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Pointwise estimates for the Poisson kernel
on NA groups by the Ancona method(*)

EWA DAMEK(1)

Annales de la Faculte des Sciences de Toulouse Vol. V, n° 3, 1996

RESUME. - Soit S un produit semi-direct d’un groupe homogène N et
du groupe A = N etant distingue et A operant sur N par dilatations.
On décri t la compactification de Martin pour une classe d’operateurs sous-
elliptiques et on donne des estimations superieures et inferieures pour le
noyau de Poisson sur N.

ABSTRACT. - Let S be a semi-direct product of a homogeneous group
N and the group A = acting on N by dilations. We describe the
Martin compactification for a class of subelliptic operators on S and give
sharp pointwise estimates for the corresponding Poisson kernel on N.

1. Introduction

In this paper we investigate positive harmonic functions with respect to
left-invariant operators on a, class of solvable Lie groups S. The group S is
a semi-direct product of a homogeneous group N and the group A = II8+,
acting on N by dilations {03B4a}a>0. We consider a left-invariant second order

operator
, (1.1)

where Xi, ..., Xm generate the Lie algebra s of S. The Poisson boundary
for bounded L-harmonic functions has been fully described in [D], 
(also in [R] for bounded functions F satisfying F * J-l = F for a probability
measure ~c). Depending on Xo, it is trivial or it is the group N considered
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as an 5’-space A’ = together with a probability measure v - the Poisson
kernel. ,S‘ acts on N by sx = where s = ya. v is, in fact, a bounded,
smooth function such that the formula

(dx being the Haar measure on N), gives one-one correspondence between
bounded L-harmonic functions F on ,S’ and ~°° functions f on TV. Moreover
v has a positive moment and is dominated at infinity by for some

positive 7 ([D], [DH 1J ) .
In the present paper we go a step further and we give sharp pointwise

estimates for the Poisson kernel v . Our work is motivated on one hand

by the results concerning Laplace-Beltrami operator on symmetric spaces
([Dy], [K], [Gl]) and more generally on harmonic spaces [DR], and on the
other, by the general approach to the Martin compactification for a class of

operators on manifolds with negative curvature due to A. Ancona. By the
result of E. Heintze [He] there is always a left-invariant Riemannian metric
on 5 with the sectional curvature !{ satisfying -a2  ~i  -b2 for some a,
b > 0. Therefore by [Al] for an appropriate class of second order differential
operators, the Martin boundary 8M for the pair (S, L) is homeomorphic to
the sphere at infinity S~ of S’. This class incudes operators (1.1), whenever

0, where = a is the canonical homomorphism S onto
A = This is not made explicit in [Al], but easily derivable from the
set of "axioms" formulated there.

What is of interest here is not so much the abstract description of ~1V~ as

,S’~ , but rather as the one point compactification of N and an identification
of minimal positive functions for L in terms of v. This is obtained by a
careful examination of Ancona’s boundary Harnack inequalities. For that

purpose we have to understand them not only in terms of geodesics for a

negative curvature metric but in a way which make explicit their connection
with N and v. . This gives quite smoothly estimates for v, identification of
S~ as the one point compactification of N and minimal positive harmonic
functions as translations and dilations of v understood in a appropriate way.
More precisely : the Martin boundary coincides with the set of minimal

positive functions, which consists of the function za - , where a is a

real number depending on L and of the functions Py(s) = P(y-1 s), yEN,
where P(xa) = ~ E 11T, a E A and a-~ is the determinant
of the action x 1-+ a-1 .

In the proof we follow closely the ‘‘~-chain" method of Ancona [Al], but
rather its abstract axiomatic formulation than the negative curvature one,



and we do not define +-chains in terms of geodesic cones. In fact one can

make use of any left-invariant Riemannian metric (not necessarily imposing
negative sectional curvature) because all they are equivalent at oo. This

emphasises the role of the action of A on N and this action not curvature
is important. This phenomenon is not surprising at all, because on one
hand the choice of the group A is not canonical (we can always choose the
algebra a of A being orthogonal to n - the algebra of N) and on the other,
modifying the underlying scalar product by a constant on a we obtain the
negative curvature object [He].

The Ancona’s approach was presented by him during wonderful Tempus
lectures held in Wroclaw in May 1993. The author is grateful to A. Ancona
for detailed discussion of his method and, in particular, for showing how it
works in the case of an operator

on x R+ with the metric ds2 = dzf, which is a model

situation for us. The operators (1.3) however do not cover our situation
when N is abelian because of some further assumptions made in [Al] and
also pontwise estimates for minimal harmonic functions are not derived
there.

We also would like to express our gratitude to Andrzej Hulanicki, Martine
Babillot, Yves Guivarc’h and John Taylor.

2. N.4 groups and invariant operators

Let S = N A be a semi-direct product of a nilpotent group N and A = IR~+

acting on N by dilations, i.e. there is a basis Yi, ..., Yn of the Lie algebra n
of N and positive numbers 1 = d2  ...  dn such that the mappings

are automorphisms of N. Therefore the group structure in S is given by



N together with the called a homogeneous group. Q =
... + d n is the homogeneous dimension of N . . A homogeneous norm on

l~r is a function

which is Coo outside x = e, satisfies = alxl and x ~ = 0 if and only if
x = e. Let br(x) be a ball with respect to ] . i.e.:

We will also use a left-invariant Riemannian distance r on S denoting balls
with respect to r by Br(s), i.e.:

where T(s) = T(s, e). If W is a subset of S then by definition

On the algebra level (2.2) becomes

for a basis H of the Lie algebra a of A. The choice of A is by no means

unique. For any linear complement a’ = lin(H) of n in the Lie algebra s of
S there is a basis Y/, ..., ~’~ of n such that [DH2] :

after an appropriate normalization of H. Therefore, S is a semi-direct

product

of N and A’ = exp a’ with = given by {2.1) . Any decomposition
5 of type (2.2) will be called admissible.

We consider a left-invariant second order operator



where Xi, ... , Xm generate the Lie algebra s of S. A simple calculation
[DH2] shows that there is an admissible decomposition of S such that

where x E , a E A, a, aj, , 03B1ij are real numbers and 0. The
fact that the operator L can be written in the form (2.3) will be used in
Lemma 4.1.

For a left-invariant vector field X on S and a distribution F on S, X F
is defined by

Therefore,

is the adjoint operator to L i.e.:

A function F 6 is identified with the distribution F dm R, I.e. for
~ Cc(S),

r

where dm R is a right Haar measure on S.
Let Pt = pt dmR be the convolution semi-group of measures with the

infinitesimal generator Land

Since the right random walk with the law ~’1 is transient [C],

is a Radon measure. Moreover, G does not have an atom at e. The density
of G with respect to the right Haar measure will be denoted also by G, i.e.:



G is the fundamental solution of L i.e.:

as distributions. By the hypoellipticity of L, G is a smooth function on

5’B{e}. Finally 

is the Green function for L on S with respect to the right Haar measure.
Since pt is the semi-group generated by L*,

where A = dm R /dmL is the modular function and

In this convention G * ( ~, y) ~ G ( y, x). . For every real {3 let

Then

Whenever 03BB ~ a 2 /4 we can find 03B2 such that ,Q2 + 03B103B2 + a = 0 and so there
is a Green function

for L + aI, a  a~/4. Indeed, G~’(~, y) = y), where G’ is the Green
function for L’. If a ~ 0 this means that there is a positive such A i.e. the
operator L is coercive in the Ancona sense [AI].

Existence of a Green function for L + AI for some positive A is one of the
main properties required by the method used here. Therefore we restrict

our attention to the case 0. Moreover, by (2.9),

which proves that in order to describe the Martin boundary for L we can
assume a  0. In view of (2.9), having the Martin compactification in this
case, one gets it immediately for the operators L + cI with 0  c~2 /4 - c.



Let L be as in (2.3) with a  0. Then, the bounded L-harmonic functions
([D],[R]) are given by the formula

where sx = if s = ya, , a E A and v is a positive, smooth,
bounded function integrable with respect to the Haar measure dx on N,
called the Poisson kernel is a weak* limit of if t --~ oo,
where ,S’ --~ N is defined by = y. We have

Therefore, for every u E N the function

is L-harmonic. Moreover, the fact that ~ a-~ v ~a-1 ~~)) ~ a~o is an approxi-
mate identity in when a --~ 0 implies the following result.

PROPOSITION 2.1.2014 For every u E l1r’, 

is a minimal function. If u1 ~ u2 then Pul and Pu2 are not proportional.

Proof. - In view of (2.11) it is enough to show that Pe is minimal. Let R
be a positive L-harmonic function satisfying R  P. For every f E C°°(N),
the function

p

is harmonic and if f = ~ * ~, ~, ~ E then



By there is h E such that

and h ~ 0 if 03C8 ~ 0. Therefore,

Since E Cb(N) and Pe( - a) = )) is an approximate identity

Let a = liminfa~0N R(xa) dx. In view of (2.12) and (2.14), 03BB > 0. If

an - 0 is a sequence such that

then

Indeed, let U be an arbitrary neighbourhood of e in N, then

and

Hence 03BB0f = 03C6 * f and by (2.12), (2.13), R = aPe.

Finaly, the fact that for every neighbourhood U of e

implies that Pul and Pu2 are not proportional for u2.



3. Pot ent ial t heory for L

The shief of L-harmonic functions satisfies the axioms of Brelot ~B~ . In
the sequel we shall use the standard terminology of Brelot’s potential theory.
The basic properties of L proved in [B] are the following ones.

PROPERTY 3.1. - ~Maximum principle ) If LF > 0 on a domain S~, then
F can not attain. its maximum in SZ unless F is constant.

PROPERTY 3.2. - The family of open sets which are Dirichlet regular is
a basis of the topology of ,S.

PROPERTY 3.3. - (Harnack inequality) For an open set S~, a compact
set K C S2, a point x0 E SZ and a left-invariant differential operator X there
is a constant C such that

for every and every nonnegative function F satisfying LF = 0 in xS2.

COROLLARY 3.4. For every r > 0, there is a constant C(r) such that
if F > 0, LF = 0 in then

whenever  r/2.

In view of (2.9) and Theorem 5.2 in [B] we can conclude that there is a
basis R of open subsets of S which are Dirichlet regular with respect to all
the operators a  cx2/4 and if 03BB > 0 we have the following inequality
between harmonic measures corresponding to L + AI and L

From now on we assume that a > 0.

Let Q be an open subset of S. We are going to recall some properties
of L + AI-superharmonic functions on f2, which are required by Ancona’s
method. They are consequences of § 3.1-3.3. For details we refer the reader
to Brelot’s potential theory as presented in [A2], ~B l~ , ~B2~ , ~H~ , and [HH].



Let be the set of positive functions superharmonic in H with

respect to L + ~~, ~ > 0 nonequal identically to oo. If f E then

f is locally integrable and (L + 0 as distributions [HH]. Conversely
if (L + 0 then modyfing f possibly on a set of measure zero we
obtain a function belonging to S~ + (SZ). L-superharmonic functions satisfy
the following minimum principle.

THEOREM 3.5.2014 Let D C S2 be a closed set, f E S+(S2), p be an

L-potential on S~, harmonic in S~ ~ D, continuous in S2 ~ D and such that
f > p on ~D. Then f > p in Q B D.

For every open subset S2 there is a Green function G~ (~, y) with respect
to Q given by

where ~(’, y) is the greatest harmonic minorant of G~(’, y) fn. . G~(’, y)
is the only L-potential on H such that

as distributions.

Let  be a positive measure on H. Then the Green potential of  is

defined by 
-

where A = dmR/dmL. inside the above formula matches with (2.4)
and it is quite convenient here. Of course, putting or not does not

change anything essentially. For a nonnegative function f on Q we write
instead of dmR), which gives

If is nonequal to 0o identically, then in view of (3.1), is the only
potential satisfying

as distributions.

Moreover, for every f E S+(S2), f > 0, oo idendically, there is a

nonnegative Radon .measure  and a harmonic function h f such that



We have also the following resolvent equation on Q:

where

is the G~-potential of G~ { ~ , z).
For the Ancona method some uniform estimates for the Green function

on all balls of a given radius are crucial. In our case it is more appropriate
to use, instead of balls, the family of neighbourhoods where V is
a given set in R. Assume that Br( e) C V. Since L is left-invariant

and so, there is a constant c = c(L, r, ~) such that for every x, every

4. Submultiplicative property of the Green function

In this section we are going to formulate the main estimate of the Green
function due to A. Ancona [Al], which is true also in the case of sub elliptic
operators provided we can solve the Dirichlet problem for Land L + ~1~ in
arbitrary large sets.

LEMMA 4.1.2014 For every R > 0 there is an open set SZ E 7Z such that

BR(e) C f2.

Proof. - Let L be as in (2.3). Changing coordinates xa = x et we obtain
the operator



defined on N x R with being positive semidefinite. We put

The normal direction to V, in the sense of Bony, is given by

Writing the second order part of L in partial derivatives we obtain

with t)~ being positive semidefinite. Therefore, the corresponding
quadratic form

is positive definite on normal vectors (4.1), which proves that the Dirichlet
problem is solvable in f2 [B, Theorem 5.2].
Now we are going to write down a few inequalities between Green

functions and harmonic measures for L and L + AI, which lead to the
main estimate (Theorem 4.6). For the rest of this section we fix A > 0

such that G~ exists. Let V E R be a neighbourhood of e such that

Br (e) ~ V ~ B1 (e). In view of Property 3.3 and (3.2); we have the following
lemma.

LEMMA 4.2 [Al].2014 Let Q E R be such that xV C f2 and y),
y) the corresponding Green functions for L ans L + aI respectively.

There is 0  b = b(~) such that for every x E ,S’ and every S2,

whenever y E ~ ~ 



An inequality between Green functions Go and G~ implies the same
inequality between harmonic measures, namely the following lemma.

LEMMA 4.3. - Let H E ~Z and

for y outside a. given neighbourhood ~J of ~, U C S2. Then

where are harmonic measures on ~03A9 corresponding to L + aI and L
respectively.

Proof. - Let § E C(~03A9) and 03A6 be the solution of the Dirichlet problem
for L in S2 with the boundary value ~. Assume that § > 0. Then + > 0.
Let 03C8 E n > 0, 03C8 = 0 in U, 03C8 = 1 on ~03A9 and 03A6’ = 

Then

is the solution of the Dirichlet problem for L + AI in S2 with the boundary
value ~. Since ~‘ > 0 and ~‘(~) = 0,

But

which gives (4.2).

COROLLARY 4.4. - Let x and Q be as in Lemma ,~. ~. Then

Lemma 4.2 and Corollary 4.4 imply, as in [Al], the following properties.



LEMMA 4.5 ~Al~. - There are r~, C > 0 such that whenever (x) C S~
then

for y E 0 B R). In particular for every ~, y

COROLLARY 4.6. - Let x and S2 be as in Lemma 4.5. Then

[0, oo) ~--~ ~ [co , oo), ~(0) = Co be a positive, increasing function
such that limt-o = ~. By a 03A6-chain we mean a sequence of open
sets Vi D V2 D ... ~ Vm together with a sequence of points xi E ~Vi,

i = 1, ..., m, such that for every i and every z E 

and

Notice that together with ..., is also a

~-chain. A sequence of points ... , is called a ~-chain if there exist

open subsets ..., ~~ with zj E 8Vi and the condition above.

Now we are ready to formulate the main estimate of the Green function
on ~-chains, which in view of the above lemmas and corollaries, follows as
in [Al].

THEOREM 4.7. - Let x1, .... be a ~-chain. Then there is a constant

depending only on L, ~ and a ,fixed above, such that for every 1  k  m

In view of {2.8), Theorem 4.7 is true for G* with the same constant.



5. The Martin compactification
and the asymptotics for the Poisson kernel

We fix a homogeneous norm [ . [ in N and let Ii be a ball in [ . [, i.e.

~i = br (e) for some r > 0. ~’e consider

and, for q E A,

We have the following lemma.

LEMMA 5.1. There is a linear function 03A6 = 03A6(K, q) : [0,
(co, oo), 03A6(0) = c0 > 0, such that

i. e. e, q together with Th , qTK is a 03A6-chain.

Proof. - To prove Lemma 5 .1 one can proceed as in Lemma 25].
But here, since T is a subadditive function on S, the situation is simpler.
There is a constant c such that [G2]

Now (5.1) follows easily.
Since left translations are isometries, for every s E S, q E A,

is a ~-chain with the above ~ (independent of sand n). For s = ~a E S we
write a(s) = a.

LEMMA 5.2. - Let q  l. Every y E ~Th and every z E can be

joined by a ~-chain passing trough y, q2 and z for some ~, which depends
only on h and q.



Proof. - We proceed as in Lemma (26)]. Let k be the largest
integer such that

and £ the largest integer such that

In view of Lemma 5.1, for U sufficiently small,

is = q)-chain contained in S B qT. Analogously, for U sufficiently
small

is a ~ _ q)-chain contained in q3TK. . Now

together with the distinguished points is a ~-chain for an appropriate
~ _ U, q).
Now using the left translations we obtain the following corollary.

COROLLARY 5.3. - There is ~ = ~(~i, q) such that for every s, every
z E ~sTK and every y E can be joined by a 03A6-chain passing through
z, sq2 and y.

Given s = ~b E S, .~i = and q  1 we are going to consider the
following family of neighbourhoods of ~:

Every z E and every y E can be joined by a ~-chain
going through un = where ~ is the function in Corollary 5.3, i.e. is

independent of sand n. The same property is satisfied by the family

and the points u~, = = 0, 1, ..., which is a basis of neighbour-
hoods of the point oo in the one point compactification of N x [0 , oo ) . In
what follows will denote any of the families



(5.2) or (5.3). ~-chains (5.2) and (5.3) describe all possible limits of the
Martin kernel, i.e. we have the following theorem, which in our context can
be proved as it is proved in [Al].

THEOREM 5.4 [Al, Theorem 7]. - There is a minimal point ~ on the
L-Martin boundary 85 of ,S such that a sequence C S converges to (
if and only if for each n > 1, s~ E Vn for j large enough.

Theorem 5.4 implies, in fact, that the Martin compactification of (S’, L)
is the one point compactification of AT x [0, oo). The L-Martin boundary
is N U { 00 }. Moreover we have the following boundary Harnack inequality.

THEOREM 5.5 [Al, proof of Theorem 7].2014 Let f, g be positive L-har-
monic functions on ,S‘ such that for every n there is z E ,5’ with the property

Then there is a constant independent of f, , g and n such that

Let ~i ( ~ , () be the limit of the Martin kernel

when s~ -~ ~ E ~,S’. Assumption (5.4) is satisfied by f (~) _ (). In
view of Theorem 4.7 and Corollary 5.3 there is c such that for every n E N,

whenever y E E . Applying Minimum principle 3.5 (for Land
L* ) we obtain

for y ~ Vn , z E Therefore,

(n > 1, to have e outside which shows that ~~ { ~ ~) satisfies (5.4).



Now we are going to identify the limits of the Martin kernel with the
functions Py defined in (2.11). As before for s = ~a E S we write a(s) = a.

THEOREM 5.6. The Martin compactification of (S, L) is the point
compactification of x ~ 0 , oo), the Martin boundary being the one point
compactification of N. If a  0, ~n -~ ~ and an -~ 0, then

and, if ~xn ( + an - oo,

If a > 0, the limits are

where v and Px are defined as above for -a.

Proof. - To prove that does not depend on ~, when x E AT
we consider

In view of Corollary 3.4,

Therefore by Theorem 5.4,

i.e. oo) = To identify ~i ( ~ , e) we use the boundary Harnack
inequality (5.5) with f = ~i ( ~ e), g = Pe. More precisely, by (5.5),



for x ~ bb(e ) = 03B4bb1 (e) and all a. Therefore,

and so, e) is proportional to Pe, because Py, for y ~ e does‘ not
satisfy (5.9) for every b. The rest of the conclusion follows from the fact
that ~i ( ~ , ~) is proportional to ~i (x-1 ~ , e).

Using boundary Harnack principle (5.5) we are able now to give precise
pointwise estimates for P.

THEOREM 5.7..~f a in (~.3~ is negative then there is c > 0 such that

Proof. - Let f , g in (5.5) be Pe and respectively, n = 1 and

~ 1 = Tbl te} . Then there is a constant c such that

In particular,

Since v is a continuous function [DH1], this implies the upper bound
(5.10). 

’

To obtain the lower bound we compare f (s) = Ii(s, oo) and g = Pe inside
By (5.5), there is c such that

i.e.:



1 and a  1. In otherwords,

1 and a  1. As before, this together with the fact that v is a

positive continuous function, implies the lower bound (5.10).

Remark. . - For

and a  0, the estimates (5.10) have been obtained in [S] by an other
method.
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