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On the representation of functions
by trigonometric series

THOMAS WILLIAM KÖRNER(1)

ABSTRACT. - We give an account of many of Mensov’s theorems on
the representation of functions by trigonometric series.

Annales de la Faculté des Sciences de Toulouse n° spécial Stieltjes, 1996

1. Introduction

we work on the circle R/27rZ. Fourier analysis begins with the formula

In his thesis Riemann turned attention to the more general formula

With the invention of Lebesgue measure it became natural to interpret -
so that the formula became

almost everywhere as AT - oo, or, more briefly,

almost everywhere.

(1) Trinity Hall, Cambridge, England
twkCpmms.cam.ac.uk
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There are now two natural questions to ask.

Qu esti on A (Uniqueness)
If 03A3~r=-~ ar exp ( irt ) = 0 almost everywhere does it follow that a r = 0 for
all r?

Question B (Existence)
If f is measurable do there exist ar e C such that 03A3~r=-~ ar exp(irt) =
f (t)?

Here and elsewhere "measurable" and similar terms refer to Lebesgue
measure unless we specify otherwise.

The surprising discovery by Mensov in 1916 that the answer to Ques-
tion A was no, initiated a long chapter in harmonic analysis which is not
yet closed. In 1940, Mensov showed that the answer to Question B is yes,
and over the next few years he developed this theme in some remarkable
ways. The papers containing his results are long and have a reputation for
difficulty. In [6] and [7] 1 have developed a different approach which I believe
to be easier. This paper gives me the opportunity of presenting a coherent
treatment along these lines and adding a discussion of what Mensov calls
limits of indetermination.

Let us write Sn(f, x) = 03A3nr=-n (r) exp(irt) and, if E is measurable, let
us write lEI for the Haar measure of E (that is Lebesgue measure normalised
so that 171 | = 1). Our key result on which everything else depends is the
following.

LEMMA 1. - Given any ~ &#x3E; 0 lhere exists a K(~) with the following
property. Given any e &#x3E; 0 toe can find a positive function f E A(T) with:

Using Lemma 1 we can obtain one of lBtIensov’s most notable results.

THEOREM 2. Given f : 1f - C a measurable function and e &#x3E; 0 we

can find a continuous function 9 : T ~ C with uniformly convergent Fourier
series such that
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Mensov made great use of his theorem in obtaining his other results but
1 shall use a development of Lemma 1 instead.

LEMMA 3. - Given any q there exists a K1(~) with the following prop-
erty. Given any E &#x3E; 0 we can find a positive measure p with support of
Lebesgue measure 0 and a closed set E with:

One consequence of this lemma which may be new in [6] is the following
parallel to Mensov’s Theorem 2.

T’HEOREM 4. 2013 Given any f E LI and any c &#x3E; 0 there exists a singular
measure p with ~03BC~ ~ c such thaf

almost everywhere as n ~ oc.

The form of Theorem 4 is explained by the following observation.

LEMMA 5. - If f E LI and p is a measure such that

almost everywhere as n -+ oc, then we can write p = f + 03C3 where o- is a

singular measure.

Proof. - By the R.adon-Nikodym Theorem we may write p = g + 03C3

where g E LI and o- is a singular measure. Taking Pr to be the Poisson
kernel we hâve

But Pr * g(t) - g(t) and Pr * u(1) ~ 0 almost everywhere (see [2,
§1.7]) whilst, since we have a summation method, Pr * p(t) 2013 g(t) almost
everywhere as r  1. Thus g = f and we are done. 0

Using Lemma 3 we obtain Menov’s answer to Question B.
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THEOREM 6. - If f is measurable we can find au E C such that

alm ost everywhere as n - oc,

We can also prove the following amusing result.

THEOREM 7 (Mensov’s Universal Series). - There exist au E C such
that given any measurable function f there exists a sequence N(j) - oc
with

almost everywhere.

The proof can be extended to give a more general result also due to

Mensov..

THEOREM 8. - Let 03B5 be a set of measurable functions such that whenever
,fn é É and fn - f almost everywhere then f E î. Then there exist au e C
with au - 0 as lui - oc such that :

(i) If f e E then there exists a sequence N(j) ~ ~ with

almost e2aerywhere;

(ii) if there exisls a sequence N(j) - oc with

then f E S.
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The interest of this result appears when we consider the cases when É is

empty, when E has one member, when S contains two members and when
E is the set of all measurable functions.

Bari extended Mensov’s Theorem 6 as follows.

THEOREM 9.2013 If f is measurable we can find a continuous function
F such that F’ = f almost everywhere and the result of term-by-term
differentiation of the Fourier series

almost everywhere as n ~ 00.

We shall prove Bari’s theorem and add a result which which may be new

in [6].

LEMMA 10.2013 If f E LI we may lake F of bounded variation.

So far we have followed the standard modern convention that measurable

implies finite almost everywhere. However Mensov was also interested in

functions which are allowed to be infinite on sets of positive measure. It

turns out that functions f : 1T ~ C~{~} are not very interesting in
this context (see [6, Lemma 1.11]) so we restrict consideration to functions
f : 1T - R* where R* = R~ {-~, ~}. In order to obtain real partial sums
03A3Nu=-N au exp(iut) we need to consider au with a_u = a*u. We shall prove
the following result of Mensov.

THEOREM 11.2013 If f : 1r -t m * is measurable we can find au with

a-u = aû such that

in measure.

In a brilliant paper [5] Konjagin has shown what Mensov evidently
suspected.
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THEOREM 12. If a-u = a*u for all u then writing

we have

Thus we cannot replace convergence in measure by convergence almost

everywhere in Theorem 11

Instead we prove the following variation (which 1 believe to be new) on
a result of Mensov.

LEMMA 13. - If g : T ~ R* is measurable and g(t) &#x3E; 0 everywhere then
there is a singular measure p with ~03BC~ ~ 1 such that

almost everywhere.

Using results stated earlier, this gives our final theorem of Mensov (the
last sentence of the theorem is, 1 think, new).

THEOREM 14. - If gl, g2 : T ~ M are measurable, g1(t) ~ 92(t) for all
t and E is a measurable set then there exist au ~ C with a_u = a*u for all
u such that,

almost everywhere for t ~ E and

almost everywhere for t E E. If 92 E LI we may take au = P(u) for some
singular measure J-l.
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Before proceeding to the main part of the paper 1 would like to make two
points, both of which may already be sufficiently obvious to the reader. The
first is that, although at first sight, results like Theorems 2 and 6 seem to
give useful properties of trigonometric series, their proofs and their general
context show that they are reflections of a deep seated pathology. The

second is that, however much I seek to emphasise slight improvements, the
picture painted here is of a landscape fully explored by Mensov.

2. The Main Lemma

The business of this section is to prove Lemma 1. Our main tool, here and
elsewhere, will be simple estimates of the type given in Lemma 15 below.

Recall that we say that f E A(1f) if ~f~A = 03A3~n=-~|(n)|  oo. If

f E C(1f) we write f[N] (t) = f(Nt).
LEMMA 15

(i) If P and Q are trigonometric polynomials with Q of degree at most
M then, provided only that N ~ 2M + 1

for all x ~ T and ail n 2: 0.

Also

and, if r is fixed, then PNQ(r) = (0)(r) for all sufficiently large
.

(ii) If f, g E A(1r) and E &#x3E; 0 then, provided only that Iv is sufficiently
large

for ail x E 1f and all n ~ 0.

Also

and. if r is fired, then |P[N]Q(r) - (0)(r)| ~ ~ for all sufficiently
large N.
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Proof

(i) Observe that

whenever |r| ~ N/2. Thus if n &#x3E; 0 and we take m such that |n-mN| ~ N/2
we have

so tha

The stated results now follow.

(ii) Use the fact that the trigonometric polynomials are dense in A(T). 0

There is a second kind of scaling that we can do. If F : R ~ C and

F(x) = 0 for Ixl2: 7r and N ~ 1 we can define F(N) : T ~ C by the formula
F{N)(t) = f (Pl t) for |t| ~ T. Provided that F is sufficiently well behaved,
we have, not merely that F(N) e A(T), but also ~F(N)~A ~ Ii for some
Ii independent of N (see for example Chapter II of [3]). We shall work
with a particular F for which this is obvious, but our construction is not
dependent on making this choice. If we set

It is easy to check that N(r) ~ 0 and so ~0394(N)~A(N) = 0394N(0) = 1. Thus
taking

we have ~G(N)~A ~ 3 and ~F(N)~A ~ 6. It may be useful to sketch G(N)
and F(N).
We can now begin the construction of the function required by Lemma 1.
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LEMMA 16. - Given integers M, N’ &#x3E; 1 and a real number q &#x3E; 0 we

can find an integer N" &#x3E; N’ and an H E A(1f) such that :

In particular

Proof. - Consider

Conditions (i), (ii), (iii), (iv) and (v) are immediate from the construction.
(To see (iv) observe that H is odd, to see (v) observe that ~H~A ~
~F[8MN]~A~GM~A.) Since F is odd, F(0) = 0 and so, for each fixed r,

HN(r) ~ 0 as N --+ oo. Thus (vi) will hold for sufficiently large N. Once
N is fixed, condition (v) shows that (vii) will hold provided only that N"
is chosen large enough.

The statements about Sn(H, t) are direct consequences of conditions (v),
(vi), (vii), (i) and (ii). ~

LEMMA 17. - Given any c &#x3E; 0 we can find an h E A(T):
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Proof. - Let ~ &#x3E; 0 be a real number and let M ~ 1 be an integer, both
to be chosen later. By the previous lemma we may find 1 = No  N1 
...  N(M) and Hj E A(l) such that:

and so, in particular,

If we now set

then conditions (i) and (iv) follow at once from (1)j, (ii)j and (iv)j.
Conditions (i)j and (ii)j also show that

whilst conditions (vi). and (vii)j show that

if |r| ~ N(j - 1) or |r| ~ N(j). Thus



- 87 -

and condition (iii) follows provided only that we choose M &#x3E; 2f-1 and

q  ~/(2M). Similarly

for all t and all n, so that condition (iv) holds provided only that we choose
~  1/M. ~

A trivial modification gives the next result.

LEMMA 18. - Civen any E &#x3E; 0 we can ,find an f E A(T):

Proof. - Set f = h + 1 in Lemma 17. n

We now "concentrate" the function f of Lemma 18 by repeated multi-

plication.

LEMMA 19.2013 Given any 8 &#x3E; 0 we can find a sequence of functions
fn E A(7),. with fo = 1, and closed sets

such that. if n &#x3E; 1,



- 88-

Proof.2013 We start the induction by setting Il = f and El = f-1(0)
where f is the function of Lemma 18. Provided that E is chosen small

enough, conditions (i)l to (vii)1 are automatically satisfied.
Now suppose that we have constructed fi and Ej for 1 ~ j ~ n. ’iVe set

fn+1(t) = In(t)/(Nt) where f is the function of Lemma 18 with anc &#x3E; 0

and an integer N ~ 1 to be chosen later. If we set

then conditions (V)n+1’ (vi)n+1 and (vii)n+1 follow automatically from
conditions (v)n and (vi)n combined with condition (v) of Lemma 18.

Condition (iv)n+1 follows from (iv)n and condition (iv) of Lemma 18

provided only that N is large enough.
To prove the remaining conditions set g = f - 1 and gn+1 (t) =

fn(t)g(Nt) = fn(t)g[N](t). We observe that

Since

we see that condition (i)n+1 will hold provided only that c is chosen small
enough. Further, choosing AI sufficiently large that

we know that, provided E is small enough

and so

But, by Lemma 15, we know that, provided only that N is large enough,
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Now, by Lemma 18(iii) |Sp(g,t) I = |Sp(g,t) + 1| ~ 23 so that, provided
only that E is small enough,

and so

for all m ~ 0 and all t. Conditions (ii)n and (vi)n now give (ii)n+1 and
(vi)n+1. The inductive step can thus be completed and the lemma is
proved. 0

The key Lemma 1 is now obvious.

Proof. - Without loss of generality we may suppose ~  1/100. Choose
n such that (15/16)n|T|  17 and set K(~) = 2n25. If we now set ô = q/2
and take fn as in Lemma 19 above then conditions (i)m with 1 ~ m  n
tell us that :

Condition (iii)n gives us :

Conditions (iv)n and (v)n tell us that

whilst condition (vi)n tells us that fn is positive.

If we now set f = (n(0))-1 f n we have 2fn(t) ~ f(t) ~ 0 so the conclusions
of the lemma may be read ofl’. D

We could have proved Lemma 1 directly by modifying the proof of
Lemma 18 (this would make a good exercise for the reader) but the inductive
concentration argument in Lemma 19 also gives us Lemma 3.

Proof. - Without loss of generality suppose c  1 and set 03B4 = c/2.
Consider the functions f n of Lemma 19. Let us set dpn = fn(x)(203C0)-1dx
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(so that pn is the "obvious" measure associated with fn). By condition

(vii)n, pn is a positive measure. We note that (i)n becomes

for all u. In particular ~03BCn~ = n(0) is bounded and so, pn converges

weakly to a positive measure M’ with

If we take 6 = 1/2, then, since 0(0) = 1 we have 3/2 ~ ~03BC’~ ~ 1/2. We
now set J1 = ~03BC’~ -103BC’. Since 0(u) = 0 for all u ~ 0, we have

for all u 0 0.

Condition (vii)n shows us that

conditions (IV)n and (v jn now show tl1at supp pj = U. L:ondltlon (II)n
shows that

for all m ~ 0, all t e Er. But condition (v)r tells us ta

If q &#x3E; 0 is given we can choose an r such that 7j  (15/16)r|T|. If we now
set K1(~) = 2’’25 then conclusions (iii) and (iv) of our lemma follow on
setting E = Er. Condition (v) follows from the observation that n (u) ~ 0
as lui | ~ oo . Condition (iv) is a consequence of the general result that if p
is a measure with p(u) ~ 0 as |u| ~ 00 then Sm (p, t) - 0 for all t e supp p,
but it can also be obtained directly by arguments of the type used above

3. Consequences

Many of the results announced in the introduction now follow without
much more work. We start with Theorem 2, lB’Iensov’s theorem on the

adjustment of functions.
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At first sight Lemma 1 looks rather far removed from Theorem 2 but the
next lemma shows that they are rather close.

LEMMA 20. - Given any ~ &#x3E; 0 there exz*sis a K2(~) with the following
property. Given any trigonometric polynomial Q and any K &#x3E; 0 we can find
q E A(U) with :

Proof. - Take K(~) as in Lemma 1 and set K2(~) = K(~) + 3. Take f
as in Lemma 1 for some e still to be determined. We set

By condition (iv) of Lemma 1

Next we observe that conditions (i) and (ii) of Lemma 1 show that

~1-f~~ ~ c. Thus Lemma 15 shows that, provided N is large enough
(actually N = 2 x degree(Q) + 1 will do) and e small enough, conclusions
(ii) and (iii) hold. 0

Theorem 2 now follows.

Proof. - If f : T ~ C is a measurable function and E &#x3E; 0 then. by a
theorem of Lusin, we can find a continuous function F such that

By Fejér’s theorem we can find a sequence of trigonometric polynomials
tending uniformly to F. By extracting a sufficiently rapidly convergent
subsequence we can obtain trigonometric polynomials Q1, Q2, Q3, ... such
that 03A3~j=1 Qj converges uniformly to F and

for all j ~ 2.
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We set q1 = Ql and use Lemma 20 to obtain, for each j ~ 2, qj E A(T)
with:

Since q1, q2, ..., qm ~ A(T), Sn(03A3mj=1 qj, ·) converges uniformly to

03A3mj=1 qj. On the other hand conditions (i)j show that

for all n ~ 0 and all m ~ 1. Thus g = 03A3~j=1 qj has uniformly convergent
Fourier series. Condition (ii)j and the definition of q1 show that

In other words

and, recalling how we chose F, we see that the proof is complète. D

In the same way as Lemma 1 gave us Lemma 20 so Lemma 3 has the

following simple extension.

LEMMA 21. - Given any 17 &#x3E; 0 there exists a K3(~) with the following
property. Given any trigonometric polynomial Q and any h &#x3E; 0 z.ve can find
a measure p with support of Lebesgue measure zero and a closed set L such
that :
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Proof. - Take K1 (17) as in Lemma 3 and set K3(~) = K1 (~) + 3. Take
p and E as in Lemma 1 for somme 6 still to be determined. If Q has degree
M we take N ~ 2M + 1 with the value of N to be determined later. ive
take p N to be the measure given by N(rN) = p(r), PN(v) = 0 otherwise,
and set

Conditions (v) and (vi) is follow automatically from conditions (v) and (vi)
of Lemma, 3. we observe that

as N ~ ~ so conclusion (iii) holds provided only that we take N large
enough. We set

r - ( r r - -1 1

so that conclusion (ii) follows from the corresponding result for E.
If we set v = 1 - p and vN = 1 - MN then Lemma 3 shows that:

But the arguments used to prove Lemma 15 show that

for all z E L and all n ~ 0. Condition (i) now follows, provided only that
we choose e small enough. Condition (iv) can be ensured in a similar but
simpler manner. 0

Theorem 4 now follows.

Proof. - By using the theorems of Lusin and Fejér we can find a

sequence of trigonometric polynomials Qj and closed sets Hj such that:

(a) 03A3~j=1 Qj converges pointwise to f except on a set E of Lebesgue
measure zero,
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Lemma 21 now tells us that we can find measures pj with support of
Lebesgue measure zero and measurable sets Ej = 1r B Lj such that, if j ~ 2.

We set pi = 0.

Conditions (b) and (iii) tell us that 03A3~j=2 03C1j converges in measure norm
to a nieasure p with ~03BC~ ~ e. Since the pj are singular so is p. Since each
of the p, has support of Lebesgue zero measure and a standard theorem
tells us that

as n ~ 00 it follows that there exists a set Frn of Lebesgue measure 0 such
that

as n - oc. But condition (i), combined with condition (c) tells us that, i

j ~ 2,

for all x e Hj and so

for all x e ~~j=m+1 (Ej U Hj) and all n ~ 0. If follows that
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as n - 00 for all x e EU ~~m=1 ~~j=m+1 (Ej ~ Hj). Since IEj ~ Hj 1 2-1+1
and |E| = 0 this tells us that Sn(f + J-l, x) - f(x) almost everywhere as
required. n

The proof of Theorem 6 is similar but simpler.

Proof. - By using the theorems of Lusin and Fejér we can find a

sequence of trigonometric polynomials Qi and closed sets Hj such that:

(a) 03A3~j=1 Qj converges pointwise to f except on a set E of Lebesgue
measure zero,

Lemma 21 now tells us that we can find measures 03C1j with support of

Lebesgue measure zero and measurable sets Ej = TBLj such that, if j &#x3E; 1.

If we now set au = 03A3~j=1 j(u), the proof that 03A3nu=-n au exp(iut) - f (t)
almost everywhere follouTs the lines of the previous proof. 0

4. Convergence of Subsequences

Results like the existence of universal trigonometric series can be reduced
to exercises in measure theory by means of the following lemma.

LEMMA 22.2013 Given any sequence fn of continuous functions with

Illn - fn-1~~ ~ 0 as n - ~ we can finds au G C with au , 0 as lui ~ 00
and a sequence of integers N(j) with 0  N(1)  N(2) ... such that :
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Proof - Since we can find trigonometric polynomials Pn with

il P. - fn~~ ~ 0 there is no loss of generality in supposing that the fn
are trigonometric polynomials. We set Qo = fo = 0 and Qj = fj - fj-l for
all j &#x3E; 1. Since ~Qj~~ ~ 0 as i ~ oc we can find ~j &#x3E; 0 with

for all j, where K3(~j) is defined as in Lemma 21, and 77, - 0 as j ~ oc.
We now construct inductively a sequence of measures Tj together with a

sequence of integers N(j) as follows. Set To = 0 and N( -1) = 0. Suppose
now that N ( j - 1) has been fixed and we have constructed To , T1, ..., j-1
in such a way that:

almost everywhere as n - oo . Simple measure theory tells us that
we can find N(j) &#x3E; N(j - 1) and a measurable set Ej with

Let &#x3E; 0 be a small number to be determined. By Lemma 21 we can
find a measure Tj = Q j + pj and a measurable set Fj = ’lF ( L j such that:

(v)j |Sn(j,x)| ~ K3(~j)~Qj~~ for all n and all x ~ Fj,
(vi)j |Fj| C 1Jj, 
(vii)J ) |j(u)| ~ kj for all u.
(vii)j j(u) ~ 0 as |u| ~ 00 .

(ix) j Sn(j, x) ~ Qj(x) almost everywhere,.

By choosing K. small enough, we can ensure that:

Combining (viii)j and (i)j we obtain (i)j+1 so we may move onwards to
the next stage of the induction.
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Condition (vii)j allows us to set

and tells us that, if N(k - 1) ~ N ~ N(k)

and so

Combining this result with (v)k and (ii)k we obtain

for all t ~ Ek U Fk and all N(k - 1) ~ N ~ N(k). By conditions (ii)k and
(iv) k

so, since we have chosen qk in such a way that K3(~k)~Qk~~, ~k - 0, we
have

and

as k ~ oo. Condition (ii) follows.

Condition (ii)j+1, (iii)j+1 and (vii)j+1 show that
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for t ~ Ej+1’ Equation (*) at the beginning of the previous paragraph novcT
tells us that

for all t e Ej+1’ Thus

for all t ~ ~~u=1 ~~u=u Ev as j - oo. By condition (iii)j+1, |Ej+1| ~ 2-j-1
so condition (i) follows. 0

The proof of Theorem 8 is now a matter of finding an appropriate
sequence f n and applying Lemma 22. Here are two special cases of

Theorem 8. We first prove Theorem 7.

Proof. - By Lusin’s Theorem and the fact that the continuous function
have a countable uniformly dense subset we can find a sequence fn of

continuous functions with ~fn - fn-1~~ - 0 as n ~ oc such that

given any measurable function f there exists a sequence M(j) ~ oc

with fM(j)(x) ~ f(x) almost everywhere. By Lemmma 22 we can find
au G C with au - 0 as lui ~ oo and a sequence of integers N(j) with
0  N(1)  N(2)  ... such that:

(Note that we do not need condition (ii) from the lemma.)
If f is measurable then by the first sentence of this proof there exists

a sequence M(j) ~ 00 with fM(j)(x) - f(x) almost everywhere. By
condition (i)

and so

almost everywhere. 0
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The second special case is, in some sense, the opposite of a universal
series.

LEMMA 23. - We can find an E C such that :

diverge almost everywhere.

Proof . - If we set
1

for |t| ~ 7r, then Lusin’s theorem shows that, if A is any measurable set and
f any measurable function

for all sufficiently large n. Since f n - fn+1 ~ 0 uniformly as n -,
Lemmma 22 tells us that we can find au e (C with a,u - 0 as |u| ~ oc
and a sequence of integers N(j) with 0  N(1)  N (2 )  ... such that

(ii) If e &#x3E; 0 is fixed, then

as k ~ 0.

(Note that we do not need condition (i) from the lemma.)
It follows from the first sentence of this proof that if A is any measurable

set and f any measurable function

for all sufficiently large n. The lemma follows. ~
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To get the full result we combine the two extrême cases already treated.
Once again, we need to find an appropriate sequence fn . To this end we
have the next lemma.

LEMMA 24. - Suppose Fo, Fl, 91, g2, ..., 9n are continuous functions
on 1r such tlzat there exist c(l), c(2), ..., c(n) &#x3E; 0 with

for all 1 ~ j ~ n. Then we can find a continuous function F : 1L x [0, 1]-
C such th at:

Proof. - Let E = min1~j~n ~(j). By uniform continuity we can find an
integer N such that

whenever lu - v| ~ 203C0N-1. Now choose a function H : 1f x 0 , 1] ~ C
such that:

(This can be done, for example, by setting

with Ii sufficiently large.) If we now set

conditions (i) and (ii) follow at once from conditions (i)’ and (ii)’. Condition
(iii) tells us that

for all s E [0 , 1] and (iii) now follows from our choice of N. ~
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We have the obvious discrete corollary.

LEMMA 25. Suppose Fo, F1, 91,92,..., gn are continuous functions
on 1 such that there exist E(l), e(2), ..., E(n) &#x3E; 0 with

for all 1  j  n. Then given any E &#x3E; 0 we can ,find an M and continuous
functions fk on 1r such that :

We can now prove Theorem 8. Since we have already dealt with the two
special cases when E the set of all measurable functions and when î the
empty set we shall exclude them from further consideration.

Proof. - Since E is neither empty the set of all measurable functions,
an application of Lusin’s theorem and the fact that there is a countable

dense subset of the continuous functions under the uniform norm shows

we can find continuous functions F1, F2,... and g1, g2 , ... together with
E1 &#x3E; 0, E2 &#x3E; 0, ... such that:

(i) if f ~ 03B5 we can find n( j) ~ oo such that for each E &#x3E; 0

as j - U,

(ii) if j ~ k then

(iii) if we write 9 k for the set of measurable f such that

then ~~k=1 Gk is the set of measurable functions not in S.
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Applying Lemma 25 repeatedly we see that we can find a sequence of
continuous functions f r and a sequence of integers 1 = M(1)  M(2) 
M(3)  ... such that:

Condition (iv) allows us to use Lemma 22 to obtain au e C with au - 0
as |u| ~ oo and a sequence of integers N(j) with 0  N(1)  N (2)  ...

such that:

(vii) 03A3N(j)u=-Nj au exp(iut) - fj (t) ~ 0 almost everywhere as j - ~.
(viii) If E &#x3E; 0 is fixed, then

Conditions (v), (vii) and and (i) show that, given f E î, there exists a
sequence of partial sums 03A3m(j)u=-m(j) au exp(iut) converging to f in measure.
Conditions (viii) and (vi) show that, if k is fixed, then

for all sufficiently large N. Thus if a sequence of partial sums
m(j)

L au exp(iut) converges to f in measure
U=-m(3)

we know that

and so, in the notation of condition (iii), f ~ Gk for any k, whence, by
condition (iii), f E £. 0

5. Bari’s Theorem

This section deals with matters which are now considered rather off the

beaten track and may be omitted. Bari’s Theorem 9 is a unification of

Mensov’s Theorem 6 with a theorem of Lusin.
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THEOREM 26. - Îf f : T ~ m is a measurable function then there exists
a continuous function F : T ~ C such that F’(x) exists with value f(x)
almost everywhere.

(However when we refer to Lusin’s theorem in other sections we mean
the much simpler result obtained in a first course on measure theory.)

The proof of Theorem 9 is obtained by adapting the proof of Lusin’s
Theorem given in the classic text of Saks [9, Chap. VII, sect. 2] and the
serious reader will probably start by reading that proof. In order to parallel
the proof in Saks we need to modify Lemma 3 and Theorem 4 though not
in any profound way.

LEMMA 27. - In Lemma 3 we may insist also that (vii) |03BC(J) - |J|| ~ b
for any interval J.

Proof. - Let J-l and E be as in Lemma 3. Let 03BCM be the "M-periodic"
measure obtained from M by taking M(Mr) = p(r) and M(u) = 0 if

u is not divisible by M and let EM = {Mx : x E E}. Automatically
J-lAI and EM satisfy all the conditions of Lemma 3. In addition, whenever
J = (2rJr/kI , (2r+l)7r/M),

and if I is a subset of J

Thus pm satisfies our condition (vii) provided only that M is large enough. D

Our new version of Theorem 4 runs as follows.

THEOREM 28. - Given any ~ &#x3E; 0 we can find a K1(~) &#x3E; 0 with the

following property. Given an y infinitely differentiable function f and any
ô &#x3E; 0 we can find a measure 7 and a measurable set A such that :
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(vi) |SN(,t)| ~ 03B4 for all t with f(t) = 0 and all N ~ 0,
(vii) supp T C supp f,
(viii) 17(J) | ~ ô for any interval J.

Proof . Let K1(~) be as in Lemma 3. Let E &#x3E; 0 be a small number

to be fixed later. By Lemma 27 we can find a positive measure pe with
support of Lebesgue measure 0 and a closed set Et with:

(i), ~(0) = 1,

(ii)~ |~(u)| ~ ~ for all u 0 0,
(iii)~ |Sn(03BC~, x) | ~ K1(~) for all n ~ 0 and all t E Et,
(iv)~ |TBE~| ~ ~,
(v)~ ~(u) ~ 0 as lu 1 --+ oo,
(vi), Sn(03BC~, x) ~ 0 almost everywhere,
(vii) t |03BC~(J) - |J|| ~ 03B4 for any interval J.

Now let À be Haar measure on TT and set PE = 03BB - pe and T = f03C1~. Let

A = E,. Conclusions (v) and (vii) are immédiate. Since

conclusion (ii) holds provided only that E is sufficiently small. We observe
that. if g is continuous,

and that if P is a trigonometric polynomial

as e ~ 0. Thus by a density argument,

for any continuous g. In particular

as e - 0. Thus, provided only that c is small enough, conclusion (i) holds.
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Continuing these rather routine matters, we observe that f is uniformly
continuous and so we can find an integer M ~ 1 such that if I is an interval
with |I| ~ M-1 then |f(x) - f(y)| ~ (4M+8)-1 03B4 for all x, y E I. Choosing
any x in I we have, using (vii)~ and the fact that À and M, are positive
measures, that

provided only that e is taken sufficiently small. Conclusion (viii) now follows
on decomposing J into at most M + 2 intervals I with |I| ~ M-1.

The remaining conclusions that we need to prove are (iii), (iv) and (vi)
of which only (vi) is of a type we have not proved before. Not surprisingly,
we imitate a standard proof of the Riemann localisation principle. Observe
first that there exists a constant C1 such that |(u)| ~ ci (1 + lui) -3 for
all r. Novcl set

We now have



- 106 -

for appropriate constants C2 and C3.
If we allow N ~ 00 we see that conclusion (iii) follows from (v)~ and

(vi)~. Also

provided only that E is chosen small enough. Conclusion (v) is now

immediate and we obtain conclusion (iv) by using (iii)~. ~

We need one extra condition to obtain a suitable measure and this is

given by conclusion (ix) in the next theorem.

THEOREM 29.2013 Given any il &#x3E; 0 we can find a K(~) &#x3E; 0 with the

following property. Given any infinitely differentiable function f and any
E &#x3E; 0 we can find a measure J-l and a measurable set E such that :
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Proof. - Set K(~) = 2K1(~/2). Apply Theorem 28 to obtain 1 and Al
obeying the conclusions of Theorem 28 with q replaced by q/2 and 6 by E/2.
If 1(0) = 0 we simply set p = 71 and E = A1. If not apply Theorem 28
again to obtain T2 and A2 obeying the conclusions of Theorem 28 with 17
replaced by q/2 and ô by |1(0)|/100. If 72(0) = 0 we simply set p = T2
and .E = A2. Otherwise, we set

and E = Al U A2. The conclusions of the theorem can now be read off. D

In the same way that we extended constructions involving trigonometric
polynomials to more general functions in proofs like that of Theorem 2
from Lemma 20 so we can extend Theorem 29 from infinitely differentiable
functions to all LI functions. (If f E LI then supp ,f is the support of the
rneasure u with d03C3(x) = f(x) dx.)

THEOREM 30. 2013 Given any f E LL and any e &#x3E; 0 we can find a measure
p such th at:

Proof. 2013 The proof, which is left to the reader, starts by writing f =

03A3~j=1fj with fj infinitely differentiable, supp fj ç supp f, 03A3~j=1~fj~1 ~
2111111 and ~fj~1 ~ 0 very rapidly as j - oo. 0

But Theorem 30 is precisely the the kind of thing we need to prove Bari’s
Theorem for L1 functions.

THEOREM 31. Given any f E LI, any closed interval l with f(t) = 0
for t ~ I, and any ~ &#x3E; 0 we can ,find a continuous function F of bounded
variation such that :
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Proof. - Let J-l be as in the previous Theorem 30, choose x E J if J is
non-empty, x = 0 otherwise and set

(Observe that condition (vii) of T’heorem 30 is required to make this

definition unambiguous.) Condition (i) of Theorem 30 shows us that F
is of bounded variation satisfying conclusion (i). Since Sn(03BC,t) converges
almost everywhere, (n) ~ 0 as Inl ~ 0, so p has no discrete component
and F is continuous. Conclusions (v) and (vit) are automatic and conclusion
(vi) follows from condition (vi) of Theorem 30. Finally, intégration by parts
shows that

for all r and so conclusion (iii) and (iv) follow at once from the corresponding
conditions in Theorem 30. 0

Theorem 30 corresponds to Lemma 2.1 in Saks’ account and from nou-
on w-e can follow [9] step by step. The next lemma corresponds to Saks’
Lemma 2.2. Note the change in condition (vi) between this lemma and the
preceding theorem.

LEMMA 32. - Given any f e L1, any closed set E with f (t) = 0 for
t E E, and any e &#x3E; 0 tue can find a continuous function F of bounded
variation such that :
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Proof. - By elementary metric topology we can can find closed intervals
Jr,.,, which do not intersect except possibly at end points and 1 &#x3E; ôm &#x3E; 0

such that 

and if x E E and + h e J(m) then |h| ~ Dm.

By Theorem 30 we can find a continuous functions Fm of bounded

variation such that:

Now set F(t) = 03A3~m=1 Fm(t). Then all the conclusions of the lemma

follow. Observe that by continuity Fm must be zero not merely on the
complément of I(m) but also at the end points of I(m). If we set
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then F(t) = Fm(t) for all t e I(m), F(t) = 0 on E. In particular (vi)m and
the definition of bm give conclusion (vi). AU the other conclusions, with
the possible exception of the statement that F’(t) = 0 for all t E E, follow
as simply. But the fact that F’(t) = 0 for all t ~ E follows at once from
conclusion (v) so we are done. 0

Our proof of Bari’s Theorem 9 now follows Saks’ proof of his Theorem
2.3 (Lusin’s Theorem).

Proof.2013 Let f : R ~ C be a measurable function. By elementary
measure theory, we can find non-empty disjoint closed sets Ej with T B
~~j=1 Ej of measure zero such that f is bounded on Ej (so that writing
nE ) for the characteristic function of Ej we have RE f E L~ and, as

a consequence, IEjf E L1). By Lemma 30 we can find we can find a
continuous functions Fj of bounded variation such that

(i)j var Fj ~ 12~IEjf~1,
(ii)j |rj(r)| ~ 2-j for ail r,
(iii)j 03A3Nr=-N ir j(r) exp(irt) ~ IEj(t)f(t)

almost everywhere as JBT ~ oc,

N

(iv)j 03A3 irj(r) exp(irt)| ~ 2-j for all t e ~j-1k=1 Ek and all N ~ 0,

(v)j Fj(t) = 0 and FJ(t) = 0 for all t E ~j-1k=1 Ek,
(vi)j |Fj(t + h)| ~ 2-jlhl for all h e T and all t E ~j-1k=1 Ek,
(vii)j F’j(t) = IEj(t)f(t) almost everywhere.

Since E1 is non-empty, conditions (v)j and (vi)j tell us that ~Fj~~ ~
2-j03C0 for an j ~ 2. Thus 03A3~j=1 Fj converges uniformly to a continuous func-
tion F. Conditions (ii)j show that r(r) = r03A3~j=1 j(r) and conditions
(iii)j and (iv)j together show that

almost everywhere on ~~j=1 Ej, and so almost everywhere on T as N ~ ~.
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Finally if t e ~~j=1 Ej then E EM for some M and conditions (vi)j tell
us that, whenever m ~ M and h ~ 0

Thus conditions (vii) j show that F is differentiable almost everywhere
on ~~j=1 Ej, and so almost everywhere on il, with F’(t) = f (t) almost
everyw here. 0

6. Oscillations of Partial Sums

The purpose of this last section is to prove Lemma 13 from which

Mensv’s Theorem 14 follows. The key result here is the next lemma.

LEMMA 33. - Given any interval [a, b), any c &#x3E; 0 and any integer N &#x3E; 0

U’f can find a real trigonometric polynomial P and a measurable set A such
that :

(i) (u) = 0 for |u| ~ N,
(ii) ~P~1 ~ f,
(iii) ISu(p, t)1 | ~ 1 + ~ for all t E [a, b]BA and all u ~ 0,
(iv) maxu2° Su(P, t) &#x3E; 1 - e and minu20 Su(P, t) ~ -1 + e

for all t E [a, b] B A and all u &#x3E; 0,

(v) |Su(P, t) | ~ e for all t ~ A U [a, b] and all u &#x3E; 0,

(vi) |A| ~ c.

1 shall conclude the section by indicating one proof of this, but we shall
first follow the rather easy path from here to Theorem 14.



- 112 -

We write U[,,,,b) for the indicator function given by I[a,b)(t) = 1 if t E la, b),
I[a,b)(t) = 0 otherwise. We say that a finite sum 03A3Mm=1 with 03BBm
real, is a step function. Simple scalar multiplication and addition converts
Lemma 33 to Lemma 34.

LEMMA 34. - Given any positive step function g, any e &#x3E; 0 and any

integer N &#x3E; 0 we can find a real trigonometric polynomial P and a

measurable set A such that :

(i) P(u) = 0 for |u| ~ N,
(ii) ~P~1 ~ ~,
(iii) |Su(P,t)| ~ g(t) +,E for all t E [a,b]BA and all u &#x3E; 0,
(iv) maxu~0 Su (P, t) ~ g(t) - e and minu~0 Su (P, t) -9(t) + e

for all t E [a,b]BA and all u ~ 0,

(v) |A| ~ é.

We can now prove a result of Mensov. (Recall that R R U {-~, ~}.)

LEMMA 35. - If g : T ~ R* is measurable and g(t) ~ 0 everywhere then
there is an f E LI such that

almost everywhere.

Proof . Write E’ = 1 x : g(x) = oc 1, and E = 1fB E’. By Lusir
theorem we can find a sequence of simple step functions gn and measural
sets Bn such that:

By Lemma 34 uTe can find sequences of real trigonometric polynomials Pn
measurable sets An and integer lV (n) with 0 = N(O)  lV(1)  N(2)  ..

such that, if n ~ 1,
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(i)n Ï.(u) = 0 for lul ~ N(n - 1),
(ii)n Il Pn ~1 ~ 2-2n,
(iii)n ~Su(Pn, t)| ~ gn(t) + 2-n for all t E [a, b] B An and all u ~ 0,
(iv)n maxu~0 Su(Pn, t) ~ 9n(t) - 2-n and minSu(Pn, t)  -gn(t) + 2-n

for all t E la, b] B An and all u ~ 0,
(v)n |An| ~ 2-n.

(vi)n fin ( u) = 0 for 1 u | ~ N(n),
We observe that condition (ii)n tells us that there exists a measurable set
Bn such that:

Condition (ii)n tells us that 03A3~n=1 Pn converges in LI to a function f.
Conditions (i)n, (vi)n and (ii)n tell us that (u) = Ê,(u) for N(n - 1) 
|u| ~ N(n). We set Dn = An U Bn U Cn. Automatically Dn+1 C Dn and,
by conditions (v)n and (viii)n, |Dn| ~ 2-n+3. We write D = ~~j=1 Dj and
observe that |D| = 0. If 1 e Dn and te E then, by conditions (iv)n, (vii)n,
(iv)n and bn,

Similarly, under the same conditions,

and
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If 1 e Dn and t ~ E we obtain similarly

Thus if t e D,

Since |D| = 0 this is the required results. a

Lemma 13 is an immediate corollary.

Proof. - Let f be as in Lemma 35. By Theorem 4 there exists a singular
measure y with ~03BC~ ~ 1 such that

almost everywhere as m - oo . By inspection has the required property. 0

Similar simple arguments using Theorem 6 now give Theorem 14.

We still have to prove Lemma 33. This is obtained by tightening up the
calculations used in proving a theorem of Marcinkiewicz.

THEOREM 36.2013 There exists an f E LI such that Sn(f,t) diverges
boundedly almost everywhere.

The calculations used in proving Marcinkiewicz’s theorem are themselves
obtained by tightening up the calculations used in proving the famous
theorem of Kolmogorov.

THEOREM 37.2013 There exists an f E LI such that Sn(f,t) diverges
unboundedly everywhere.

If the reader knows any proof of Theorem 37 she will probably be able,
after skimming through what follows, to adapt it to give Lemma 33. If she
knows no proof then 1 ask her to read either [4, sect. 3.6] or [8]. The key



- 115 -

ingredient is Kronecker’s lemma. (Recall that x1, x2, ... , xN ~ T are said
to be independent if the equation

with mj ~ Z implies mj = 0 for all 1 ~ j ~ N.)

LEMMA 38. - If Xl, X2, ..., xN ~ T are indepen.dent then given any
Yi y2, ..., YN e 7 and any c &#x3E; 0 we can find an integer M &#x3E; 1 such that

for all 1  j  N.

It is convenient to have the following result (proved in (8), but not hard
to prove for oneself).

LEMMA 39. - If xl, x2, ..., xN E 1f are independent and t ~ T then
we can find an ~ such that the points xj - t with j =1= ~, 1  j ~ N are

independent.

vV’e also need a clear understanding of the behaviour of the function

|sin s/2|-1 as exemplified in the next lemma.
LEMMA 40. - Let.

Then 10 log N &#x3E; dN &#x3E; 10g1BT for N ~ 2 and, if 03C0 &#x3E; a &#x3E; 0 and 1 &#x3E; ~ &#x3E; 0

are fixed,

as N ~ oc uniformly for 3 &#x3E; 03B4 &#x3E; ~ and 03C0 2:: (3 &#x3E; a. Also

as JvT -4 ~ uniformly for 7r &#x3E; s &#x3E; ~/N.

Putting these results together we have the following result.
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LEMMA 41. - Let la, b] be a non-trivial interval in Tan d let (b - a)/2 &#x3E;

~ &#x3E; 0. Provided only that u’e take 17 &#x3E; 0 sufficiently small and N sufficiently
large the following is true. Let

For each j ~ AN pick zj G IL in such a way that |xj - 203C0j/N| ~ q/N and
lhe x j are independent. Set

Then:

Proof. - Take ~ = c/10. Condition (i) follows from at once from

Lemma 40 provided that N is large enough so we need only look at the
remaining conditions. Observe that

and so

It follows thaï 
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If we compare

then the estimâtes of the type given in Lemma 40 yields condition (ii)
provided only that N is larger than some NQ independent of t.

Now look at condition (iii). Suppose i e ~j~AN [27r(j - é)/ N, 27r(j -
c) IN]. By Lemma 39 we can find a J ~ AN such that, writing B = ANB{J},
the xj-t with j e B are independent. By Kronecker’s lemma (Lemma 38)
we ca,n find an M ~ 1 such that

for all j E B and so

Comparing

with

and using estimates of the type given in Lemma 40 we see that

provided only that N is larger than some N1 independent of t. Thus

min Sn(03BC,t) ~ (-1+~) and a similar argument yields max Sn(03BC, t) ~ (1-~).
Thus condition (iii) holds for N large enough. Similar estimates (without
using Kronecker’s lemma) give condition (iv) for lV large enough

The transition from measure to trigonometric polynomial is standard.
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LEMMA 42. - Given any interval la, b], any c’ &#x3E; 0 we can find a real
trigonometric polynomial Q and a measurable set A such that:

Proof. - Let E = ~’/100 and let J-l satisfy the conclusions of the previous
lemma. A compactness argument (using the continuity of Sm(03BC, ·)) shows
that there exists an M ~ 1 such that:

Now consider the de la Vallée Poussin kernel

where 1B. M is the Poisson kernel (see [14]). If we set Q = J-1 * KM then
Q is a trigonometric polynomial of degree 2AI + 1 with Q( u) = jl( u) for
lui | ~ AI + 1. Thus:

Thus, if we set

conditions (iii) and (v) hold automatically.
To obtain (i) note that

and use condition (i) of the previous lemma. Finally observe that Q is a
convex combination of Sn(03BC, · ). More precisely,

Conditions (ii) and (iv) are thus direct consequences of conditions (ii) and
(iv) of the previous lemma. 0
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Lemma 33 is now immediate.

Proof of of Lemma 33. 2013 Take c’ = ~/(8N + 4) and let Q and A be as
in Lemma 42. We note that

and so, if we set

all the conditions of Lemma 33 follow directly from conditions of Lem-
ma42.D

This completes our discussion of the oscillation of partial sums and
concludes the paper.
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