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Electrostatic fields
due to distributions of electrons

JACOB KOREVAAR(1)

Annales de la Faculté des Sciences de Toulouse n° spécial Stieltjes, 1996

1. Introduction

Working in Rs (s &#x3E; 2) with the classical potential, we let K denote a
compact set ( "conductor" ) of positive capacity. By w we denote the unique
distribution of positive charge on K of total charge 1 with minimal potential
energy. This probability measure defines the so-called classical equilibrium
distribution for K, whose support belongs to the outer boundary 80Ii,
cf. Frostman [5]. We wish to approximate w by distributions (probability
measures) MN = 03BCN(x1, ..., xN) which consist of N point masses or
charges 11N ("electrons") at points x1, ... , 1 XN of Ii . If one imposes the
condition of minimal potential energy on such discrete measures, one obtains
what we call a "Fekete equilibrium distribution" 03C9N. Its support is a set of

lVth order "Fekete points" fN1, ..., fNN for K, which are located on ~0K.
For planar sets, such points were introduced by Fekete in 1923 [4]. Instead
of minimizing the energy, he (equivalently) maximized the product

The quality of the approximation to w by MN can be measured in different
ways. One may estimate the differences 03C9(E) - 03BCN(E) for suitably regular
sets E, or one may compare the potentials UW and U03BCN or the electrostatic
fields Ew and £t-lN. The paper surveys results on the following main
problems.

(1) Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24,
1018 TV Amsterdam (Netherlands)
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PROBLEM 1. - Il should be of physical interest to compare the classical
equilibrium field with "Fekele fields" for large N. How small are the

differences 03B503C9 - S’N away from the outer boundary ~0K?

One knows that 03B503C9 = 0 throughout the interior of the conductor K
(Faraday cage phenomenon of electrostatics). Question: How small is SI-N
inside K for large 1B1? In other words, how well can one explain the Faraday
cage phenomenon on the basis of a model, in which the total charge 1 on
the conductor is made up of a large number of equal point charges?

PROBLEM 2. - How small can one make 03B503C9 - SPN for large N if one
allows arbitrary distributions J-lN of N point charges 11N on ôoli?

Beginning in 1885, STIELTJES devoted a number of papers to equilibrium
problems for point charges on a segment in the plane and related matters,
see [29]-[32] and cf. Van Assche [34]. Among other things STIELTJES’ work
contains a description of the Fekete points for the case where Ii is the

interval [-1, 1], cf. the Examples 2.1 below.
For a conductor Ii given by an analytic or C3,0: Jordan curve 0393 in the

plane, Pommerenke ([24], [25]) and Korevaar and Kortram ([11], [15]) have
obtained close approximations to the Fekete points. For very smooth r,
the approximations show that 03C9(E) - wlv(E) = O(1/N), uniformly for
the subarcs E ~ 0393. Via a STIELTJES integral for the potential difference
U03C9 - U03C9N, the approximations imply that 03B503C9 - S’N is at most of order

1/N at distance &#x3E; e &#x3E; 0 from the curve, see Korevaar and coauthors Geveci

and Kortram ([11], [14, [15]). This order is sharp except when r is a circle.
For less smooth conductors in the plane (such as a square) and for

conductors in higher dimensions, there are separation results for the points
in Fekete N-tuples (Kôvari and Pommerenke [19], [20]; Dahlberg [3]), but
only the beginnings of good approximations, cf. Sjogren [28]. Without

explicit information about the Fekete points, Korevaar and his student
Monterie have recently obtained rather precise estimates for 03B503C9 - 03B503C9N in

the case of convex or smoothly bounded sets Ii . In R3 the basic order is

1/N. The precise results will be stated and the various steps in the proof
will be sketched in Section 3.

On Problem 2 it is known that at least for smooth Jordan curves

in the plane different from circles, the Fekete fields give much worse
approximations to the classical equilibrium field than the fields due to

certain other N-tuples of point charges 1/N, cf. Korevaar and Geveci [14]
for the case of analytic curves. In the présent paper we will restrict ourselves
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to the case ot the unit sphere o in M where the situation is unclear. For the

sphere, Problem 2 is of interest because of its relation to Chebyshev-type
quadrature formulas, that is, quadrature formulas in which all N nodes carry
the same weight. Very good N-tuples of Chebyshev nodes on S correspond
to N-tuples of point charges 1/ N on the sphere for which the electrostatic
field is extremely small on compact subsets of the unit ball, see Section 4
and Korevaar and Meyers [16]. The optimal order of smallness lies between
exp(-cN1/3) and exp(-cNl/2) [16].

It is conjectured that the latter order can be achieved. A proof may be
derived from a plausible (but unproved) separation result for the Nth order
Fekete points on the sphere relative to the nonstandard potential given by
(2.4) below, see Theorem 4.3 and cf. Korevaar [13].

2. Basic notions and results from potential theory

Throughout the paper, p stands for an arbitrary probability measure on
the compact set K C R’. It is convenient to start with general (répulsive)
potentials of the form

were 03A6(r) is smooth on (0. ~) and strictly decreasing. The field and the
potential energy are given by

We are primarily interested in the classical potential for R’ which corre-
sponds to 

For 03A6(r) = 1/r’ (0  a  s) one obtains the Riesz potentials. In R3
another interesting potential is given by

Let us first assume inf03BC I(03BC)  oo. For the classical potential Frostman

[5] proved that there is a unique probability measure p on Ii with minimal
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potential energy, the ’"equilibriu1l1 distribution" 03C9 for 7Y with the following
properties:

so that E’ = 0 inside 7B. If inf I(03BC) = o0 one sets II = ~. The constant
’T = VK is called "Robin’s constant" (after the mathematical physicist
Robin [26]). It is customary to define

so that the capacity has the dimension of a length. The expression "quasi
everywhere" above means: every w-here outside an exceptional set of (outer)
capacity zero. The preceding results extend to the Riesz potentials with
s - 2  cx  s, cf. Frostman [5].
We return to the classical case, in which supp w C ~0K. If the outer

boundary 80Ii is such that its exterior K~ relative to Rs U {~} is regular
for the Dirichlet problem for harmonic functions, there is no exceptional set.
In that case one may define a Green’s function G(y, oo) for K~ with pole
at oc as follows. Excluding the case s = 2 for a moment, G(y, oc) is the

harmonic function on K~-{~} with boundary values 0 on ~K~ = ~0K
and 1 at 00. Thus for s ~ 3,

In the case s = 2 one has G(y, oc) = V - U03C9(y). For well-behaved outer

boundary ~0K one can express the equilibrium measure in terms of the
normal derivative (~G/~ny)(y, ~), see Theorem 6.3.

As stated in the Introduction, we also consider special discrete probability
m eas2cres

given by charges 1/N at points xi, . - ., xN E K. The corresponding
potential and discrete energy are

(Observe that the "ordinary" energy I(03BCN) may be equal to ~.)
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Any MN with minimal discrete energy will be denoted by v N and called
an Nth order Fekete measure on Ii. The carrying points are Nth order
Fekete points fNi , ... , fNN. For the classical potential they lie on ~0K.
Fekete N-tuples need not be unique.

Examples 2.1. - On the unit circle or the closed unit disc in the plane,
the Fekete N-tuples are given by the Nth roots of unity or their rotations
through a fixed angle, cf. Schur [27].

For the segment [-1, 1] in the plane, STIELTJES’ results of 1885-86 imply
that the Fekete points are the zeros of (1 - x2)P’N-1(x), where Pk denotes
the Legendre polynomial of degree k, cf. Stieltjes [29]-[32], Schur [27],
Szegô’s book [33, Sect. 6.7] and Van Assche [34].

In the case of the unit sphere in R3, we will also be interested in the
Fekete points for the potential given by (2.4).

It follows from Frostman’s work that for the classical potentials (as well
as the Riesz potentials with s - 2  a  s) and every compact set K of
positive capacity,

cf. Frostman [5, pp. 47 and 10].

3. Fekete fields in R’: new results

In the following will be a bounded closed (hyper)surface whose
complement has two components. The interior domain will be called Q,
while the exterior domain - including the point at oo - is denoted by 000.
It will be convenient to think of Ii as clos03A9. we use the classical potentials
here.

THEOREM 3.1 (Korevaar and Monterie [17], cf. Monterie [21]).2013 For
03A9 C Rs convex or 03A3 = ~03A9 of class C1’a. and at distance ~ e &#x3E; 0 from 03A3,
there are uniform estimates
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Since the proof has not appeared in a journal we will present an outline
here, and provide additional technical details in Sections 5 and 6. For the
time being we lake s ~ 3.

Step 1. - In order to manufacture a positive potential, we introduce a
lower bound for the difference U03C9N - Uw on K or E. Here U03C9 ~ V, the
Robin constant for 7B. Setting

it is easy to see that 6(w N) &#x3E; 0. Indeed, by Fubini’s theorem,

Hence U03C9N-U03C9, which is positive near the Fekete points, must be negative
somewhere on E (the support of 03C9 is all of 03A3).
We now form the auxiliary potential

By (3.1), T(x) ~ 0 on E, hence T(x) &#x3E; 0 throughout Rs - E (minimum
principle for harmonic functions).

Step 2.2013 If E is the unit sphere, V = 1/capE = 1, so that T(0) =
03B4(03C9N). One may then use the Poisson integral or Harnack’s inequality to
prove that T, and hence U03C9N - U03C9  T, is ~ O(03B4(03C9N)) away from the
surface, cf. Korevaar [12] for s = 3.

In the general case there is usually no finite center where one has

information about the value of T. However, we do have information at

infinity:

since lim |x|s-2U03BC(x) = 1 for all probability measures p.
For x in the exterior domain Ç2’ one may now use a Harnack-type

inequality around oo to conclude that for the positive harmonic function T,
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To verify this one may apply Kelvin inversion with center 0 E Ç2; for finite
domains there is a general Harnack inequality in Gilbarg and Trudinger
[8]. In our case, c(dx) turns out to be ~ c1(1 + 1/ds-1x), cf. Korevaar and

Monterie [17] for s = 3.

Siep 3. - We next take in the interior domain S2. For our kind of

domains, there are integrals for T(x) and L(T) over E in terms of normal
derivatives of Green’s functions, as well as certain useful inequalities for
those derivatives, see Section 6. Using suitably normalized area measure (1,
these tools enable us to estimate as follows:

Indeed, (~G/~ny)(y, x) will be bounded above by a constant M(dx) 
c/ds-1x for x e Q and y E 03A3, while (~G/~ny)(y,~) is bounded from below
by a positive constant rn(oo) (Section 6).

Step 4. - Comparison of U03C9N - UW on K or E with a difference of
energies will show that under the hypotheses of Theorem 3.1,

see Section 5.

Step 5. - The end result from (3.1)-(3.6) is that for N &#x3E; 2 and all

x ~ 03A3,

where dx = d(x, 1;) and the constants c, depend only on lé.

An upper bound for |03B503C9 - 03B503C9N| may be obtained from (3.7) with the aid
of the Poisson integral. The result is that for N ~ 2 and all z g S,
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Remarks

In the case of dimension s = 2 one would define T(x) = UWN (x)-U03C9(x)+
8(wN)’ Here the method of Section 5 will give 03B4(03C9N) = O((logN)/N),
hence the disappointing estimate for s = 2 in Theorem 3.1. One has the
feeling that the logarithm should not be there, cf. the known result for

very smooth curves! In fact, in the degenerate case of the interval [-1, 1],
direct computation of the difference of the potentials also gives an estimate
O(1/N). On the other hand it may be remarked that a related older result
of Pommerenke for (simply connected) exterior domains also contains a

logarithm [23].
In a way it is encouraging that the present method gives a result for

smooth curves which is close to best possible. T’hus the following conjecture
appears to be reasonable.

CONJECTURE 3.2.2013 The order 1/N1I(s-1) for dimensions s &#x3E; 3 in

Theorem 3.1 is sharp except possibly for the case where E is a sphere.

4. Small fields due to electrons on the sphere

For the unit circle C = C(0, 1) in the plane, the Fekete N-tuples are
given by the Nth roots of unity or their rotations through a fixed angle.
Here |03B503C9(x) - EWN(X)I I will become exponentially small outside a fixed
neighborhood of C as JvT - x. Restricting oneself to the interior of C,
one finds that

For smooth Jordan curves other than circles, very small electrostatic
fields 03B503BCN are associated with charges at the images of lVth roots of unity
under an exterior conformal map rather than Fekete points, cf. Korevaar

and Geveci [14]. In a sense this is true even for the outer boundary of an
arbitrary connected compact set, see Korevaar [10].

The unit sphère S = S(0, 1) C m3

Preliminary numerical results of Kuijlaars and Voogd in Amsterdam
suggest that for the sphere S, the Fekele fields 03B503C9N do not become extremely
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small on interior balls B(0, r) as N ~ oo. But how small can one make the
fields £’N on such balls if one allows arbitrary N-tuples of point charges
1 /N on S?

It will be convenient to introduce some new notation. In the following
ZN = ((1, ... , ( ) stands for an N-tuple of points on S’. The corresponding
N-tuple 03BCN of point charges 1/N will be denoted by M(ZN). For the

potential U03BCN and the electrostatic field E4,y we will write U(·, ZN) and
03B5(·,ZN).

THEOREM 4.1 (Korevaar and Meyers [16]).2013 On the unit sphere S there
are special N-tuples of points ZN such that for N ~ ~, the differences

become as small as O(e-cN1/3) outside any given neighborhood of S (with
e &#x3E; 0 depending on the neighborhood). However, the differences can not
become of smaller order than e"

The proof depends on the close relation between the electrostatic field

.F( - ZN) inside 5’ and Chebyshev-type quadrature on S with nodes ZN
mentioned in the Introduction. Good N-tuples ZN will be described below
when we discuss Chebyshev-type quadrature. As to the second part, it was
shown in [16] that for every N-tuple ZN on 5’,

CONJECTURE 4.2. - We conjecture that for suitably chosen families of
N-tuples ZN on S, where 1BT --+ oc, the associated differences (4.1) become
as small as O(e-cN1/2) outside any given neighborhood of S (with c &#x3E; 0

again depending on the neighborhood).

The following conditional result describes candidate N-tuples ZN for the
conjecture.

THEOREM 4.3 (cf. Korevaar [13]).2013 Let the N-tuples ZN = (03B61,
..., 03B6N), with 03B6k = 03B6(N)k, N &#x3E; 2 be Fekete N-tuples on S for the potential
03A6(r) = 1/r2 + a2 where a &#x3E; 0 is arbitrary. In other words, for each 1BT,
the N-tuple of points 03B61, ..., (N minimizes the corresponding function
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If il is true [as we conjecture] that the points in the minimizing N-tuples
are well-separated, that is, if

for some constant 03B4 &#x3E; 0 independent of N, then the corresponding differ-
ences (4.1) are of order O(e-cN1/2) ai distance &#x3E; ~ &#x3E; 0 from S as N ~ 00.

The proof is quite technical. It makes essential use of the fact that

a bounded analytic function of two complex variables with many zeros is

small provided the zeros are well-separated. If an analytic function of one
complex variable on the unit disc is bounded by 1 and has N zeros on a

concentric disc of ra,dius ro  1, the function will be 0 (e -eN) on the latter
disc. For a related result in q ~ 2 complex variables one needs separated
zeros and then the order of smallness is O(e-cN1/q), cf. [13].

Chebyshev-type quadrature on S

The existence of special N-tuples Z1V on S’ with very small differences
(4.1) is important for Chebyshev-type quadrature on the sphere.

Relative to normalized area measure 03C3 = A/47r, the Chebyshev-type
quadrature formula for S with nodes at the points (i, ..., 03B6N of ZN has
the form

The difference between the two members is the quadrature remainder,

The quadrature formula (4.5) is called (polynomially) exact to degree p if
R( f, ZN) = 0 for all polynomials f(x) = f (Xl, x2, X3) of degree  p.
We will call ZN = (03B61, ..., (lV) a "good" N-tuple of nodes if formula

(4.5) is exact to relatively high degree p = pN, or if at least the remainder
(4.6) is very small for such polynomials.
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Observe that U03C9(x)- U(x, ZN) can be interpreted as a quadrature
remainder. For |x|  1,

This fact was used by Korevaar and Meyers [16], cf. Korevaar [13], to derive
the following

Equivalence principle

ZN forms a good N-tuple of nodes for Chebyshev-type quadrature on S
if and only if the corresponding distribution M(ZN) of charges 1/N gives a
nearly constant potential U(·, ZN) or a small electrostatic field 03B5(·,ZN)
on a ball (or on all balls) B(0, r) with 0  r  1. (The differences (4.1) will
then also be small for |x| &#x3E; R &#x3E; 1.)

Some precise forms are the following.

THEOREM 4.4.2013 The Chebyshev-type quadrature formula (4.5) for S
corresponding to the N-tuple ZN is polynomially exact to degree p if and
only if

THEOREM 4.5. - The following two statements, involving a constant
03B1 &#x3E; 0 and a family of N-tuples ZN on S with lyT ~ ~, are equivalent :

(i) For some (or every) r E (0, 1) there are po s i t ive constants c1(r) and
c2(r) such that

(ii) There are positive constants C3, c4, c5 such that

for all polynomials f of degree  c5N03B1.

N-tuples Z lV for which formula (4.5) is exact to degree p N cN1/3 have
been described by Korevaar and Meyers in [16], cf. Korevaar [13]. Starting
point was the following existence theorem of S. N. Bernstein [1].
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PROPOSITION 4.6. - For odd p = 2q - 1 ~ 1, let M be even and

where [·] denotes integral part. Then there exist points Zl &#x3E; z2 &#x3E; ... &#x3E; zp,

z2q-j = -zj and positive integral weights mj = m2q-j, 03A3pj=1 mj = M
such that for all polynomials g(z) of degree ~ p,

On the sphere, it is now convenient to use coordinates x, y, z as follows:

x = sin 0 cos 0, y = sin 0 sin 0, z = cos 0, 0 ~ 03B8 ~ 03C0, 0 ~ ~  203C0,

with normalized area element

COROLLARY 4.7.2013 For p = 2q - 1 ~ 1 1L’e set N(p) = (p + 1)N1(p)
with N1(p) as above. Let zl &#x3E; Z2 &#x3E; ... &#x3E; zp and the positive integers
mi, ..., mp also be as in Proposition 4.6 and set

Then for all polynomials f (x, y, z) ~ F(z, ~) of degree  p.

In other words, the Chebyshev-type quadrature formula for S with tht

N = N(p) ~ 2p3 distinct 1l0des

is exact to degree p ~ cN1/3. Il follows that parts (ii) and (i) in Theorem
4.5 are truc with a = 1/3.
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Theorem 4.3 describes l’VT-tuples ZN for which the two parts of Theorem
4.5 will hold with a = 1/2 provided the conjectured separation condition
(4.4) is satisfied.
We end with a strong conjecture about Chebyshev-type quadrature on S.

CONJECTURE 4.8 (Korevaar and Meyers [16]).2013 There exist a constant

c &#x3E; 0 and special N-tuples ZN of distinct nodes, N ~ for which formula
(4.5) for S’ is polynomially exact to degree PN cN. Such N-tuples ZN
on S are sometimes called spherical pN-designs. Using that terminology, our
conjecture asserts that for p ~ oc, there exist spherical p-designs consisting
of O(p2) points.

5. Technical results:

comparing énergies and potentials

Let K be any compact set in Rs of positive capacity. The weak*

convergence 03C9N - w may be derived from the following comparison of
energies:

cf. Frostman [5].
For the proof of Theorem 3.1 we need an explicit upper bound in (5.1).

The basic ingredients used in the dérivation below may be found in the

classical work of Pôlya and Szegô [22], cf. the author’s report [12]. For

p &#x3E; 0 we let 7Bp denote the closed p-neighborhood of K.

PROPOSITION 5.1.2013 In terms of Robin constants V(·) one has for
N ~ 2 and all p &#x3E; 0,

Proo f

(i) The first inequality. By the definition of W N,
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Hence by N-fold intégration, recalling that 03C9(K) = l,

(ii) The second inequality. Let 1u£, be the probability measure on K03C1,
obtained from 03C9N on Ii by distributing the charges 1/N at the Fekete
points fNk uniformly over the spheres S(fNk,03C1) of radius p, centered at
those points. The potential UNk of the resulting measure wp . on S(fNk, p)
satisfies the relations

Thus for j ~ k,

while for j = k,

Adding up all the terms UNj d03C903C1Nk, it follows that

Finally observing that I(03C903C1N) &#x3E; V(K03C1), one obtains (5.2).

The minimum property of the Fekete N-tuples may be used to compare
U03C9N on K with I*(03C9N), cf. Sjogren [28]:
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PROPOSITION 5.2. - One has

Indeed, for x E Ii and each j, by the minimum property mentioned
above,

Summing over j = 1, ..., N one finds that N (N - 1)U03C9N(x) ~ N2I*(03C9N).
Combination with Proposition 5.1 gives

PROPOSITION 5.3. - One has

(Recall for the proof that U03C9(x) ~ V(K) = I(03C9) on K.)
We wish to minimize the final member of (5.7) in the case where K is

the closure of a well-behaved domain Q. What we need here is

PROPOSITION 5.4 (cf. Korevaar and Monterie [17]. Monterie [21]).- If
S2 is convex or 03A3 = ~03A9 is of class Cl-’ and Ii = clos Ç2, there are positive
constants A and B such that

Proof. - In the convex case we may take the origin at the center of a
maximal ball in Q. Denoting the ball by B(O, r), one may use geometric
arguments to show that Iip is contained in the set (1 + 03C1/r)K, hence

cap K03C1 ~ (1 + 03C1/r) cap K.

In the C1,03B1 case one may use the level surfaces of the Green’s function
G = G(y, 00) for K~ with pole at oo. These must be "well-separated"
since grad G| will be bounded by a constant C on K~, cf. Widman

([35], [36]). In particular Iîp will (for small p) be enclosed by the level
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surface 03A303B4: {G = 03B4} with ô = C p. Now for s ~ 3, the exterior of

S8 will have Green’s function with pole at 00 equal to (G - 03B4)/(1- b),
hence by (2.6), (cap 03A303B4)s-2 = (cap K)s-2/(1 - b). Conclusion: cap K03C1 ~
(cap K)/(1 - Cp)1/(s-2). For s = 2, one finds that V(K03C1) &#x3E; V(K) - Cp.

To complete the proof one uses the relation between the capacity and the
Robin constant, cf. (2.5).

Combining Propositions 5.3 and 5.4 we can prove the crucial estimate
(3.6) required for the proof of Theorem 3.1:

PROPOSITION 5.5 (cf. Korevaar and Monterie [17]).2013 Under the condi-

tions on 03A9 given in Theorem 3.1 or Proposition 5.4, there is a constant c
depending only on S2 such that

The proof is by minimization of the final member in (5.7) with respect
to p, after one has replaced V(K03C1) by its minorant V(K)- Bp from (5.8).

6. Additional technical results:

integral representations and inequalities

The convex or c1,a domains Q of Theorem 3.1 are special cases of Lip-
schitz domains: bounded domains 03A9 with Lipschitz boundary 03A3. For such

domains Dahlberg has proved an important result on harmonic measure. To
simplify the corresponding representations, we divide the Lebesgue measure
A on the boundary surface E by the area A(S) of the unit sphere 5 C Rs.
The adjusted area measure will be O’(y) = 03BB(y)/03BB(S).

THEOREM 6.1 (Dahlberg [2], theorem 3). 2013 Let Q be a Lipschitz domain
and let G(y) = G(y, x) be the Green’s function for 03A9 with pole ai x. Then

the inward unit normal ny and the corresponding normal derivative
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exist for almost all y E E = ~03A9 relative to (1’. The function i9GIOny is

positive a. e. and integrable over E. For the measurable subsets E C E, the
harmonic measure

Not only is Wx absolutely continuous with respect to o-, but the converse is

also true.

By the definition of harmonic measure, Theorem 6.1 implies a representa-
tion formula for harmonic functions which are continuous up to the bound-

ary. In the case of convex or C1,Q domains this formula can be extended to

potentials of measures on the boundary by a limit process involving mono-
tone or dominated convergence. The result is given in Theorem 6.2.

There are corresponding results for the exterior domain 000 of S. In

the special case of the Green’s function G(y, oo) with pole at oo one will
thus obtain a representation for L(u) = lim|z|s-2u(z) at oc. Observe

that normals must always point into the domain considered, hence for the
exterior domain one uses the outward normal to 03A3.

THEOREM 6.2 (cf. Korevaar and Monterie [17]).2013 For convex or C1,Q
domains S2 as in Theorem 3.1 and for harmonic functions u on S2 or Q’
that are continuous up to the boundary 03A3, and also for poientials u = U03C1

with supp p C S,

As a by-product of our proof for the second formula (6.2) we have
obtained the following representation for the equilibrium measure.

THEOREM 6.3 (cf. Korevaar and Monterie [17]).2013 If K is the closure

of a Lipschitz domain Q, the equilibrium measure w for K on 03A3 = OÇ2 has

the representation
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For the application of Theorem 6.2 in the proof of Theorem 3.1 we
need bounds on the normal derivatives of the Green’s functions. Let us

first suppose that £ = 8Q is of class C1,03B1 and that x E S2. Then

the following results are known from the work of Lyapunov, Eydus and
Widman, cf. Widman ([35], [36]) who actually considered somewhat more
general Lyapunov-Dini domains S2. The normal derivative (~G/~ny)(y, x)
is continuous on E and strictly positive, and

(As before, d, = d(x, 03A3).) One may use Kelvin inversion to obtain related
results for exterior Green’s functions G(y, x). In particular the derivative

(âG/âny)(y, oc) will be continuous on E and strictly positive.
Next let 03A3, or more precisely S2, be convex. In this case the level surfaces

for the interior Green’s functions G(y, x) and for the exterior Green’s
function G(y, oo) are also convex. This was proved by Gabriel ([6], [7])
for s = 3 but his proof readily extends to other dimensions (the case s = 2
is classical). (There is an extensive literature on convexity of level sets,
cf. Kawohl [9] and N. J. Korevaar [18] for références.) As a corollary one
may deduce that the normal derivative (âG/âny)(y, x) is bounded above

on E by a constant Ax ~ M(dx) and that the derivative (~G/~ny)(y, oc)
is bounded from below by a positive constant m(oo), cf. Korevaar and

Monterie [17]. Comparison of S2 with a half-space readily shows that one
may take M(dx) = 2(s - 2)/ds-1x if s &#x3E; 3, M(dx) = 2/dx if s = 2.
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