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Entropy of topological directions

ANDRZEJ BI015A

andbis@imul.uni.lodz.pl

RÉSUMÉ. 2014 Une entropie peut etre associée à chaque chemin du graphe
de Cayley d’un groupe engendré par un nombre fini de transformations
lipschitziennes. La notion de direction topologique introduite dans cet
article nous permet d’étendre la définition de 1’entropie au cas "direction-
nel" et d’étudier le comportement ergodique d’un groupe le long d’une
direction (et pas seulement de facon globale). L’entropie de la direc-
tion topologique est introduite au moyen d’ensembles (n, ~)-séparés et,
de maniere équivalente, au moyen de recouvrements ouverts finis. Nous
démontrons une relation entre l’entropie classique et 1’entropie d’une di-
rection topologique.

ABSTRACT. - An entropy can be attached to every path in the Cayley
graph of a finitely generated group of Lipschitz transformations. The
notion of a topological direction, introduced in this paper, allows us to
carry the definition of entropy over the case of a direction and to study
the ergodic behaviour of a group along the direction (not only globally). .
The entropy of the topological direction is introduced by (n, ~)-separated
sets and, equivalently, by finite open coverings. A relationship between
classical entropy and entropy of a topological direction is shown.

1. Introduction

The notion of an end of a group was introduced in the 40’s by H. Freuden-
thal [Fre] and studied again by J. Stallings [Sta] and D. Cohen [Cohl], [Coh2]
in the 70’s. D. Cohen showed a new approach to the theory of ends of a
group which is purely algebraic in contradistinction to the combinatorical-
topological approach of H. Freudenthal and J. Stallings.

(*) Reçu le 23 janvier 1995
(1) Faculty of Mathematics, Lodz University, Ul. Stefana Banacha 22, 90 238 Lodz

(Poland)
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The notion of a direction of a group, introduced in our paper, is a suitable

tool allowing us to examine the action of the group on a topological space
in a more subtle way than by applying the theory of ends.

Using a properly defined equivalence relation, we obtain that the space
of ends of a group splits into equivalence classes-directions of the group.

E. Ghys, R. Langevin and P. Walczak [GLW] introduced the notion
of the topological entropy for a finitely generated pseudogroup of local
homeomorphisms of a metric space. They defined the topological entropy
of a foliation by the topological entropy of the holonomy pseudogroup of
this foliation. Making use the same method, one is able to introduce a
definition of the topological entropy of a topological direction by (n, ~)-
separated sets, (n, ~)-spanning sets and by a finite covering of a space.
There is an equivalence between those approaches. The examples included
in this paper emphasize the relations between the classical entropy of a
homeomorphism, the entropy of a finitely generated pseudogroup, defined
in [GLW], and the entropy of the topological direction. We show that the
entropy can be attached to every path in the Cayley graph of a finitely
generated group.

Let G be a finitely generated group of homeomorphisms acting on a
topological space X. We assume that G is generated by a finite set Gi,
G11 - Gi and Go = Let Gm . ~g E G : g = g1 ... , 9i E G1 ~
and let Cay(G, Gi) denote the Cayley graph of G generated by Gi.

DEFINITION 1.1.2014 Recall that the word distance d*( f, g) between two
elements of G is defined as the smallest m for which E Gm. . Let S
be the set of the paths in the Cayley graph Cay(G, G1). More precisely,
S consists of infinite sequences such that fn E and

Gl, for each n E N. We call two paths ( fn ), (gn) a --

equivalent if the sequence s(n) .- d*( fn, gn) is bounded. An algebraic
direction is an equivalence class of the relation N.

2. Entropy of topological directions

Let (X, d) be a compact metric space with a metric d, G a finitely
generated group of Lipschitz mappings defined on X, Gi a finite set of
generators of the group. We assume that idx E Gi, = G1.
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DEFINITION 2.1. - Let S be, as before, the set of the paths of the Cayley
graph of G generated by a finite set G1. . We call the paths ( fn) and (gn) of
S ~-equivalent if they are ~-equivalent and there exists a positive constant
c such that for all n E N and for all x, y E X we have

A topological direction is an equivalence class of paths in this relation.

Remark 2.2. - If X is a manifold and G a group with C1-class gener-
ators, acting on X, then each algebraic direction is a topological direction
(comp. Proposition 2.4).

DEFINITION 2.3.2014 Let

PROPOSITION 2.4. - Let M be a compact Riemannian manifold and G a
finitely generated group of Lipschitz transformations defined on M. Denote
by Gl a set of generators of G.

Then each algebraic direction .~i = ~( fp~~ ~, generated by elements of the
set Gl determines exactly one topological direction.

Proof. - At first, we notice that, for any ai > 0, b2 > 0, i = 1 , 2, ... n ,
we have the inequality

The sequences ( fp) and (gp) represent the same algebraic direction. So, for
any i E N there exist generators hi,l, ... , , hz,2, . - - E G1, such that
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and the sequence s( i) is bounded

where Àhi is the Lipschitz constant for the Lipschitz mapping hi E Gi.
In a similar way we obtain that there exists a constant 0  c«  oo such

that

{~~ y) n
{~ y) 

c . .

Putting c = max~c~, c~~~, we obtain the required inequality. D

Consider a topological direction represented by a sequence ( fp) .

DEFINITION 2.5. - Let n E N and ~ > 0. A subset A of the space X is
called (n, 6’) for any x, yEA with x 7~ y, we have

{x, y) > ~ .

Let s(n, ~, ( f p)) be the largest cardinality of any (n, ~, ( fp))-separated
subset of X.

LEMMA 2.6. -  ~2, then s {n, E1, (fp)) > .

Proof. - Each subset of X is 

rated in X. 0

The above lemma implies the correctness of the definition below.

DEFINITION 2.7.2014 Let
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LEMMA 2.8. - If sequences ( fp) and (gp) represent the same topological
direction, then s (( fp)~ - s ((gp~~ .

Proof. - If ~( fp)~ N = [(gp)] N, there exists a constant c > 0, such that
for all n ~ N and x, y ~ X we get

Let A be an ~n, ~, ( fp))-separated subset of X with the largest cardinality.
Then, for x, y E A with x ~ y, we obtain

Which yields that the set A is (n, e/c, (gp))-separated in X and that the
inequality

s (n, I , (gp)) > s ( n, E, (fp)) . .
holds. So

s«gp» > s«fp» . .

The inequality s((gp))  s((fp)) is obtained in a similar way. a

DEFINITION 2.9. - The number

h([fp]) := s((fp)) £%+ ~, (fp).°

- 

n~~ n

is called lhe entropy of lhe topological direction [( fp)] , in a finitely gener-
ated group G with respect 10 (abrev.: w,r.1. ) lhe generating system Gi .

We can introduce the second (equivalent) definition of the entropy of the
topological direction.

DEFINITION 2.10.- Fiz n e Nand e > 0. We call a subset B of lhe
space X an (n, e, (fp)) -spanning sel if for any z e X there exists b e B
such lhal

d(fp) (x, b)  ~.

Le1 r (n, e, ( fp)) denote lhe minimal cardinalily of an (n, e, ( fp)) -spanning
subset of lhe space X.
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DEFINITION 2.11.2014 Let

LEMMA 2.12. - If a sequence (fp) determines a topological direction in
a finitely generated group G, then r(( fp)) = s(( fp)) . .

Proof.- Let E be an (n, e, ( fp))-separated set with the largest cardi-
nality. Then E is an (n, e, (fp))-spanning subset of X. So s(n, e, ( fp)) >
r (n> E> (fp)) .

Consider an (n, e, (fp))-separated set A in X and an (n,e/2, (fp))-
spanning set B in X. Fix a mapping F : A - B such that for any z e A,
a point F(z) e B satisfies the condition

(~> ~’~» ~ § °
The mapping F : A - B is one-to-one. The cardinality of the set A is not
greater than the cardinality of the set B, therefore

~l’~> ~> (fP)) ~ ’~ l’~> § > (fP)) °

Passing to the limit, we get

Example ~. ~~ - Let G be a finitely generated isometry group acting
on a metric space X. Then the entropy of any topological direction in the
group G with respect to Gi is equal to zero.

Indeed, for any (n, ~, ( fp))-separated set A with the largest cardinality,
we have that for all x, yEA:
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so

( fp)) = s(0, ~, ( fp)) = constant

and that is why the entropy of this direction is equal to zero.

Remark 2.14. - Let G1 and Hi be two sets of generators of G. Let

k := max{min{f = hil ... E ~i}} . ’gEGi J

Fix a sequence (gp) representing a topological direction in (G,G1) Then,
there exists a sequence (hm ) representing a topological direction in (G, H1 )
such that for every p ~ N we get gp = hmp

Moreover, if x, y E X are (n, 6;, (gp))-separated in (G, Gi) then x and y
are (k . n, c, (hm))-separated in (G, H1). Denoting the entropy of (gp) with
respect to G1 by h ((gp), G1) we get that for certain positive number s:

S 1 ’ G1)  tt((ttm), H1)  s G1) .

Thus

h ((lZm ), H1) = 0 lff 1t ((9p) = 0 . 

We can introduce an entropy of a topological direction by using only the
family of open coverings of the space.

DEFINITION 2.15. - Let a and /3 be open coverings of a space X. . Then
a V ~3 is an open covering of X which consists of all sets An B where A E a,

In a similar way we can define a covering ai for a finite family of
coverings of X :

. n n-1

V ai := V ai V an .
i=1 i=1

We say that a covering 13 is subtler than a covering a if any element of 13 is
a subset of a certain element of a. We denote this by a -~ 13.

If a is an open covering of X and f : : X --~ X is a continuous mapping,
then is an open covering of X which consists of all the sets of the
form f -1 A, A E a .



66

DEFINITION 2.16. 2014 Denote by P the family of all open coverings of the

space X. . For any U E P we put

PROPOSITION 2.17..Let (an) be a sequence of open coverings of a
compact metric space X. . Assume that the diameters of an tend to zero.
Then there exists limn~~ h* ((fn), 03B1n); moreover,

lim h* ((fn), 03B1n) = h* ((fn)) .

Proof. - Let h* ((fn))  oo and ~ > 0. Choose a covering y such that

h* ~( fn), y~ > h* ~( fn)~ - ~. Denote by b the Lebesgue number for the
covering y. Choose no such that, for n > no the diameter of the covering
an is less than b. Then the covering an is subtler than y, so y ~ an . For

any j we get

thus

Finally we obtain

~* ~(fi ~l ~ ~* B(fi ~ ~ an~ ~ tt* B(fi ~ W’~ ~ ~((/.)) -~ ~
which proves that

h* ((fi)) = lim h* ((fi), an) . .

In the case h* ((fi)) = ~, the argumentation is similar. 0
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PROPOSITION 2.18. - ~et a sequence ( fn ) of continuous transformations
of a compact metric space X represent a topological direction Ii in a group
G w.r.t. G1, acting on X. . Then:

~1~ for any covering a of X with Lebesgue number b,

(2) for any ~ > 0 and any open covering y ofX, satisfying the condition
we have

Proof . (1) Let F be an (n, b/2, (/,))-spanning set in X of cardinality
r~n, b/2, ( fi)~ . Then

If not, then there would exist some z such that

i.e. for any x E F there exists i E ~0, ..., , n~ such that

which yields the inequality

a contradiction with the assumption that F is an (n, 6/2, ( fj)) -spanning set
in X .
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For each i the closed ball B ~,fi (~), b/2~ is a subset of some set of

the covering a, so

(2) Let E be an (n, ~, ( fi))-separated set of cardinality s(n, ~, ( fZ)) . We
claim that no set of the covering f-1i03B3 includes two distinct elements
of E.

Indeed, if there exist distinct x, y E E such that x, y E A E 
then , fi (y))  ~ for any i E ~0, ... , n~, which contradicts the
assumption that x and y are (n, ~, (fi))-separated.

Therefore 
, ,

THEOREM 2.19. - Let G be a finitely generated group of continuous map-
pings defined on a compact metric space X. Then, for any representations
( fp) and (gp) defining the same direction ~i in G w. r. t. G1, we obtain:

Proof. - Let ~ > 0. Consider the covering 03B1~ of X which consists of all

open balls with radius 6; and the open covering of X which consists of all
open balls with radius ~/2. Applying Proposition 2.18, we get

Passing with 6; to 0, we get

so
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We have just proved that

,L C{f2 ~> ’

If the sequences ( fn) and (gn) represent the same topological direction, then

- h ~(9i )~

therefore,
h* ((fi)) = ~* ~(gi )) . 0

~~ample 2.20

(a) Let M be a compact metric space and f : M --~ M a homeomorphism.
Consider a group G generated by f and a topological direction
Ii = ~(gi )~ N defined in the following way: for every i E N let gi = /~.
There exists a classical topological entropy htop( f ) of the mapping
f : ~VI -~ M; we also have the entropy of the topological
direction Ii in G w.r.t. Gi = Then the following
equality takes place:

.

(b) Let M be a compact metric space with metric d and let f : : M -~ M
be a homeomorphism. Fix numbers ci, c2 ci  c2 . Let
G = G( f ) be the cyclic group generated by f . Consider another
set of generators of G, the set

G 1 > ... , fc2, idM, .f C1 J , ... , f .

Fix a topological direction Ii = ~{gi)~ N in G w.r.t. G1, defined by
gi = where (ni ) is an increasing sequence of positive integers such
that

c2 = and ci = .

i~N i~N

We shall prove that the entropy of the topological direction Ii =

~(gi)~ N in G w.r.t. G1 satisfies the inequalities

c1 . htop(f) ~ h((gi)) ~ c2 . htop (f)
where htop( f) is the classically defined entropy of f : M -~ M .
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Let ~ > 0 and Take a minimal (mc2, ~, (fi))-spanning set
A. Then for any x E M there exists a E A such that

and, the more so

thus the set A is (m, 6’, and, consequently,

The mapping f is uniformly continuous, so, for any ~ > 0, there
exists 6 > 0 such that if y)  6, then

For an (m, 6, ))-spanning set B of minimal cardinality, we have
that for any x E M there exists b E B such that

that is why

therefore the set B is tc1 m, F, (fi))-spanning and
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Example 2.21

Let M be a compact manifold and G a finitely generated group of
transformations of M. As usual, G1 is a set of generators of G such that
idM E G1. Choose a topological direction K = [(gi)] in G w.r.t. G1.

In [GLW, p. 106], E. Ghys, R. Langevin and P. Walczak defined the
entropy hGLW ( G, G1) of G with respect to G1. Let

Gm = ~ 91 ~ .. g~ E 

Two points ~, y E Mare (n, ~, (gi))-separated if and only if

max {d(gi(x), gi(y))} > ~,

and this occurs if there exists gio E Gio , io E {0, ..., n}, such that

a 9io (y)) > ~ .

Thus the points, x, y are (n, ~)-separated in the sense of the definition
given in paper [GLW, p. 106]. So, the largest cardinality of an (n, ~, (gi))-
separated set is less than or equal to the cardinality of an (n, ~)-separated
set in the sense of the definition from paper ~GLW~ . Besides,

~ ((gi )) ~ G1) .

Generally hGLW is not a supremum of all .

PROPOSITION 2.22. - Let be the unit circle with Riemannian metric
d and G a finitely generated homeomorphism group of S‘1 generated by G1. .
Let Ii = ~(gi)~ , be a topological direction in G w. r. t. G1. . Then the entropy
of ~i is equal to zero.

Proof. - Using the continuity of elements of G, we get that there exists
~ > 0 such that for all x, y ~ S1 and g ~ G1:

y) _ ~ g(y))  1 . (*)

Choose ~ sufficiently small to satisfy condition (*). Then
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Let A be an (n - 1, ê, (fi))-spanning set on the circle with the minimal

cardinality. Denote by B a subset of ,S1 with minimal cardinality, for which
the distance between the closest points of S‘1 is less than or equal to E. Then

Put

C:=AU .

Fix a point x E S1. Then there exists some y E A such that

max {d(fi(x), fi(y))} ~ ~.

Define sets Io, I1, , ... , In-1, In in the following way:

(1) Ij is an arc of with end points f~ (x) and f~ ( y);

(2) the homeomorphism fj+1 f-1j transforms the arc Ij onto the arc Ij+1;
(3) the length of the arc In-i is less than or equal to ~.

There exists z E C such that fn(z) E In and d(fn(x), fn(z))  ~. The

mapping ( f n f ~ 11 ~ 
1 

tranforms homeomorphically the arc In onto the arc
. So fn_1 {z) E In_1 ; that is why

d (.fn-1 (~) (z)~ C ~ °

Similarly, 
(fn-l f-1n-2B2014i ? In-1 homeo In-2 >

SO In_2 .

It remains to show that d ( fn_2 (~), fn_2 (z)~  ê. The arc In-2 is the

homeomorphic image of In-i in the mapping ( fn_1 fn 12~ 1. The distance
between end points of In-2 is less than or equal to ~. Condition (*) states
that the length of In-2 is less than or equal to 1, so the shortest way between

and is included in the arc In_2 ; that is why the length of
the arc In-2 is less than or equal to ~. In consequence, we obtain
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Repeating the above argumentation, we get the inequality

~x), f~ ~z)) ~  ~

which proves that the set C is ~n, ~, ( f2 ))-spanning. Notice that

therefore the entropy of the direction ~i is equal to zero. 0

3. Expansive topological direction and entropy

DEFINITION 3.1. - Let K be a topological direction in a finitely generated
group G of transformations of a compact metric space (X, d). We say that
K is an expansive direction with a constant b > 0 if there exists a sequence
( fn) determining the direction ~i such that for every distinct x, y E X,
there exists m ~ N with the following property:

y) > ~ .

PROPOSITION 3.2. Let G be a finitely generated group of Lipschitz
homeomorphisms of a compact Riemannian manifold M. Then the entropy
of every topological direction in G w. r. t. G1 is finite.

Proof. - Consider a sequence ( f p ) such that ~( f p )~ ~ = . By induction
we obtain that for any p ~ N there exists ap > 0 such that for any x, y EM, ,
we get

fp(y))  y) .

Assume that 03BBp is the smallest number with this property. Let ~ > 0 and

A be the largest (n, ~, ( fp))-separated set in M. Then, for any x, y E A, we
have
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Put max ~ { ~i ~ i E ~0, ..., , n~ } U ~ 1 ~ ~ := en . Then for all x, yEA,

On 
 d(x,y)

that is why A is ( fp))-separated and we have the inequality

hence

Having regard to the fact that the volume of the ball B(r) with radius r
satisfies the condition vol B(r~ > crm where m = dim M, r E (0 , diamM],
c some positive number dependent on the curvature of M, we obtain

Notice that f G G1 ~~ n so

.

That is why the sequence an := 1/n log en is bounded and
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COROLLARY 3.3. - Let M be a compact connected Riemannian manifold
with metric d and let G be a finitely generated group of C1-class transfor-
mations of M. Then:

~1~ any generator f of the group G satisfies the condition : there exists
> 0 such that for all x, y E M,

f (y)) _ y) ~

(2) the entropy of any topological direction K in G is finite.

Example 3.1~
There are examples of an expansive direction generated by non-expansive

generators. Let F = Z2 operate on R2 through translations. Endow R2 with
the standard metric d and T 2 = II82 , ~ 2 with quotient metric d1

Define the mappings 03C6, 03C8 : R2 ~ R2 in the following way:

~(~1 ~ ~2) _ (~1 + ~2 ~ ~2) ~ >

03C8(x1, x2) - (x1 , x1 + x2) .

These mappings induce bij ective mappings 4;1, : T 2 -~ T 2 . The

generators ~1 and ~1 are not expansive but the topological direction K
determined by the sequence ( f n ) defined by:

is expansive.
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