leaf of P n A that is closest to Q, h the leaf of Q n A
closest to P, k the leaf of Q fl a closest to Rand f the leaf of R n A closest
to Q. The map 8~’~ decomposes as



Since R admits an isometry exchanging h and k, the orientation-reversing
map sends the base point of h to the base point of k. It immediately
follows that

Therefore, the rule (P, Q) ~ u(P, Q) defines an R-valued transverse cocycle
u for A, in the sense of section 1. This transverse cocycle is the shearing
cocycle of the hyperbolic metric m.

If we change the metric m to a metric m’ by an isotopy 03C6 : S ~ S, then
y sends A to the corresponding m’-geodesic lamination A’. It immediatly
follows that m and m’ have the same shearing cocycles. Therefore, the
shearing cocycle u depends only on the class of m in 

We can give another description of the number u(P, Q), which will be
convenient later on.

Let PQ be the set of those leaves which separate P from Q, and
orient these leaves to the left as seen from P. Let k be an oriented arc

transverse to A pQ joining P to Q.
For each component let x J and :c~ be its positive and negative

end points, respectively. If d is not one of the components d+ and d-

containing the positive and negative end points of k, respectively, then

xd is contained in a leaf g~ of which is adjacent to a component
of S - A. As before, the component of S - A containing d determines a base
point on g~ , namely the projection of the third vertex. Let f : gd -~ I~8 be
the unique oriented isometry sending this base point to 0. This associates
two numbers f (xd ) and to each component d of k - which is

different from the end components d+ and d- . When d = d+ or d-, we can
similarly define and f(xd-).
LEMMA 7. 2014 With the above data,

where the sum is taken over all components d of S- which are different
from the end components d+, d- .

Proof. - We can parametrize the component E of S - P U Q that

separates P from Q by a strip M x [a, b ~ so that the leaves of g correspond
to y = constant and the leaves of ?~C correspond to x = constant. In



addition, since ?~ respects the length along the leaves of g, we can assume
that this length along 9 is given by Finally, having oriented the
leaves of Apn from right to left as seen from P, we can require that this
orientation corresponds to the orientation by increasing values of x on the
lines y = constant.

By definition of u(P, Q), it is immediate that

The subarc ] of k is the union of k n PQ and of the subarcs

, x~ ~, with d ranging over all components of k - a~ p diflerent from
the end components d+, d- . Since k n A has measure 0 on k, the integral
term can therefore be decomposed as

Consequently, it suffices to prove that

for every d.

Given a component d ~ d+, d- the component Ed 
that contains it is a wedge separated by the two geodesics gd and . This

wedge admits an isometry exchanging gd and g~ . This isometry respects
g n 1:d, and therefore respects each leaf of H n Ed. In particular, the base
points of gd and gd are located on the same leaf of ?-C. It immediately

follows that x+d x-d d.r = f(x+d) - f(x-d). []

An immediate corollary of Lemma 7 is the following result.

LEMMA 8. - With the data of Lemma 7,

where denotes the length with respect to the metric rra.



Proof. - By Lemma 7, it suffices to show that each term I
is bounded by the length of d. But we just saw that f {xd ) - f {xd ) is equal
to x+d x dx which, up to sign, is equal to the length of the projection of d to

xd
any leaf of G parallel to H. Since this projection is distance non-increasing,
the result follows. D

3. Lengths of transverse cocycles
and the Thurston symplectic form

Given a hyperbolic metric m and a geodesic lamination A, an R-valued
transverse cocycle a for A has a well-defined m-length .~~,.~ {a). In this section,
we show that this m-length can be described in terms of the shearing
distribution of m. and of Thurston’s symplectic form on the space of
transverse cocycles for A.

The length function on the space M£(S) of measured laminations
was introduced by Thurston in [Thl]. It is the unique continuous function
such that, if a E .~I~I,C(S’) consists of a simple closed m-geodesic endowed
with the transverse Dirac measure of weight a > 0, .~m (a) is equal to a times
the length of this closed geodesic. Thurston’s definition straightforwardly
extends to geodesic laminations with transverse cocycles, and we showed in
[Bo3] that this extension can be interpreted as the differential of Thurston’s
function .~I,C(S’) --~ R+.

The m-length (a) of the transverse cocycle a for 03BB is defined as

meaning that, locally, we first integrate the length measure along the
leaves of A, and then integrate the corresponding local function on the space
of leaves of A with respect to the transverse Holder distribution associated
to a. More precisely, cover A by the interiors of finitely many flow boxes
B2, i = . l, ... , n, namely subsets for which there exists for each i a Holder

bicontinuous [0 , 1 ] x [0 , 1 ~ --~ B~ C S such that ~~1~ = Ai x 0 , 1 ~ ]
for some subset Ai of [0 , 1 ~. Choose a Holder continuous partition of unity

,S’ --~ JR, i = 1, ..., n, such that = 1 and such that the support
of each 03BEi is contained in the interior of Bi . Identifying [ 0 , 1 ] to any of the
arcs ~Z ~~ 0 , 1] x t~ transverse to A, the transverse cocycle a defines a Holder



distribution on [ 0, 1 ~, which is given by the formula of Theorem 2 and is
independent of the choice of t. Then,

where [0, 1] ] --~ R is the Holder continuous map defined by 

To connect the length to the Thurston symplectic form T on the
space of R-valued transverse cocycles for a, we first define this
form (compare [Pal] and [PeH]). The general idea is that, given a small C1
perturbation ~ of a 1-dimensional object ~i on the oriented surface S‘, the
sign of each intersection point of Ii’ with K is independent of the choice of a
local orientation for .~~ . From this observation, it is possible to associate to
two R-valued transverse cocycles a and 03B2 for A a homological intersection
T(a, ,Q) G R. We can now be more precise.
An orientation for a is a continuous choice or orientation for its leaves.

The lamination A admits an orientation covering  ~ A. If U is a small

neighborhood of A, the covering  ~ A extends to a 2-fold covering Û ~ U
(the precise necessary condition on U is that it must avoid at least one point
of each component of S - A). Note that ~7 carries an orientation induced
by the orientation of S’, and that À is canonically oriented.

If a E it lifts to a transverse cocycle a for ~. The oriented

lamination A together with this transverse cocycle a define an element
~a~ e H1 ( U; A formal way to see this is to observe that :B and the
transverse Holder distribution associated to a form a geometric current in
the sense of [RuS], and therefore determine a closed de Rham current on U .
This de Rham current associates to each differential form 03C9 E SZI (Û) the
number f ~’~ o doe obtained by locally integrating W along the leaves of a and
then integrating with respect to the distribution a. Then, ~a~ E H1 II8)
is the homology class defined by this de Rham current.

The homology class ~a~ E Hl (U; I~8) can be computed in a more practical
way as follows. Select a family of disjoint transverse arcs k1, ..., kn for A
such that every leaf of  cuts at least one of the Then, the leaves of
~ - Ui ki can be grouped into finitely many bunches of parallel arcs. Form
an oriented graph F in ~7 by collapsing each ki, to a point, and by collapsing
each bunch of (oriented) parallel arcs of  - ~iki to an oriented edge joining
the corresponding points. For each edge of r, the transverse cocycle a



associates a number to the corresponding bunch of parallel arcs, namely the
number associated to a transverse arc to  which crosses each of these arcs
exactly once and does not meet À elsewhere. These weighted oriented edges
define a real 1-chain in ~7, which is actually a cycle by additivity of a. It

immediately follows from definitions that the class of this chain in H1 {U; 
is equal to the class ~a~ defined by the Rham current defined above.

Given two transverse cocycles a and /? for A, we define T{cx, ~) to be
(1/2) ~ ~,Q~, namely one half of the intersection number of the two classes
~a~, ~,Q~ E .~h (U; Clearly, ~- defines an antisymmetric bilinear form on the
vector space of transverse Holder distributions for a. The bilinear

form T is the Thurston symplectic form on The terminology is a
little abusive since T may be degenerate, which happens exactly when some
end of S’ - A is adjacent to an even number of leaves of A, as can be seen
by adapting the arguments of [PeH, § 3.2]. But T is non-degenerate in the
generic case where A is maximal, which is really the case of interest here.

This symplectic form has a nice expression when A is carried by a train
track T which is generic, in the sense that each switch is adjacent to exactly
3 edges. At each switch s of such a train track T, there is an incoming
edge and two outgoing edges ; let e; be the outgoing edge going to the
left, and let es be the outgoing edge going to the right, as seen from the
incoming edge and for the orientation of S. Then, if a, ~3 E it

easily follows from the above weighted graph description of the homology
classes ~a~ , ~~~ E Hl ( U that

where the sum is taken over all switches of T, and where a(e), ~3(e) are the
weights associated by a and ,Q to the edge e (compare [PeH, § 3.2]).
We can now state the main result of this section.

THEOREM 9. - Given a maximal geodesic lamination ~, let be the

shearing cocycle of the hyperbolic metric m. Then, for every transverse
cocycle a E for the geodesic lamination a, its length is equal
~O 

Proof. - As before, A be the orientation covering of A. Choose a
neighborhood U of A such that each component of U - ~ is an open annulus ;
for instance, we could take U to consist of those points which are at distance

. less than 6’ from A, for ~ small enough. Extend  ~ 03BB to a covering Û ~ U.



Along the leaves of the oriented lamination A, the length measure induced
by m defines a differential 1-form The direction of the leaf of  at a
point x E ~t is a Lipschitz function of x. Therefore, can be extended to

a closed Lipschitz differential 1-form E . Since is closed, it

defines a cohomology class [wm] E H1 (U; IIg).
By definition of the length function,

where the last term denotes the evaluation of the cohomology class E

I(8) on the homology class ~a~ E M), and where the last equality
comes from the realization of ~a~ by a geometric current supported by A.

By definition of T, the proof of Theorem 9 will therefore be completed
by the following lemma.

LEMMA 10. - For every homology class c E the evaluation

([~m] ? , c~ is equal to the intersection number c . ~~~.,.,,~.

Proof. - Let W be a component of U - ~, By hypothesis on U, W is
an open annulus bounded on one side by 3 leaves of A. Consequently, its
preimage W in !7 is an open annulus bounded on one side by 6 leaves of
A, with alternating orientations. Recall that each leaf of A in the boundary
of W has a preferred base point, coming from the projection of the third
cusp of the component of S - A adjacent to that leaf. This determines a

preferred base point Og on each leaf g of A in the boundary of W. .

Consider two consecutive leaves g, h of A in the boundary of tV, , and
integrate wm along an arc k joining Og to Oh in W U g U h which is made
up of three pieces: first an arc in g joining O9 to a point x 9 very close

to the spike of YIT separating g from h; then a small jump from .c~ to its
projection point x h on h; and finally an arc in h joining xh to Oh. By
definition of the contribution of the first and last arcs to this integral
are, in absolute value, respectively equal to the distances between Og and
~9 and between Oh and If x9 is far enough near the cusp, these two
distances are approximately the same because Og and Oh are at the same
horocyclic distance from the spike (which comes from the fact that, as seen
in section 1, the same property holds for their projections in S). Also,
because of alternating orientations, the integral of wm along the first and
last arc have opposite signs; their sum is therefore very small. It follows that



the integral of wm along k is arbitrarily small if we choose xg close enough
to the cusp. On the other hand, different choices for x9 give homotopic arcs,
along which the integral of is unchanged since wm is closed. Therefore,
the integral of wm along k is actually 0.

Since W is an annulus, it follows that the integral of wm along every
closed curve in W is equal to 0. We can therefore define a function fr",
on I~’ by the property that is the integral of along any arc in
tV joining some base point Og to x. This defines a function fm on 7 2014 A
such that dfm = . There is of course no way to exend fm to a global
antiderivative of over U . (The geodesic lamination A carries at least
one transverse measure, whose length has to be positive.)

Let k be an oriented arc in !7 that is transverse to A. For each component
d of k - A, let ~d and .rj be the positive and negative end points of d,
respectively. From what precedes, and because knA has Lebesgue measure 0,

where the sum is over all components d of k - A, and where is

defined by continuous extension of the restriction of fm to d. (In particular,
if d is adjacent to d’ so that x! = xd, it may very well happen that

’r’ fm (~d~ ) ~)
We can compare this formula to that of Lemma 7. Note that, if g is a leaf

of  in the boundary of a component W of !7 2014 A, and if we continuously
extend to W U g, the extension of to g is just the oriented isometry
from g to II8 which sends the base point at 0. Consequently, if k is an arc
transverse to .1 which is small enough so that the leaves of A cross k in the
same direction,

where k’ is the projection of k to !7, where ~ = +1 if the leaves of  cross k
from right to left, where ~ == -1 if they cross from left to right, and where

xl and ~~ are the positive and negative end points of k, respectively. By
interpreting %m as a geometric current, we can incorporate the ~ in an
intersection number, and the above equality becomes



By additivity, this equation actually holds for every arc k transverse to A,
without any restriction on the direction in which the leaves of A cross k.

Now, consider a class c E Hl ( U; lI8 ) . This class can be represented by a
cycle ~i 1 aiki, with ai E R and with the arcs ki transverse to A. Then,

where the terms cancel out because 03A3ni=1 aiki has boundary 0. This

concludes the proof of Lemma 10, and therefore of Theorem 9.

4. The shearing cocycle determines the metric

We want to show that, if two hyperbolic metrics have the same shearing
transverse cocycle then they represent the same class in T(S) .

Consider two hyperbolic metrics mi and m2 and a maximal geodesic
lamination A. As indicated in section 1, A can be represented by an ml-
geodesic lamination A i and an m2-geodesic lamination A2. Lift the situation
to the universal covering S, where A, Ai and A2 have respective preimages
A, ~2 ~

Since ~i represents A, there is a leaf of ai, which is naturally associated
to each leaf of A. Therefore, for each plaque P of S - A, there is a

plaque Pi of S - ~~ which is naturally associated to P, as well as a

homeomorphism P -~ Pi well defined up to isotopy. By composition, we
get a preferred isotopy class of homeomorphisms P2. Since any two
ideal triangles are isometric, this isotopy class is represented by a unique
isometry : P1 --~ P~, called the plaque map.

Define the shear map ~o : S - ~~ --~ S - ~2 by the property that, on each
component of S - Ai, the map 03C6 coincides with the corresponding plaque
map P2. Note that ~ is an isometry from the metric mi to the
metric m2.

LEMMA 11. - If the two metrics ml and m2 have the same shearing
shearing cocycle, the shear map p continuously extends to an isometry
{s~ m1~ .-~ {s~ m2~.



Proof. - We first show that p admits a continuous extension which is
locally Lipschitz..

Consider two points x x , 2/1 E S’ - ~1, respectively contained in the plaques
Pi and Qi of S - Ai. Let 03A31 be the component of S - Int(P1 U Qi) which
separates Pi from Qi. As in section 2, there is a unique foliation 91 of 03A31
by mi-geodesics such that every leaf of Ai separating Xl from 2/1 is a leaf

of G1. Again as in section 2, let Hi be the foliation of 03A31 orthogonal to G1.
Consider the mi-geodesic arc o;i joining Xl to 2/1, and let ui = 03B11~03A31~P1

and vi = ~i n Ei n Qi be the two end points of ai n In ui and vl
can be also be connected by the union of a leaf /1 of and of an arc 61
contained in the leaf ~1 n Qi of Let ~31 be the arc obtained from cx1 by
replacing ~i n ~’1 by yl U 61 .

The projection of ~1 onto ~1 n (~i along the leaves of ?~1 is distance

non-increasing. It follows that the length of 61 is bounded by the length of
~i n and therefore by the distance d(x1, y1). By the Jacobi equation,
the projection from ~1 to y1 along the leaves of 91 is locally Lipschitz,
where the local Lipschitz constant can be taken to be the exponential of the
projection distance. As in the case of the length of 61 , this projection
distance is bounded by It follows that the length of yi is

bounded by ) times the m1-length of al n and therefore by
y1). Altogether, we conclude that the length of ~31 is bounded

by (2 + a y1 ).
Now, consider x2 = y2 = Let P2 and Q2 be the plaques of

S - ~2 respectively containing x~ and y2, and let h2 be the closure of the
component of S - P2 U Q2 that separates P2 from Q2. As before, let ~2 be
the foliation of E2 by m2-geodesics such that every leaf of a2 separating ~2
from y2 is a leaf of ~2, and let ?-~2 be the orthogonal foliation. The point
u2 = P2~03A32 can be joined to the point v2 = E Q2~03A32 by
the union of a leaf;2 of ~C2 and of an arc 62 contained in the leaf E2 n Q2 of
~2. Let ,Q2 be the arc connecting x2 to y2 which is the union of p(ai n Pi),
’Y2 ~ ~2 and nQi).

Because mi and m2 have the same shearing cocycle, the end point ;2nQ2
of y2 is the image of yi n Qi under the plaque map f~2. It follows

that 62 is the image of 61 under the same plaque map; in particular, the
mi-length of 81 is equal to the m2-length of 62 .

In Ei, consider a wedge P~i delimited by two asymptotic leaves of Ai
separating .ci from y1, such that the interior of W1 does not meet Ai. Let
Rl C Wi be the plaque of S - Ai that is adjacent to the same two leaves



of Ai, and let W2 and R2 be the wedge and plaque in L2 respectively
corresponding to tVi and Ri. The fact that mi and m2 have the same

shearing cocycle implies that the plaque map Ri - R2 sends the end point
of 03B31~R1 that is closest to tti to the end point of y2 n R2 that is closest to u2.
As a consequence, the isometric extension of this plaque map to W2
sends yl n W1 to y2 n W2. In particular, the mi-length of 03B31 n Wi is equal
to the m2-length of y2 n W2.

Since y1 n Ai has 1-dimensional Lebesgue measure 0, the length of yi is

equal to the (infinite) sum of the lengths of the y1 n Wi , where H~i ranges
over all wedges in ~1 as above. Since the same property holds for y2, it

follows that the mi-length of yi is equal to the m2-length of y2.
This proves that each of the four pieces forming ,Q1 has the same length

as the corresponding piece of/?2’ As a consequence, the mi-length of 131 is

equal to the m2-length of 132.

Therefore,

Since this holds for every zi, ?/i E S - ~I, it follows that ~p admits a

continuous extension ~ : : ( S’, m1 ) -~ (S, m2) which is locally Lipschitz.
We now prove that ~o is distance non-increasing. For this, consider two

points .ci and yi E S which are not on the same leaf of Ai, and let c~i be the
mi-geodesic arc joining .ri to yi . Since a1 ~1 has 1-dimensional Lebesgue
measure 0 and since ~p is locally Lipschitz, the image p(ai n Ai) also has
1-dimensional Lebesgue measure 0 (for the metric m2 ) . Also, because ~ is
isometric on S - Ai, the m2-length is equal to the mi-length
of Ål. Therefore, the m2-length of is equal to the m1-length of
al and

By density, this inequality (y~(~1 ) ,  y1 ) holds for
every ~/i E S, namely even if the two points are on the same leaf of Ai.
In other words, ~ : (,S’, m1 ) --~ (,S‘, m2 ) is distance non-increasing.

By symmetry, the shear map ~"~ : 92014A2 -~ 5’2014Ai extends to a distance
non-increasing map (S, m2 ) ~ (S, It follows that 03C6 : (S, ml ) -
(S, m2) is an isometry. Q



THEOREM 12. - Two hyperbolic metrics ml and m2 have the same
shearing transverse distribution if and only if ml = m2 in T {,S‘).

Proof. - If mi and m2 have the same shearing transverse distribution,
let 03C6 : (S, ml ) - (S, m2) be the isometry provided by Lemma 11. Since

the shear map p : : S - Ai ~ S - a2 commutes with the action of 
03C6 induces an isometry 03C8 : (5’,mi) ~ (S, m2) which is homotopic to the
identity. In particular, mi and m2 represent the same element of T{,S). D

5. The local realization of shearing cocycles

In this section we show that, given a maximal geodesic lamination
A, the map T{,S’) --~ which associates its shearing cocycle to a
hyperbolic metric is open. By Theorem 12, this implies that this map is
a homeomorphism onto its image. Its precise image will be determined in
section 6.

PROPOSITION 13. - Let mo be a hyperbolic metric with associated shear-
ing cocycle 7o for the maximal geodesic lamination 03BB. Then, every 03C3 E

that is sufficiently close to 03C30 is the shearing cocycle of some hy-
perbolic metric m.

Proof. - The proof will require several steps. Set

Represent A by an mo-geodesic lamination which we will also denote by A,
and let A be the preimage of A in the universal covering 5. Consider two

plaques P and Q of ,S‘ - ~ .

For every plaque R separating P from Q, let g~ and g~ be the geodesics
in the boundary of R which are closest to P and Q, respectively. Orient

these geodesics to the left, as seen from P. Also, given an oriented geodesic
g of ,S’ and a number u E JR, let T: : S --~ S denote the mo-isometry which
respects g and acts by translation of oriented amplitude u on g.

Let PPQ be the set of all plaques of - that separate P from Q. Given
a finite subset P of index its elements as P1, P2, ... Pn so that the
index i of Pi increases as one goes from P to Q, and consider



where gp = g = and gG is the geodesic in the boundary of Q that
is closest to P. This formula is perhaps easier to read and understand if we
notice that each P2 contributes a term 

9i 9i
Now, we let the finite subset P converge to PpQ and we consider the

limit

By convention, we decide that is the identity. Of course, we first have
to prove that the above limit exists.

LEMMA 14.- Let k be the lift to S of a simple geodesic arc in S

transverse to 03BB. Then, if a E is sufficiently small (depending on
h~ and if the two plaques P and Q meet k, the map ~p~ converges to an

mo-isometry as P tends to PPQ . 

Proof. - For notational convenience, set

Identify the mo-isometry group of S to the matrix group S0(2,1) C
GL3(R), and endow it with the norm = The

main property we want is that this norm satisfies 

We first show that the norm ~ 03C8P II is uniformly bounded, if a is small
enough.

For every i, the distance between the geodesics gf and g? is bounded

by a constant times the length of k n Pi . By Lemma 5, this distance is

therefore an for some constant A > 0, where we identify k
to its projection to S and k n Pi to the corresponding component of k - A.
By an easy hyperbolic estimate, it follows that

As a consequence,



By Lemmas 4 and 6, the series e-Ar(knR) is bounded

by the sum of finitely many geometric series ~°° o , It is

therefore convergent if  A/C.
It follows that, if the transverse distribution a is small enough, the norm

II is uniformly bounded.

Let Pn, n E N be an increasing sequence of finite subsets converging to

PPQ, with the cardinal of Pn equal to n. The map is obtained from

by inserting a term in its expression. More precisely,
gR 9R

there are subsets P and P’ of ~p~ such that

Then

by Lemmas 5 and 6, and because we just proved that and are

uniformly bounded.

By Lemma 4, it follows that the sequence is Cauchy, and therefore
convergent, if  A/C.

This proves that has a limit 1/JPQ as P tends to provided that

a E is small enough. The same clearly holds for . D

For future reference, we note the following estimate.

LEMMA 15. - Under the hypotheses of Lemma 1,~, there is a constant

B > 0, depending on k and a, such that can be decomposed as

03C6PQ = 
) with



Proof

Having proved the convergence in Lemma 14, we can now give another

description of c~ p~ which is perhaps more intuitive. We are still assuming
that P and Q meet the lift k of a simple geodesic arc transverse to A in S.

Given an integer r > 0, let PpQ consist of the finitely many R E PpQ
such that r( k n R)  r. . Index the elements of PpQ as Pi, P2, ..., Pn so
that the index i of Pi increases as one goes from P to Q. For notational

convenience, set Po = P and = Q. For every i, choose a geodesic hi,
which separates the interior of Pi from the interior of Pi+l, and orient hi
to the left as seen from P. Then, set

Compare [EpM, sect. 3].

LEMMA 16. - Under the hypotheses of Lemma 1,~, as r tends to infinity,

LEMMA 16.2014 ~p p~ if a E is small enough.

Proof. - We will estimate the difference between and

For this, it will be more convenient to rewrite as

noting that a(Pi, Pi+l) = a(Po, a(Po, Pi), and to consider



and

The isometry is obtained from by replacing each term

For every i, the two geodesics g~ and follow the same edge path of
length 2r in the train track associated to the arc k ; otherwise, there would
be another R E RpQ between Pi and Since hi is between these

two geodesics, it also follows the same edge path. Therefore, the distance
between any two of. these three geodesics is bounded by a constant times

for some constant A > 0 of Lemmas 3 and 5.

In particular, the distance from gf to hi-l and the distance from g~
to hi are both Also, the distance between gf and g~ is an

by Lemma 5. Since  r, it follows that the distance

from to hi is also an 

From the second statement, it follows that

by Lemma 6. If 03C8 is any isometry obtained from by replacing some of

the n terms by or by the identity,
9i 9~ h,i _1 17,i

it follows as in the proof of Lemma 14 that

As a consequence, if  AIC, the norm of such is uniformly bounded.



Let 03C8i be obtained from 03C8PrPQ by replacing each

so that and To estimate the difference between

and note that we can write these as

where ~ and ~~ are obtained from by replacing some

or by the identity. By the above observation 1111’11 ( ( are uniformly
bounded. Also, we noted that the distance from gi to hi-l and the distance
from g~ to hi are both It follows that

and therefore that

since n = O~r) by Lemma 4.

It follows that 03C8rPQ and 03C8PrPQ have the same limit as r tends to infinity,
provided that 110’11  Aj2C. On other hand, hn converges to as r tends

to infinity. Therefore, the limit of = is the same as

the limit of = namely is equal to if a is small

enough. D

There is natural generalization of Lemma 16, closer to the one used in
[EpM] for the construction of earthquakes, which would lead to an even
more intuitive definition of . As before, index the elements of a finite
subset P of PpQ as Pl , P2 , ..., , Pn so that the index i of Pi increases as



one goes from P to Q. Then, we could expect 03C6PQ to be the limit as P

tends to PPQ of ... where the geodesic hi
separates Pi from and is oriented to the left as seen from P. This

approach would certainly lead to a more intuitive definition of but is
unfortunately too naive. Indeed, it is not hard to see that the above limit

does not exist if the transverse distribution a associated to the transverse

cocycle a is not a measure. So, only the restricted limit of Lemma 16 makes
sense.

From Lemma 16, we get the following properties, which were not obvious
from the definition of (Note that even the second one is non-trivial if
Q does not separate P from R. )

LEMMA 17.- If a E ?-~(a) is small enough for the conclusions of
Lemmas 14 and 16 to hold then, for every plaques P, Q, R of ,S’-~ meeting
k, 03C6PQ = 03C6-1PQ and = 

We can now get rid of the assumption that P and Q both meet a suitable
arc I~ .

LEMMA 18.2014 If a E H(03BB) is sufficiently small then, for every plaques
P, Q of S - A, the map ~p~ converges to an mo-isometry as P tends to

. In addition, = 03C6-1PQ and 03C6PR = for every plaques P,
Q, R.

Proof - Select in S finitely many simple geodesics arcs ... , ~n
transverse to A, such that each component of S - A meets at least one
of the ki.

For each pair of plaques P, Q of S - A, we can find a finite sequence of
plaques P = Po, Pi , ... Pn, = Q such that each Pj separates Pj_1
from Pj+i and such that Pj and meet the same lift ~23 of some ~ . ’
Then, sufficiently small (depending on the ki), Lemma 14 proves
the existence of a limit ~ p~ for every j . This guarantees the existence
of the limit

The second statement easily follows from Lemma 17. (Hint for the case
where none of the three plaques P, Q, R separates the two other ones:
consider the unique plaque N which separates any two of these plaques.) 0



Now, consider the action of the fundamental group on S. By
invariance of a under this action, we have that ~o{.y p~ ~,y~ = for

every I E ~r1 (S) and every plaques P and Q.
Fix a base plaque Po of S - A, and define = Then, it

immediately follows from Lemma 18 and the above property that p defines
a group homomorphism from to the group of mo-isometries of ~’.

By definition of ~ p~ , the interiors of ~ p~ (Q) and P are always disjoint.
In particular, for every 03B3 ~ 03C01(S) which is not the identity, p(y)Pa =

disjoint from the interior of Po. It follows that p(y) cannot
be very close to the identity, and therefore that the representation p is a
discrete homomorphism from into the mo-isometry group of S.

Consider the surface S’ = S/p. The metric mo on S induces a hyperbolic
metric m’ on S‘’. Since p defines an isomorphism between and 
we have a preferred isotopy class of diffeomorphisms 03C8 : S ~ ,S’. Let m be
the hyperbolic metric on S obtained by pulling back the metric m’ under
~. Note that the class of m in T (S) does not depend on the choice of ~.

The proof of Proposition 13 will then be completed by the following
statement.

LEMMA 19. - The shearing cocycle of the metric m is equal to 03C3 =

a~o + a .

Proof, - To understand the shearing cocycle ~m of m, we first have to
understand the m-geodesic lamination Ay~ corresponding to A.

Define a map ~ : ,S’ - a --~ ~‘ by the property that ~ coincides with 
on each plaque P of ,S - ~ . This y will more or less correspond to the shear
map in the sense of section 4, modulo composition whith a suitable lift of’lj;.

Note that = for every y E and that $ is mo-isometric.
Therefore, ~ induces an isometric (~’ - A, mo) - (S’, m~).

If P and Q are two distinct plaques of S - A, it follows from the fact that
the interior of is disjoint from P that ~o(P) and have disjoint
interiors. As a consequence, p is injective. Since (S - A, mo) and (S’, m’)
have the same area, we conclude that the image of 03C6 is dense in S.

Therefore, the image of  in dense in S. In particular, every point in the
complement S - ~o(,S’ - a) is in the geodesic limit of a sequence _~(g2 ), where
each gi is in the boundary of a plaque of ,5’ - ~_t. It follows that ,5’ -- ~p(S - A)
is a geodesic lamination A’ of S‘, which projects to an
m’-geodesic lamination A’ of ,S‘.



The m-geodesic lamination A~ = is the m-geodesic
lamination corresponding to A. Indeed, a leaf of A (resp. Am) is completely
determined by the way it separates the plaques of S - A (resp. S - 
and o ~ : ~ - A -~ ~ - A~ respects the combinatorics of these plaques
while commuting with the action of 

We will prefer to work with A’ rather than to avoid the interference

of too many ~ with the arguments. Let be the shearing cocycle of the

metric m’ with respect to A’. Then the isometry ’Ø : (~, m) - (~, m’) sends

~ to Namely, = ~’(~(P), we note that (P)

and (Q) are plaques of S - A’ and are sent by the appropriate lift of 03C8 
to

the plaques of S - A~ corresponding to P and Q, respectively.

We want to show that Q) = uo(P, Q) + a(P, Q) for every plaques

P, Q of ~-A. By additivity of transverse cocycles, we can restrict attention

to the case where P and Q both meet a transverse geodesic arc k whose

projection to S is simple.

As usual, let P pQ be the set of all plaques that separate P from

Q. Choose a finite subset P of PPQ, index its elements as Pi, P2 , ..., Pn

so that the index ! of P; increases as one goes from P to Q, and set Po 
= P

and = Q.

We want to compare = ~’(~(Pt),~-+l)) toTo(P,,P,+i).
Note that, to compute (~(P,), ~(P,+l)), we donot need the whole lami-

nation A’. We only need to know the metric mo on S, the two triangles 
and and the family ’PQ of those leaves of A’ that separate 
and (the only requirement here being that two geodesics 

of Ap~
which are adjacent to the same component of S - are asymptotic).

Let be the number defined by this procedure. Of

course, in this case, 
= and,

similarly, s(Pt, P:+i; = ro(Pt, Pt+l)-

Now, remember that = and = 

Since is an isometry, we conclude that



From Lemma 15, there is a constant B > 0 such that can be

decomposed as -~ ~p~T~ ~Pt ~~i+1 ~ with

where g is the geodesic in the boundary of that is closest to Pz, oriented
to the left as seen from PZ .

By definition of s,

Let ki be the subarc of k joining Pi to Note that ki also joins Pi to

) (.pi+1 ). Within an error of .~~.,zo (hi ~ ~ s ( .F’i (Pz-E-1 )~ 
does not depend on the lamination ApQ by Lemma 8. An additional appli-
cation of Lemma 8 gives that



Summing over all i, we obtain

By Lemma 4, the series convergent. Letting P tend
to this enables us to conclude that Q) = (~) + (~),

This completes the proof of Lemma 19, and therefore of Proposition 13. ~

6. The global realization of shearing cocycles

In this section, we determine which transverse cocycles for A can occur
as shearing cocycles of hyperbolic metrics.

There is an obvious necessary condition for a given transverse cocycle a
for A to be the shearing cocycle of a hyperbolic metric m. Indeed,
by Theorem 9, the m-length lm( ) of another Jl E is equal to

= a). If, in addition, this is a non-zero transverse measure
for A, then it follows from the definition of .~m (~c) that this length is positive.
Consequently, for a to be the shearing distribution of some hyperbolic
metric, it is necessary that T(~c, a) > 0 for every transverse non-zero measure
Jl for A. Quite remarkably, this condition turns out to be sufficient.

THEOREM 20. - A transverse Holder distribution a for 03BB is the shearing
distribution of .some hyperbolic metric if and only if a) > 0 for every
non-zero transverse measure ~C for a.



Proof. - As in section 5, let us endow with a norm ( ~ . For a

hyperbolic metric mo, Proposition 13 provides a ball , Eo) C lI8)
around such that every transverse cocycle in this ball is also the

shearing distribution of some hyperbolic metric. Let us examine the proof
of Proposition 13 in detail, to see what determines ~o.

We start with a topological data (independent of the metric mo) consist-
ing of simple arcs 1~1, ... kn, transverse to A, such that every component
of S - A meets some ki. We also require that, for any hyperbolic metric mo
and after making A mo-geodesic by a first isotopy, each ki can be isotoped
respecting A to a simple mo-geodesic arc An easy way to achieve this is

to choose each ki contained in some non-backtracking simple closed curve
transverse to A, which we can always do.

Given a hyperbolic metric mo and geodesic arcs ki isotopic to the ki as
above, Lemmas 3 and 6 associate constants Ai, Ni and Ci to each Note

that Ai depends on ki and on the metric mo, but that Ci does not and
depends only on the topology of ki and A.

Then, if we examine the proof of Proposition 13, and in particular the
proof of Lemmas 14 and 16, we see that we can take ~o = mini 

Now, let us change the perspective of the problem. Consider a hyperbolic
metric mo whose shearing cocycle ro is within £ of the complement of the
image of the map ~ : ~(S’) ~ ?-~(~; R) which associates its shearing cocycle
03C3m to each metric m.

This means that ~o  ~, and therefore that there is a ki for which it is
impossible to find constants Ai , Ni which satisfy the conclusion of Lemma 3
and such that Ai/2Ci > ~. In other words, there is a ki such that, for every
N, there is an arc b N contained in a leaf of A which cuts n~r > N times the
arc ki and whose length is such that  - 1) .

Let denote the number of times the arc bN crosses the union of the

k j. . On each arc k transverse to a, consider the Dirac measure of weight
based at the finite set k n bN. Since every leaf of A meets some

k j, , the total mass of is uniformly bounded in N. It follows that we

can extract a subsequence such that, for every transverse arc k,
the measure weakly converges to some measure ~c~ as p tends to oo.
Since n’Np > > Np tends to ~, these measures are invariant under

homotopy of k respecting A, and therefore define a transverse measure p
for A.



By construction, the length (p) is equal to the limit of the

It follows that .~mo (~c)  .

On the other hand, 03A3j (kj) is the limit of the 03A3j Npkj(kj) = 1, and is

therefore equal to 1. Since  Cj~ ~ by definition of Cj in Lemma 6,
we conclude that

As a conclusion, if the shearing cocycle ro of the metric mo is within 6;
of the complement of the image of the map ?’-(,S) --~ ?~C(~ ; there is a

transverse measure ~c for A such that

By weak compactness of the space of transverse measures p with ( ~ ~C ( ~ = 1
and by continuity of T it follows that, if a E is in the boundary
of the image of T(S) -~ Ii$), then there exists a transverse measure .~c
with r(p, a) = 0.

Therefore, the image is closed in the set C(A) of those
a E such that > 0 for every transverse measure This

image is also open in C(A) by Proposition 13. Since C(A) is defined by linear
inequalities, it is connected. It follows that C(A) is exactly equal to the
image of T(S) --~ ?-~(a; 0

COROLLARY 21.2014 Consider the map ~ : ~ which

associates its shearing cocycle to each hyperbolic metric m. The image
of ~ is an open convex cone in I~$) bounded by finitely many faces.

Proof. - By [Ka] (compare [Pal], [PeH], [Bo4, sect. 4]), the geodesic
lamination admits only finitely many ergodic transverse measures ...,

Jln, and every transverse measure is a linear combination with non-negative
coefficients of these 0



7. The bending cocycle of a pleated surface

A pleated surface with topological type ,S’ in a hyperbolic 3-dimensional
manifold M is a map f : S -~ M such that:

(i) the path metric obtained by pulling back the hyperbolic metric of M
by f is a hyperbolic metric m on S;

(ii) there is an m-geodesic lamination A such that f sends each leaf of A
to a geodesic of M and is totally geodesic on S - A.

In this case, we say that the pleated surface f admits the geodesic
lamination A as a pleating locus. Note that, with this definition, the pleating
locus of a pleated surface is not unique. An extreme case is when f is totally
geodesic, in which case every geodesic lamination is a pleating locus for f.
See [Thl] and [CEG] for more details on pleated surfaces.

The local geometry of the pleated surface f is unchanged if we lift it to the
covering of M with fundamental group f * (~r1 (S’)) . If we are only interested
in this local geometry, it is therefore natural to extend the definition of

pleated surfaces in the following way.
Let us define an (abstract) pleated surface with topological type S as

a pair ( f p) where f : : 5’ 2014~ IHP is a map from the universal covering
S to the hyperbolic 3-space IHI3 and where p : : -~ is a

homomorphism from the fundamental group of S to the group of orientation-
preserving isometries and such that:

(i) for every y E f y = 

(ii) the path metric obtained by pulling back the metric of H3 by f is a
hyperbolic metric on S which, by (i), induces a hyperbolic metric m
on ,S;

(iii) there is an m-geodesic lamination A of S such that f sends each leaf
of its preimage A to a geodesic of 1HI3 and is totally geodesic on S’ - a.

Again, we then say that A is a pleating locus for ( f p).
Note that, when the image of p is discrete and without torsion, the

abstract pleated surface ( f p) induces a pleated surface in the hyperbolic
3-manifold M = H3 /p (s)) . .

Consider an (abstract) pleated surface f = ( f p) with pleating locus ~.
In general, what prevents f : 5’ --~ EP from being totally geodesic is the fact



that it may be bent along the leaves of A. This section is devoted to giving
a precise definition and measurement of this bending.

First consider the simple case of two plaques P and Q of S - A which
meet along a leaf g of A. Orient g as part of the boundary of P. Then the
way f is bent along g is clearly characterized by the angle Q) E R/203C0Z
from the totally geodesic triangle f(P) to the totally geodesic triangle f {C,~),
measured for the natural orientation of IHI3 with respect to the orientation
of the geodesic 1(g) defined by the orientation of g. Define in this case

,Q(P, Q) E to be the external angle {3(P, Q) = 0(P, Q) - 7r.
If P and Q are separated by only finitely many leaves of A, we can

similarly define a bending angle 03B2(P, Q) E R/203C0Z as the sum of the bending
angles along these leaves. Defining a bending angle ,Q(P, Q) in general will
be a little more difficult.

Consider two plaques P and Q of S - A. Let E be the closure of the

component P U Q that separates P from Q, and let ApQ consist of
those leaves of A which separate P from Q, including the two leaves P n E
and The leaves of 03BBPQ decompose the strip £ into hyperbolic strips.
For each such strip W ApQ, the image l(W) is a 2-dimensional

hyperbolic strip in intersecting the sphere at infinity in the disjoint
union of two arcs, one of which may be reduced to a point.

As in section 2, the partial foliation Apo of E can be extended to a
foliation G of E by geodesics. Orient the leaves of G to the left as seen
from P. As g ranges over the leaves of ~, the negative end points of the
geodesics l(g) of BP form a continuous arc y in IH~ going from the negative
end point of 1(p n E) to the negative end point of l(Q n ~). Note that the
natural projection is Lipschitz. It follows that y is a rectifiable

curve in ~ . Since A has Hausdorff dimension 1 in ,S ([BiS], [Th3, sect.
10]), it also follows that, as g ranges over all leaves ApQ, the negative end
points of the l(g) form a subset of I of Hausdorff dimension 0.

To define the amount of bending which occurs for f between P and Q, it
is convenient to consider the upper half-space model for IHI3 , for which the
sphere at infinity H3~ is identified to the euclidean plane R2 plus a point oo.
Without loss of generality, we can assume that the arc y does not contain
the point oo. For every strip W the projection of W to y is a
circle arc possibly straight and possibly reduced to a point. At the
negative end point of ,f {P n E), let vp be the unit vector in R2 tangent to
f (P), oriented outwards; similarly, at the negative end point of f(Q n E),
let vQ be the unit vector tangent to f (Q), oriented inwards.



Intuitively, the angle 8( v p vQ) /203C0Z from v p to vQ in R2 is the sum
of the integral of the curvature of y along the circle arcs corresponding to
strips of £ - ApQ, plus the amount y turns at the points of y corresponding
to the negative end points of all 1(g) with g a leaf of We will define

the bending angle ,~(P, Q) to be this amount of turning at the leaves of
O

Orient the arc y in ~ - Il$2 so that it goes from the negative end
point of 1! n E) to the negative end point of n ~~. For every strip
W of £ - ApQ consider the corresponding circle arc in y, and let ,~3y~ be
the integral of the signed curvature of this arc; in particular, ( is the

quotient of the length of this circle arc by its radius, and is 0 if this arc is
reduced to a point. We now define the bending angle ,Q(P, Q) E to

be

where 9(v p, vQ ) is the angle from vp to vQ and where W ranges over all
the strips Note that the meet a fixed compact subset
of H3, which implies that the radii of the corresponding circle arcs in y are
bounded away from 0 and guarantees the convergence of the sum ~ y~ ,

since y is rectifiable.

When the plaques P and Q meet along a geodesic g, the curve y consists
of a single point and ~3(P, Q) is equal to the angle between the two vectors vp
and vQ , which is also the external angle between the two geodesic triangles
f(p) and f (Q). Therefore, ,Q(P, Q) is equal to the bending angle defined at
the beginning of this section in this case.

The remainder of this section will be devoted to proving that the map
(P,Q) ~ 03B2(P, Q) defines an R/203C0Z-valued transverse cocycle for 03BB. In

particular, we will prove that (3(Q, P) = j3(P, Q), which is far from being
clear at this point. Indeed, the definitions of ,Q(Q, P) and ,~3(P, Q) each
involve a different sum ~y~ where a ~ contributing to one sum may
contribute 0 to the other one, and conversely.

For this, we will give a different definition of ~3(P, Q).
As in section 5, let PPQ be the set of all plaques of S - A that

separate P from Q. Given a finite subset P of , index its elements
as Pi, P2, ..., Pn so that the index i of Pi increases as one goes from P to
Q, and set Po = P and Pn+1 = Q. Let 03BBP be the geodesic lamination of S
which is obtained from A by the following operations: for every i = 0, ... , n,



erase the leaves of A which are contained in the interior of the strip ~i
separating Pi from and replace them by a single "diagonal" geodesic
joining the negative ends of the two geodesics delimiting Ei (endowing these
geodesics with the boundary orientation). The choice of which diagonal we
take is irrelevant here. Note that the diagonal will be equal to one of the
leaves of A in the degenerate cases where ~i is a wedge or a single geodesic,
namely when the geodesics bounding ~2 are asymptotic.
We now define a pleated surface ~ : : S’ -~ IHP with pleating locus ~~,

without any assumption of equivariance with respect to a homomorphism
1rl(S) --~ The map f~ coincides with f outside of the strips
~z.. For each diagonal di E joining end points of the two geodesics g2, 1~i
delimiting fp sends di to the geodesic of IHI3 that joins the corresponding
end points of f (gi ) and f (hi ). In this construction of we might
worry that these end points of f (gi ) and f (h2 ) might be equal; however,
this problem is clearly not going to happen if g and h are close enough,
and is therefore excluded if we assume that P is a large enough subset
of . Now, each diagonal di separates the corresponding ~i into two
wedges, possibly reduced to a geodesic in degenerate cases; there is basically
a unique way to define fp on these wedges so that they are sent to totally
geodesic wedges in IHl3 .

For P a large enough finite subset of PPQ , we now have defined a geodesic
lamination a~ and a pleated surface ,S‘ -~ IHI3 with pleating locus . Of

course, A~? is not invariant any more under the action of on S, and f j~
is not equivariant any more for some representation p : -i 

However, P and Q are still plaques of ,S’ - , and we can measure the

bending of fp between P and Q by a number ~3~ (P, Q) E Since ~~
has only finitely many leaves gi between P and Q, this ~Q~ (P, Q) is the sum
over the 9i of the external angles between the two totally geodesic pieces of

meeting along 

LEMMA 22.2014 For every two plaques P, Q of S - ~, the number

Q) E converges to 03B2(P, Q) as the finite subset P converges
to the set PpQ of all plaques separating P from Q.

Proof. - Given a plaque R E PPQ , exactly two of the geodesics in its
boundary separate P from Q, and these two geodesics delimit a strip WR
in the strip E separating P from Q. Conversely, any strip delimited in E
by two leaves of is associated in this way to a plaque of PpQ. . We
can then rephrase the definition of ,Q(P, Q) by saying that it is equal to the



angle from the vector vp to the vector vQ minus the sum ,

where is the integral of the geodesic curvature of the circle arc yw in
~ obtained by projection of the strip W in the negative direction.

Similarly, Q~ is equal to the same angle from vp to vQ minus a sum
where W is the finite set of strips delimited in 03A3 by the leaves

of Ap separating P from Q. The set W contains all the WR associated to
the R E ’~. The other terms come from the two wedges obtained by splitting
along the diagonal each strip ~Z separating Pi from for i = 0, ..., n .
Of these two wedges in ~2, at least one of them does not contribute to the
sum since its projection to ~ in the negative direction consists of only one
point; let Wi be the other wedge. Then,

Since the radii of the circle arcs admits a positive lower bound, each
term ~3y~ is in absolute value bounded by a constant times the distance
between the end points of Also, each has the same end points as
the arc projection of the strip ~i , where this projection is defined using the
lamination and this projection of 03A3i consists of some arcs 03B3WR with
R E PPQ - P and of a set of Hausdorff dimension 0. It follows that

which tends to 0 as P tends to Ppo. D

Since there are only finitely many leaves Ap separating P from Q, we
have that ~3~ (Q, P) = ~3~ {P, Q). An immediate corollary of Lemma 22 is
therefore.

LEMMA 23

LEMMA 24. - The bending angle 03B2(P, Q) is independent of the identifi-
cation of H3 with the upper half-space model.



Proof. - The bending angle ,Qp (P, Q) is equal to the intrinsic sum of the
external angles between the finitely many totally geodesic pieces forming the
pleated surface fp between P and Q, and is therefore independent of the
choice of any model for ~3. By Lemma 22, the same is therefore true for

~). o

From Lemma 22, it immediately follows that ~3(yP, yQ) = ,Q{P, Q) for
every, E Also, if the plaques P, Q and R of S - A are such
that Q separates P from R, it is immediate from the definitions that

~{P~ ~) _ ~{P~ ~) + ~(~~ P)~
As a consequence, /3 defines an R/203C0Z-valued transverse cocycle for A,

called the bending cocycle of the pleated surface f = { f p).
We would like to conclude this section by a remark, indicating how to

compute the bending angle ~3(P, Q) if we use the Poincare model, as opposed
to the upper half space model, for the hyperbolic 3-space IHI3. In this model,
the sphere at infinity ~ is identified to the unit sphere in R~. As in the
definition of ~3(P, Q), we associate to P and Q an arc y in ~ going from
the negative end point of f {P Q ~) to the negative end point of n ~),
where £ is the closure of the component of S - P U Q separating P from Q.
The leaves of A separating P from Q decompose E into strips, and to each
such strip is associated a circle arc in y. We also have two vectors vp and

vQ tangent to P and Q, respectively, at the end points of y. To measure the
angle from v p to vQ in B~ = S2 , we now need to choose a differentiable
arc 03B4 going from the positive end point to the negative end point of y. We
can then measure an angle 8s{vp, vQ) E by using parallel transport
along b. As before, for each strip W of £ - let ~3y~ be the integral of
the geodesic curvature of the corresponding circle arc in y. Then,

where A(y U 8) is the area of any cycle bounding y U 6, which is uniquely
defined modulo This formula is an immediate consequence of the Gauss-

Bonnet formula in the case when P and Q are separated by finitely many
plaques, and follows from Lemma 22 in the general case. The fact that the
sign is opposite to the one which could be expected comes from the fact
that, when identifying the upper half-space model to the Poincare model,
the orientation of R2 U oo is sent to the opposite of the orientation of S2 .



8. The realization of bending cocycles

In this section we show that every R/203C0Z-valued transverse cocycle for
the geodesic lamination A is the bending cocycle associated to some pleated
surface f = ( f p) with topological type S and with pleating locus a. In

addition, the pull back metric defined by f on S can be any hyperbolic
metric m. The methods of proof will closely follow those used in section 5,
but will be simpler.

Consider an R/203C0Z-valued transverse cocycle a for the maximal geodesic
lamination A, and let m be a hyperbolic metric on S. We want to construct
a pleated surface f = ( f , p), with topological type ,S and with pleating locus
A, whose bending transverse cocycle is a and whose pull back metric on S
is m.

We start with any pleated surface f~ = ( fo, po) with pleating locus a
and with pull back metric m. There clearly exists such a pleated surface
with bending transverse cocycle 0, namely one which is totally geodesic, but
it will be convenient to work in full generality. So, let ,~o be the bending
transverse cocycle of f o .

Set a = ~3 - ~30 .
Given an oriented geodesic g of H3 and given a number v E let

Rug : EP ~ H3 be the hyperbolic rotation of angle v around g.
Consider two plaques P and Q of S-a. As in section 5, for every plaque R

separating P from Q, let gR and g~ be the geodesics in the boundary of
R which are closest to P and Q, respectively. Orient these geodesics to the
left, as seen from P.

As usual, let PPQ be the set of all plaques of S - A that separate P from
Q. Given a finite subset P index its elements as P1, P2, ... Pn so
that the index i of Pi increases as one goes from P to Q, and consider

where gi = , g~ = , and gP is the geodesic in the boundary of
Q that is closest to P. The fact that the limit exists is proved by the
same argument as Lemmas 14 and 16. The proof is actually much simpler
because, since the R/203C0Z-valued cocycle a is bounded, we do not have to
worry about terms any more. In particular,
the convergence holds without the assumption that a is small enough.



As in Lemma 18, we also have that, for every three plaques P, Q and R
of S - A, 03C8PQ = 03C8PR03C8RQ and 03C8QP = .

Fix a base plaque Po Define f : S -  ~ H3 by the property
that f coincides with 03C8P0Pf0 on each plaque P. We want to show that f
extends to a pleated surface with pull back metric mo and with bending
transverse cocycle /3 = /?o + a.

For this, let P be a finite set of plaques of S - A, and let fp S’ -~ IHI3
be defined as follows. For each plaque P of S - A, let Pi, ... , Pn be the
elements of P which separate Po from P, where the index i of Pi increases
as one goes from Po to P, and set = P if For each i, let g~
be the leaf of A in the boundary of Pi that is closest to and let g± be
the one that is closest to Pi+l. Then, fp coincides on P with

if P = Pn+i is in P, and with

if P is not in P.

In particular, f p is obtained from fo by bending it along those leaves
of A which are in the boundary of some plaque of P. As a consequence, fp
is a pleated surface with topological type S and with pleating locus A, al-
though without any equivariance property with respect to a homomorphism
~rl (S) --~ Isom+ (H3 ).
We can measure a bending angle ~3~ (P, Q) of fp between the plaques P

and Q. It is immediate from the definitions that P) = Qo(Po, P) +
a(Po, P) if P E P, and that Qp(Po P) = P) otherwise.

The general formula for Q) is a little more elaborate. Say that a
plaque R is between P and Q if either it separates the interior of P from
the interior of Q or it is equal to P or Q. Then, there is a unique plaque
RP0PQ which is between P and Q, is between P and Po and is between Q
and Po. From the additivity property of transverse cocycles, it is immediate
that y(P, Q) = y(Po, P) + y{Po, Q) - 2y(Po, for every transverse

cocycle, for A. As a consequence:

LEMMA 25.. If P, Q and RP0PQ are all in then



We now let the finite set P tend to the set of all plaques of S - A. Then,
by definition of fp f and f~ converges to f on each plaque P. In
addition, the estimates used to prove the convergence (namely arguments
analogous to those of Lemmas 14 and 16) show that the convergence from
P to f is uniform on every compact set of S. As a consequence, f has a
continuous extension / : ,S’ --~ 

Also, since f~ is obtained from fo by bending it along finitely many
leaves of A, the pull back metric defined on S by f p is equal to mo. It
follows that the limit f : : ,S --~ BP is a pleated surface, with pleating locus A,
and that its pull back metric is still mo (see [CEG, § 5.2] for more details).

Define p : --~ by the property that p(y) = ~ po {.y po ) po (y)
for every y E For every plaques P, Q, R, we saw that =

, and it immediately follows from definitions that 
for every y E As a consequence, p is. a group

homomorphism, and f y = for every y E z1 (,5‘) .
Therefore, t f p) defines a pleated surface f with topological type S.

By Lemma 22 and by the property that the convergence from f~ to f is
uniform on compact sets, the bending transverse cocycle of f = ~ f p)
is equal to {3o + a . This achieves our goal to find a pleated surface with
topological type S, with pull back metric mo, and with bending transverse
cocycle ~3 = ~30 + a. This proves:

THEOREM 26.2014 For every hyperbolic metric m E ?-(S’) and every

R/203C0Z-valued cocycle 03B2 for the geodesic lamination 03BB on the surface S,
there is a pleated surface f = ( f p) with topological type S with pull back
metric m, with pleating locus ~, and with bending cocycle ~3.

9. The pull back metric
and the bending cocycle determine the pleated surface

In this section, we show that two pleated surfaces which have the same
topological type, the same bending locus, the same pull back metric and
the same bending transverse cocycle are equal. Of course, we first have to
decide when we want to identify two pleated surfaces. The natural notion
is to say that two pleated surfaces f 1 = and /2 = ( f 2 , P2 ) with
the same topological type S are isomorphic if there is a homeomorphism
cp : 5‘ -~ S isotopic to the identity, a lift ~ : ,S‘ --~ S‘ of ~, and an isometry

such that f2 



The main step in the proof is the following, which essentially proves this
result when the pleated surfaces have bending transverse cocycle 0.

PROPOSITION 27.2014 Let f = (1, p) be a pleated surface whose bending
transverse cocycle is equal to 0. Then, f is a homeomorphism between S
and a totally geodesic plane in 

Proof. - Let P and Q be two plaques of ,S’ - ~. As usual, we consider
the set Apn of those leaves of A which separate the interiors of P and Q,
and the component E of S - Int(P U Q) that separates the interiors of P
and Q. As in section 7, there is a projection of 1; to a rectifiable arc y in
B~, == 2U oo, and this curve is the union of a set of Hausdorff dimension 0
and of circle arcs, each corresponding to a component ApQ. For each
such component W, let vw be the unit tangent vector of the corresponding
circle arc at its initial point, and let be the integral of the curvature of
this arc. Also, at the initial point of y, let vp be the outer unit tangent
vector to P. Then, by definition of the bending transverse cocycle, the angle
from vp to vw is equal to

where the sum is over all those components W’ ApQ which are
between P and W, and where Pw is the plaque of ~5’ - ~ that is between P
and Q and is contained in W.

From this formula, we conclude that y admits a unit tangent vector Vx
at each of its points x, and that this tangent vector depends continuously
on x. Indeed, the angle 8(v p , vx) is equal to the integral of the curvature of
y (defined almost everywhere on y) from the initial point of y to x. Since
the images under f of the components meet a given compact
subset of JHI3, the curvatures of the corresponding circle arcs is bounded. It

follows that 8(vp, vx) is a Lipschitz function of x. In other words, the arc
y is of class when parametrized by arc length.

For every component W Apo, l(W) is contained in a hyperbolic
plane in H3, and therefore determines a euclidean circle in H3~ = R2~~. If

y E there is a formula which gives the radius of the circle associated
to the component containing y, in terms of f ( y), of the projection x of l(y)
to y, and of the tangent vector . In particular, this radius is a uniformly
continuous function of y. Since this radius function is constant on each



wedge, we conclude that it is constant on E. If we arrange that one of

these circles is a line passing through oo, we conclude that each wedge is
contained in a hyperbolic plane of H3 passing through oo. If we go back

to the formula for 8( v p, vy~), we now see that this angle is constantly 0.
As a consequence, all components W Apn have their images 1(W)
contained in the same hyperbolic plane H C H3.

Therefore, the image of f is contained in the hyperbolic plane H.

- 

From the fact that the vectors vvr are constant, we conclude that

f : S --~ H is "monotonic" on A in the sense that, if the three leaves g,

h, k of A are such that h separates g from k, then 1( h) separates 1(g) from
f (l~). It follows that f is a homeomorphism onto its image. Since the pull
back metric on S is complete, this image has to be all of H. D

THEOREM 28. - Let f 1 = and f 2 = two pleated
surfaces which have the same topological type S, the same bending locus
A, the same pull back metric m E 7(S), and the same bending transverse
cocycle ~3 E x(~ Then, f1 and f2 are isomorphic.

Proo f - Let us apply the process of section 8, and bend f 1 and f 2
along A according to the transverse cocycle -13. This gives two new pleated
surfaces f 1 = ( f 1, Pi ) and f’2 = ( f 2 , P2 ) with pull back metric m, with
pleating locus A, and with bending transverse cocycle ~3 - 13 = 0. Note

that we can retrace our steps and that /i and f 2 are respectively obtained
by bending fl and n. along A according to the transverse cocycle ,Q and
following the same process of section 8. Therefore, it suffices to show that

f1 and f2 are isomorphic.
By Proposition 27, each 1i induces a homeomorphism between S and a

totally geodesic plane Hi in Composing hand 1i with an isometry of H3
if necessary, we can assume that Hi is the hyperbolic plane H2 C H3. Since
the action of on S‘ is totally discontinuous, so is the action of p2 (S))
on and it follows that the homomorphism pi : --~ Isom+ c

is discrete. Since f 1 and f 2 induce the same pull back metric m
on S’, this immediately implies that /~ and f 2 are isomorphic. 0

10. The shear-bend complex cocycle

Consider a pleated surface f = ( f p) with pleating locus a. Adding a
few leaves if necessary, we can assume that A is maximal.



We have associated to f a bending transverse cocycle ,Q f E 
But the pull back metric m of f also has a shearing transverse cocycle

E ll8). We can combine these two transverse cocycles into the
shear-bend cocycle r~ = ~m + E 

By Theorems 28 and 12, up to isomorphism, a pleated surface is

characterized by its shear-bend cocycle I‘ f . Conversely, let C(A) be the open
convex cone appearing in Corollary 21, namely the cone consisting of those
a G ?~(a;1~8) such that T{a, > 0 for every non-zero transverse measure ~c
for A. Then Theorems 20 and 26 say that, in ?~{~;11$) ~

R/203C0Z), a C/203C0iZ-valued cocycle is the shear-bend transverse cocycle
of some pleated surface if and only if it is in C(A) 0 

We will say that the geodesic lamination A is realized by the homomor-
phism p : -~ if there exists a pleated surface f = { f p)
whose pleating locus contains a. The following results are immediate ex-
tensions of classical properties of pleated surfaces in the case where p is
discrete.

LEMMA 29. - If the maximal geodesic lamination ~ is realized by the
homomorphism p : -~ the pleated surface f = ( f p) is

unique up to precomposition by the lift ~p : ,S‘ --~ S of a homeomorphism of
S that is isotopic to the identity.

Proof, - Immediate extension of ~Thl, ~ 8.10] or ~CEG, ~ 5.3~. ~

LEMMA 30. - Given a maximal geodesic lamination ~, the set of those
homomorphisms p --~ which realize A is open in the set

of all representations p : --~ Isom+(IHI3).

Proof. - This is an immediate extension of arguments in [Thi, § 9.2]. If
f = { f p) realizes a, it is possible to find a train track T carrying ..B and to
perturb f so that, if T is the preimage of T in S, feT) is a p-invariant train
track graph of small curvature in IHI3 . If p’ is sufficiently close to p, f(T)
can be deformed to a p’-invariant train track graph of small curvature. This
provides a deformation of the restriction of f to T to a p’-equivariant map g
sending each leaf of A to a curve of small curvature. In particular, for every
leaf h of A, there is a unique geodesic of H3 that stays at uniformly bounded
distance from g(h). As in [Thi, § 8.10] or [CEG, § 5.3], this enables us to
construct a pleated surface ( f ~, r~) realizing a. ~



By Lemma 29, there is a one-to-one correspondence between isomorphism
classes of pleated surfaces with pleating locus A and conjugacy classes of

homomorphisms p : : -~ realizing A. (By definition, two

such homomorphisms p and p’ are in the same conjugacy class if there exists

03C8 E such that 03C1’(03B3) = every y E 03C01 (S) .)

Let R(03BB) be the set of conjugacy classes of homomorphisms p : 
~

realizing A. By Lemma 30, is open in the space of

conjugacy classes of all homomorphisms -~ Because

Isom+(IHI3) can be identified to the complex Lie group PSL2(C), this space
of conjugacy classes of homomorphisms has a natural structure of complex

analytic manifold, except possibly near the reducible representations; see

for instance [CuS]. If A is a pleating locus for the pleated surface (1, p), the
homomorphism p cannot be reducible. Indeed, if P is a plaque of S - A,
its image f(P) hits the sphere at infinity ~ in 3 distinct points, and
it is possible to find 03B31, y2 , y3 E so that the 03B3iP are respectively
close to each of these 3 points; then, the elements cannot have a

common fixed point on and therefore generate an irreducible subgroup
of Therefore, the open subset is in the manifold part of

this representation space, and inherits a complex structure.

We want to show that the map /9 ~ is well behaved with respect

to the complex structures and C(A) C .

THEOREM 31. - The map ~(~) -~ C(A) C which asso-

ciates to each conjugacy class of homomorphism p : ~ 

realizing a the shear-bend transverse cocycle h~ E ® of

the corresponding pleated surface f = ( f p) with pleating locus a, is a bi-

holomorphic homeomorphism.

Proof . We will consider the inverse map C(a)®i?~(~; -~ 7Z(~l).
To show that this bijection is a biholomorphic homeomorphism, it suffices

to show that it is a holomorphic map.

Let C(A). It is the shearing transverse cocycle of some hyperbolic
metric mo E ~(,S). If a E is sufficiently small and if ~3 E

sections 5 and 8 provide an explicit pleated surface ( f , p)
whose shear-bend cocycle is o-o + a + i,(3. We want to show that the

homomorphism p depends holomorphically on F = a + i{3. For this, it

will suffice to show that, for every y E p(y) depends hololorphically
on r.



Given an oriented geodesic g of and given z = u + iu E 
let Uff = be the composition of the translation along g of amplitude
u E R and of the rotation around g of angle v E Note that the map

C/203C0iZ ~ Isom+(H3) = PSL2(C) defined by z is holomorphic.

Choose an isometric identification between (S, mo) and H2 C The

action of on ,S’ = H2 embeds into C 

Also, we can assume A to be mo-geodesic.
Fix a base plaque Po of S - A. For any other plaque P, let PP0P denote

as usual the set of those plaques of S - A which separate Po from P. Given
a finite subset P of PP0 p, write its elements as P1, ... , Pm so that the
index i of Pi increases as one progresses from Po to P, and set = P.

For every i, let gz and gt be the geodesics in the boundary of P2 that are
closest to and respectively. Similarly, if we need another finite
subset Q of PP0P, we will write -its elements as Q 1, ... Qn so that the
index j of Qj increases as one progresses from Po = Qo to P = Qn+l, and

/~" and will be the geodesics in the boundary of Q~ that are closest to
and respectively.

In section 5, to construct a hyperbolic metric m with shearing cocycle
cro -f- a, we considered a shear map  : - ~ H2 whose restriction to each
plaque P of S - A = ~II2 - ~ is defined by

We also had a homomorphism pm : : ~ Isom+(H2) defined by the
property that

for every, E 03C01(S). The map  and the homomorphism /? are connected by
the property that cpy = for every, E The metric m is the

pull back metric of an (arbitrary) homeomorphism 03C8 : ,S’ ~

admitting a lift 03C8 : S ~ H2 such that 03C803B3 = 03C1m(03B3)03C8 for every y E 03C01(S).
In addition, the m-geodesic am of S’ corresponding to A is such that, if 
is its preimage in ,5’, then ~(~r,z,) is exactly the complement of - ~) in



Considering the map  :  ~ H2 as arriving in H3 and the homomor-
phism pm : --~ as arriving in the pair (~, pm )
can be interpreted as a pleated surface with pull back metric m and with

bending cocycle 0. If we use the methods of section 8 to bend this pleated
surface according to the transverse cocycle {3, we obtain a pleated surface

(1, p) with bending cocycle ,~ where

for every y E In particular,

Note that, for any two geodesics g, h, and any two numbers a E Il~,

b E R/203C0Z, we have that = Also, since Q C P, each
’ 9 g

Qj is equal to some Pi, in which case h~ = g~ . Therefore, we can rewrite
the above limit as

where = p~. is equal to no Qj, where
~. ~~



with

if Pi = Q j with i ~ m, and where

with defined as above.

By the estimates of the proof of Lemma 14, the contribution to the

product ’ ’ ’ ~pm of the terms ~pi == with
9i 9i

Pi ~ ’P 2014 C is uniformly small if ~ is large enough. Therefore,

Fix Q and let P tend to . By definition of ~ ~h~ ) is equal
to the image of under the restriction ~ ~~3 , suitably extended to the
boundary of Qj . By definition of it follows that tends to h±j
as P tends to . Therefore, tends to

as P tends to if j  n . Similarly, tends to

It follows that

For each j, the map 0393 ~ U~0393(P0,Qj)h±j is holomorphic. It follows that the

map 0393 ~ p(y) is holomorphic for every y E 03C01 (S).
This completes the proof of Theorem 31. 0



The proof of Theorem 31 extends to show that the image of each plaque
of S - A under the pleated surface ( f p) depends holomorphically on
the shear-bend cocycle r E C/203C0iZ) of this pleated surface. More

precisely, fix a base plaque Po, and select a preferred vertex vo of Po.
Then, for every plaque P of S - A with a preferred vertex v, there is a
unique element p(P, v) E Isom+(IHI3) which sends f(Po) to f(P) and f (uo)
to f (v), respecting orientations. For instance, p(yPo, yvo) = when

1rl (S). This p(P, v) is a well-defined function of the shear-bend cocycle
r E up to conjugation in Isom+(IHI3), and is well-defined as
an element of if we normalize f so that it sends Po to a fixed
ideal triangle in H3. An automatic extension of the proof of Theorem 31
shows that p(P, v) is a holomorphic function of r. Applying Theorem 31,
we obtain the following corollary.

COROLLARY 32.2014 For every plaque P of  - a and every vertex v of P,
the element p(P, v) E defined above depends holomorphically on
the representation p E 7Z(a).

11. The rot at ion numb er of t he realization

of a transverse cocycle

In an oriented hyperbolic 3-manifold M, a closed geodesic a has a well
defined length and a well defined rotation number rot M (a) E 
corresponding to the rotation angle of the holonomy around y. There is

actually a natural way to lift to a number ~ R if we are

given a vector field v along a which is nowhere tangent to a.

We want to generalize this to the situation where a is a measured

lamination on a surface S which can be realized in M by a pleated surface
f : S --~ M. Since tangent vectors to the space of measured laminations
can be interpreted as geodesic laminations with transverse cocycles (see
~Bo3l ), we even want to generalize this to the case where a is a transverse
cocycle for the pleating locus A of a pleated surface f : S’ --~ M. Regarding
the length .~M(a) of the realization of a in M, it is natural to define it

as the length .~r,.,, (a) of a in S with respect to the pull back metric m of
the pleated surface f ; see [Thl] and [Bo2] for instance. In this section,
we show how to generalize the rotation number to this setting,
and prove an unexpected connection between this number, the bending
transverse cocycle, and Thurston’s symplectic form.



More generally, consider a pleated surface f = ( f p) in the sense of

section 7, with pleating locus the geodesic lamination A on ,S. And let a be
a transverse cocycle for A.

Choose a differentiable (say) vector field v defined on a neighborhood
of f(A) which is transverse to f(A) and is invariant under p. Although
this corresponds to the intuitive idea we should have of v, such a vector
field may not necessarily exist if p is not discrete. So, a more formal (and
mathematically correct) definition of v is the following: The group 
acts freely properly discontinuously on the product S x H3 by the covering
action on the S factor and by p on the H3 factor. Then v is a differentiable
map defined on a neighborhood of the graph of f over A and associates to
each (x, y) in this neighborhood a vector v(x, y) E TyH3 such that the maps
x ~ v(x, y) are locally constant. In addition, v (x, f (x)) is transverse to 1(g)
if x belongs to the leaf g of A, and v is invariant under the action of 
Such a v can easily be constructed by considering the quotient manifold
5 x (,5). When there is no ambiguity about the x-neighborhood we
are talking about, we will often write v(y) for v(x, y) since ~ ~ v(x, y) is

locally constant.

Let U be a neighborhood of A, small enough so that v is defined on the
graph of f over the preimage U C S of U. As in section 3, be

the orientation covering of A, and extend it to a covering U --~ U (assuming
that U avoids at least one point of each component of S - A).

If w is a vector tangent to A, let be the rotation speed of v around
f(A) in the direction of w. Namely, lift w to a vector ill tangent to A in S
and based Note that A is canonically oriented, so that the base
point of w determines an orientation of the leaf g of A containing ~. Choose
a parallel vector field p along g which is orthogonal to g, orient the normal
plane of g at x so that this orientation followed by the orientation of g gives
the orientation of H3, and let 03B8 be the angle from p to the projection of v
to this normal plane. Then, (03C9) is the directional derivative of 03B8 in the

direction of w.

This i5 defines a 1-form along the leaves of A, which is locally the
differential of the function 8. Therefore, we can extend it to a closed

Lipschitz differential 1-form  E 

Now, if a E is a transverse cocycle for ~, we define the rotation
number of a with respect to p and v to be the real number



where a E is the class associated to a in section 3. Note that

this number is also obtained by locally integrating Q along the leaves of ~,
and then integrating this with respect to the transverse Holder distribution
corresponding to a. Since the integral of a function with respect to a Holder
distribution depends only on the restriction of the function to support of
the distribution [Bo4, Support Lemma I], rotp,v( a) is independent of the
extension of  from  to !7. On the other hand, rot p,v(a) does depend on v.

Note that, when a is the Dirac transverse measure of weight a > 0

associated to a closed leaf of A and when p is discrete, is exactly
a times the rotation number of the corresponding closed geodesic of H3/03C1
with respect to the transverse vector field v. Before going any further, let
us show that rotP,v (a) also has a geometric significance in the general case.

PROPOSITION 33.2014 Consider a family of measured laminations at E
.~I~t,C(,5’) defined for every t in some set of real numbers admitting 0 as an
accumulation point, and assume that at converges to ao E as t

tends to 0. In addition assume that, as t tends to 0, the Hausdorff limit
A of the supports of ~he at exists and is a pleating locus for the pleated
surface f = ( f p). Choose a p-invariant vector field v transverse to 
as defined above. Then, rot03C1,03C5(03B10) is the limit of rotp,v( at) as t tends to

0. In addition, if t ~ at has a tangent vector ap at t = 0, interpreted
as a transverse cocycle for ~, then the map t f--~ rotp,v( at) has derivative
rot03C1,03C5(0) at t = 0.

Proof. - In ~Bo3, Theorem 29], we proved a very similar result (with
slightly higher generality) for the length function Q; ’2014~ . The crux of

the argument was that is obtained by locally integrating a certain
differential form along the leaves of A, and then integrating this with
respect to the transverse Holder distribution corresponding to a. Since

~ t2014~ rotp,v(a) is defined by a similar construction, the proof of [Bo3,
Theorem 29] carries over to prove Proposition 33. 0

In Proposition 33, the condition on the existence of a Hausdorff limit is
relatively mild, and is for instance always satisfied if t ~ at is a piecewise
linear path in see [Bo3, sect. 3], for instance.

Approximating a measured lamination Of by Dirac transverse measures
for simple closed geodesics, Proposition 33 shows that our definition of

is the only one that makes this function continuous and agrees
with the geometric definition for closed geodesics. Similarly, the rotation



number function on the space of transverse cocycle is the differential of the
same function on measured laminations.

A natural question is to ask how much the rotation angle rotp,v(a) de-
pends on the transverse vector field v. Let us take another such p-invariant
vector field v’ transverse to f(A), defined as above on a neighborhood of
the graph of f in S x There is an obstruction o(v, v’) to deform v to v’
through a path of such vector fields, defined as follows.

Let !7 be a small neighborhood of A in S. Pulling back the tangent bundle
of IHI3 under 1, , we get by invariance of f under p a 3-dimensional vector
bundle E --~ U. The p-invariant vector fields v and v’ define sections of E.
Extend the orientation covering ~ -1- ..B to a covering U --~ U, and lift E to a
bundle E --~ !7. . Again, v and v’ provide two sections of this bundle, which
we will still denote by v and v’. . For every x E ~ and ~ E S’ lifting x, consider
the unit tangent vector A(x) of f(A) at f (~), for the local orientation of ~
specified by £; this defines a section  of Ê above A. Extend A to a section
over all of U. If U is sufficiently small, A is everywhere transverse to the
sections v and v’.

In each fiber of E, orient the subspace orthogonal to A so that this
orientation followed by the orientation of A gives the orientation coming
from the orientation of IHI3. Let : 7 2014~ be the angle from
the projection of v to the projection of v’ in this orthogonal subspace.
Then, consider the cohomology class o(v, v’) E H1 (U; defined by the
differential .

The following is immediate from definitions.

PROPOSITION 34. - With the above data,

By taking neighborhoods U of A which are smaller and smaller, there
is a way to make this obstruction o(v, v~) independent of the choices made
by interpreting it as an element of the Cech cohomology group 
but we will not need this.

We now relate the rotation number rotp,v(a) to the bending cocycle of a
pleated surface f = ( f p) realizing ~. Increasing ~l to the bending locus of
f , and then increasing it more if necessary, we can assume that the geodesic
lamination A is maximal without loss of generality. We will require this
condition to be satisfied for the rest of this section.



Consider p’ close to p and connected to p by a small homotopy. By
the proof of Lemma 30, the pleated surface f’ = ( f’, p’) realizing a
depends continuously on p’ uniformly on compact subsets, provided it is

suitably normalized; this can also be seen using section 10 and the explicit
constructions of sections 5 and 8. In particular, using the equivariance
property under the action is still transverse to f’(A) if p’ is close
enough to p. In this case, the rotation number is still defined.

Also, if v’ is another vector field transverse to f(A) and equivariant with
respect to p, the obstruction o(v, v’) E H1(U; 203C0Z) is a continuous function
of p, and is therefore locally constant. By Proposition 34, it follows that

the difference rotp,v(a) does not depend on the vector field v if
p’ is sufficiently close to p.

Let ~3, ~3’ E be the bending transverse cocycles of the
pleated surfaces ,f , f’, respectively. The short homotopy from p to p’
gives a path from ~3 to ~’, and provides a way to lift the difference

/3’ - /3 E to an R-valued cocycle 039403B2 E 
We want to relate the change in rotation angle to this cocycle 0,~.

THEOREM 35.2014 If p’ is sufficiently close to p, then

We will base the proof of Theorem 35 on the following formula for the
bending cocycle ~3.

Let k be an oriented arc transverse to A in U, which we will identify to
one of its lifts in S. For each component d of k - A, let xd and xd be the
positive and negative end points of d, respectively. In IHI3 , we now have two
vectors at f (xd ). One is v, the other one is the normal n to the image under
f of the plaque P of S - A containing d, oriented so that the orientation
of j( P) (coming from the orientation of S) followed by the orientation of
n gives the orientation of H3. If xd is not one of the end points of k, it

belongs to a leaf g of A, which we orient from right to left with respect to 1~ .

Finally, we orient the normal plane of 1(g) at f (xd ) so that its orientation
followed by the orientation of 1(g) gives the orientation of IHI3 , and we let

be the angle from n to the projection of v to this normal plane.
This angle E is clearly independent of the choice of the lift
of k to 5, by p-equivariance of v and f, . However, there is a definite abuse
of notation since depends also on d; in particular, for two adjacent
components d, d’, we can have even if x~ = .



LEMMA 36. - With the above data,

where the sum is over all those components d which are different from
the components d+ d_ respectively containing the positive and negative end
points of k.

Proof. - First, we have to make sense of this sum since the an,v(x±d)
are defined only modulo However, if d is small enough, the two angles
an,v t~~ ) and an,v ~xd ) are close to each other, and their difference can be
interpreted as a real number bounded by a constant times the length of
d, since v is differentiable and f is isometric. Therefore, all but finitely
many terms in the sum can be interpreted as real numbers, and their sum
is convergent.

The formula is straightforward when k n A is finite. The general case
follows from this one by locally approximating f by a pleated surface
with finite pleating locus as in section 7, using Lemma 22 and the above
convergence estimate. 0

Proof of Theorem 35 in a special case. - We first restrict attention to
the case where the pleated surfaces f = ( f p) and f = ( f ‘, p‘) with pleating
locus A have the same pull back metric m. We could do the general case
right away by the same methods, but it will be technically easier to do this
case first, and then to deduce the general case from this one by an indirect
argument.

The proof follows the line of the proof of Theorem 9. To alleviate the
exposition we decide that, if a certain symbol represents a mathematical
object associated to p, the same symbol with a prime ‘ represents the
corresponding object associated to p’.

Let k be an oriented arc in t~ which is transverse to a and such that
the orientation of  always crosses k from right to left. Identifying k to its
projection to U, Lemma 36 gives that



The short homotopy connecting p to p’ provides a path from each

to the corresponding an ~ ~, (~~ d ) . In particular, although an, v (~d )
and are only defined modulo this homotopy enables us to define

their difference as a real number = - E 

Therefore,

Without loss of generality, we can assume that each component W of TI-a is

an annulus, bounded on one side by 3 
leaves of A. The preimage W of W in

Û then is an annulus bounded on one side by 6 leaves of  with alternating
orientations. The periods of cv on W can be computed by integrating w

along the union of these 6 geodesics, defined using small jumps and a

limiting process as in the proof of Lemma 10. To integrate w along this

cycle of 6 geodesics, we need a parallel vector field along the corresponding
leaves of f ( ~ ) . A natural choice is to use the normal vector n of a plaque
corresponding to W. . This shows that 03C9 coincides along this cycle with

the differential dan,v where, if x belongs to one of the leaves g of  in the

boundary of W, , an,v (x) is the angle from n to the normal part of v with

respect to g, measured using the orientation of g as above.

For each such x, the angle is only defined modulo However,

the short homotopy connecting p to p’ provides a path from anw (x) to
and therefore defines a real number = E

R. In particular, W and c~~ have the same periods, and there is a function f
on W such that Ocv = w~ - w = d f. . In addition, we can choose f so that its

continuous extension coincides with on the boundary leaves of W.

Now,

where :r~ and xk are the positive and negative end points of k , respectively.



Note that we would get the opposite sign if the orientation of A crossed ~
from left tonight. We can combine the two cases by considering the current

~. Then,

and, by additivity, the formula holds for every arc k transverse to A, without
condition on the crossing orientation.

By cancellation of the boundary terms, we conclude that

for every c ~ 77i(~;M). In particular,

This concludes the proof of Theorem 35 in the case where the pleated
surfaces f = ( f p) and f = ( f ~, p’) have the same pull back metric. 0

Proof of Theorem ~5 in the general case . - By Proposition 1, there is a
path t E such that 03B20 = ,Q and 03B21 E {0, 03C0}). Let

pt correspond to the bending cocycle ~3t and to the same pull back metric
as p, and let pi correspond to the bending cocycle ~3t and to the same pull
back metric as p~. Note that pi is uniformly close to pt if p’ is close to p.

Cutting the interval [0,1] into small pieces and using the special case
already proved,

for any vector field w for which the formula makes sense. Since ~31 takes
only the values 0 and ~r, the pleated surfaces corresponding to pi and pi
have their images contained in a hyperbolic plane in IHI3 . If we take w to be

the normal vector field to this plane, we have rot03C1’1,03C9(03B1) = = 0,
which completes the proof. D 



Theorem 35 provides a way to get rid of the choice of a vector field v, by
considering the differential of the function /? ’2014~ Indeed, if t ~ pt is
a path with tangent vector jo at t = 0, Theorem 35 shows that the function
t ~ rot03C1t,v (a) has derivative T(a-, ,C3o), where 03B20 is the tangent vector to the
corresponding path of bending cocycles. Note that his quantity does not
depend on the choice of v.

This enables us to associate to each transverse cocycle a for A a rota-
tion form rota on the manifold of those representations p : 03C01 (S) ~
Isom+(IHI3) realizing A. This is the closed differential 1-form which asso-

ciates to each tangent vector p to ~Z(a) ^-_’ T(S) x the number

where / is the tangent vector to the space of bending cocycles corresponding
top.

We can combine this with the analysis of section 3, and complexify
the situation. Define the complex length of a with respect to p and v

as the complex number = .~p(a) + i rotp,v(a). By Proposition 34
and/or Theorem 35, the differential of this function is independent of v, and
defines a closed differential 1-form La on 7Z(~) ’’V C(A) C C

?-C(a; By Theorems 9 and 35, this differential is connected to the
Thurston form by the following formula: If p is a tangent vector and if

I‘ E C) is the corresponding tangent vector to the space of shear bend
cocycles, then

In particular, Lex is a closed holomorphic I-form on ~Z(a), called the complex
l e ngth form associated to a. .

A particular case of interest is when the homomorphism p is quasi-
Fuchsian or, more generally, when it is in the closure of the space of quasi-
Fuchsian homomorphisms. Then, there is a preferred homotopy class of
paths in R(03BB) connecting p to Fuchsian representations. Integrating the 1-
form Lex along such a path, we get a well-defined complex length Lp (a) E C
associated to a. It is easy to check that this complex length function
coincides with the one used in [McM] and [KeS], for instance.



12. The non-orientable and bounded cases

So far, we have assumed that the surface S was oriented and without
boundary. Also, for pleated surfaces (1, p), we have restricted attention to
the case where the homomorphism p arrives in the group of orientation-
preserving isometries of IHI3. In this section, we briefly indicate how to lift
these restrictions.

12.1 Non-orientable hyperbolic surfaces

First consider the case where S is a connected compact surface without

boundary, possibly non-orientable. Assume the Euler characteristic of S

negative, and let A be a maximal geodesic lamination of S.

In the definition of the shearing cocycle of a hyperbolic metric m in
the orientable case, we used the orientation of S on the plaque P of S - A
to determine the sign of um(P, Q). It therefore makes sense to consider the
orientation covering ~5’ of S. Since 5 is orientable, S consists of two copies of
S but its fundamental feature is that it carries a canonical orientation. The

action of on ,S’ canonically lifts to S, in such a way that y E 1rl (S)
exchanges the two components of S if an only if , is orientation reversing.

Let --~ ~ /2 == { -1 , -~-1 ~ be the orientation homomorphism.
Let A be the preimage of A in ,5’. An R-valued ~S-twisted transverse cocycle
for A is a map a associating a number a(P, Q) ~ R to each pair of plaques
P, Q of  -  which are contained in the same component of 5’, and such
that a satisfies the following properties:

(i) a is symmetric, namely a(Q,P) = a(P, Q) for every P, Q;

(ii) a is additive, namely a(P, Q) = a(P, R) + a(R, Q) whenever the
plaque R separates P from Q;

(iii) if 03C9 is the canonical involution of S exchanging its two compo-
nents and if y e a{cvP, wQ) = -a(P,Q) and =

Q) for every plaques P, Q.

This definition of ~,~-twisted transverse cocycles can also be translated
in terms of arcs transverse to A in k and in terms of the coefficient bundle

5’ x x Z/2), where acts on 5’ by the canonical action and on



II8 by ~s and where Z/2 acts on S by the identity and on R by multiplication

The definition is specially tailored so that section 2 associates to a

hyperbolic metric m on S an R-valued es-twisted transverse cocycle ~m
for A, called the shearing cocycle of m.

Let be the space of R-valued ~S-twisted transverse cocycles
for A. By the methods of [Bo4, sect. 4] and [PeH, § 2.1], this is a vector
space of dimension 3Ix(S)I. (For a general geodesic lamination A, the
dimension is equal to the sum of ( and of the number of
those components of A which are transversely orientable.) As in section 3,
there is a pairing r : ~(a; II$) x ’~-C~s(a; II~) -~ I~8 such that, for every Holder
distribution a E and every hyperbolic metric m, the length (a)
is equal to T(cx, ~~).

Then, the map m ~ Um defines a homeomorphism from T(S) to an open
subset of II8). The image of this map is a cone bounded by finitely
many faces, and consists of all those a E (a; such that a) > 0
for every non-trivial transverse measure ~c for A. The proofs are identical to
those of sections 4-6.

For a pleated surface f = ( f p) with pleating locus ~, where p is a

homomorphism --~ the bending locus E is

defined as in section 7 and the results of sections 7-11 immediately extend
to this context.

21.2 Hyperbolic surfaces with totally geodesic boundary

If we want to allow the (compact connected) surface S to have non-empty
boundary, there are at least two natural extensions of the space 7(S). A first
possibility is to consider on S hyperbolic metrics for which the boundary 
is totally geodesic (assuming the Euler characteristic x( S) to be negative, to
guarantee the existence of such metrics). Let be the space of isotopy
classes of such metrics. This space is homeomorphic to an open ball of
dimension 

If S is endowed with a hyperbolic metric with totally geodesic boundary,
a maximal geodesic lamination A must contain all of the boundary The

results of sections 2-6 automatically extend to this situation: There is a

well-defined shearing cocycle E (a; II8) associated to each hyperbolic
metric m with totally geodesic boundary on S. The map m ~ defines

a homeomorphism from to its image in ?-~Es(a; M). The image of this



map can be expressed in terms of the pairing T : x (A; II8) --i R,
and consists of all those a E such that a) > 0 for every
non-trivial transverse measure  for A. In particular, this image is an open
cone bounded by finitely many faces.

For a pleated cocycle f = ( f p) with pleating locus a, where p is a

homomorphism --~ ), the bending locus ,Q f E (~; II8) is
defined as in section 7 and the results of sections 7-11 immediately extend
to this context. .

12.3 Hyperbolic surfaces with cusps

Another option for a surface S with boundary is to consider finite area
complete hyperbolic metrics on the interior Int(S) of S. The ends of Int(S)
then correspond to cusps. Let denote the space of isotopy classes of
such metrics.

In this case, a geodesic lamination A is contained in Int(S). It can be

shown that it has only finitely many leaves going to the cusps. If, in addition,
A is maximal, we associate to each metric m E Tc(S) a shearing cocycle

E in the previous cases. However, the completeness of the
metric imposes a new condition. Namely, for each cusp, the integral of 
over a curve transverse to A and going once around the cusp is equal to 0.
Let ?~~(~; (resp. (a; lI8)) denote the set of those transverse cocycles
(resp. é s-twisted transverse cocycles) which satisfy this cusp condition.

A transverse cocycle a E ?~C~(~; has a well defined m-length .~m (a) E
R, where the cusp condition is necessary for this length to be finite. This
length can be expressed in terms of the Thurston pairing r : : ~L~{~; x

~-C~s{~; I~) --~ R by the property that = T{a, for every a E

~-l~(~; II8). This provides a parametrization of Tc(S) by the convex cone in
(A;R) consisting of those a such that a) > 0 for every non-trivial

compactly supported transverse measure p for A.

For a pleated cocycle f = { f p) with pleating locus a, where p is a

homomorphism --~ the bending locus ~3 f E is

defined as in section 7. It actually turns out that ~3 f is in The

results of sections 7-11 immediately extend to this context, provided we
restrict attention to a E ?~C~{~; to define rotation angles in section 11.



12.4 Non-orientable hyperbolic 3-manifolds

We can also consider pleated surfaces in non-orientable hyperbolic 3-
manifolds or, more generally, pleated surfaces f = (,f p) where the ho-
momorphism can arrive in the group Isom(H3) of all isometries of JHI3
(orientation-preserving or not). Let ~03C1 : Z/2 be the composi-
tion of p with the orientation homomorphism Isom(IHI3) --~ ~/2. Then, the
bending cocycle (3 f is twisted by the product . Otherwise, the above
results immediately extend to this case (except that the rotation angles of
section 11 have to be defined in a twisted coefficient bundle).
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