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Classification of Riemannian flows
with transverse similarity structures(*)

TARO ASUKE(1)

203

Dans cet article, nous classifions les flots riemanniens avec
structures transversalement similaires.

ABSTRACT. - In this paper, we give the classification of Riemannian
flows with transverse similarity structures.

Introduction

The classification of transversely similar flows is done by Ghys [9] if the
codimension of the flow is two and by Nishimori ~13~ in some particular cases.
Thus we restrict ourselves in the case where the codimension of the flow is

greater than two. We assume throughout this paper, the foliations and
flows are assumed to be oriented and transversely oriented unless otherwise
stated.

The classification is based on the following theorem.

THEOREM [1]. - Let (M, F) be a Riemannian foliation with a transverse
similarity structure of a closed manifold N.~. Then the leaf space 1V~ of
the lifted foliation of the universal covering M of M is a simply connected
Hausdorff manifold, and the mapping 0394 : M ~ Rq induced by the developing
map is a covering map onto its image, denoted by X, and the natural
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projection p from M to M is a locally trivial fibration. Moreover, we have
either

1) (M, F) is an Rq)-foliation and we have X = or

2) (M,F) is a RqBRq0)-foliation and X is a connected
component of Rq0, where 0  qo  q.

The classification of (Isom+(Ilgq) , Rq)-flows is already done by Carrière
[5], thus we treat in this paper (Sim+(IlBq, IIBqo) , RqBRq0)-flows, which are

naturally Riemannian as we shall see later.

Before we state the main result, we make some definitions. First of all,
we denote by the positive real numbers.

DEFINITION . - We denote by the group of similarity transfor-
mations of Rq, namely, we have

Sim(Rq) = {g : Rq ~ Rq I = rgAgx + vg} ,

where x E Rq, rg E II$+, Ag E O(q) and v9 E Rq.

We denote by Sim+ (IIBq) the subgroup of Sim(Rq) which consists of
orientation preserving elements. We consider We put
|g| = rg for an element g For a subgroup G of Sim(Rq), we
denote by ~G~ the subgroup of defined by ~G~ = ~ g E G~-
Now we define a subgroup of by putting

Sim+(IlBq, Rq0) = {g E Sim+(IEgq) ( .

We denote by the identity component of Sim+ (Rq, Rq0),
and notice then that we have

Sim+ (ll8q, IIBq°) C X 

Rq0) = Sim+(Rq0) X SO(q1)

where q1 = q - qo.

If qo = 0, we use the following notation, namely, we put

CO+ (q) = ~0}) .



Finally by abuse of notation, we often denote by + v an element g of

such that g(x) = rAx + v.
Let M be an n-dimensional closed manifold and ~’ a q-codimensional

foliation of M. We say (M, ~’) is transversely similar if (M, ~’) is a

Then there is a homomorphism from to

which is called the holonomy homomorphism. We denote by
r the image of the holonomy homomorphism and by H the closure of r
in We denote the identity component of H by Ho and put
ro = r n Ho.
Now we consider Rq = x Rq1. For a point x in we write

x = (xo, x1) according to the decomposition Rq = Rq0 x Rq1. We introduce
a metric gH on X = Rq0 by the following formula, namely,

= 1 
2 go(~’) ~9H(X) = 90(x) ,

where go denotes the Euclidean metric and ( ~ . ~ ~ denotes the Euclidean

norm.

Notice that Sim(Rq, Rq0) acts on equipped with the metric gH
as a group of isometries, and hence (Sim+ (II8 q, I1$ qo ) , RqB Rq0)-flows are
naturally Riemannian.

Now we state the main result of this paper.

THEOREM A. - Let (M, ~’) be a Riemannian flow of a closed manifold
M of codimension greater than 2. Suppose that (M, ~’) is a (Sim+(IlBq, 

then M fibres over ,S1 and we have the following cases:

1) All the orbits of F are closed and form the fibres of a Seifert fibration.
In this case (M, ~’) is a (CO+(q), ~0~)-flow, and ro = ~1~.

2) We have |H0| = then (M, F) is a (CO+(q), The

flow ~ is finitely covered by the flow (Ng, defined below with log ~g~
being irrational. In particular, is a finite extension offo, which
is isomorphic to F x ~ 2, where F is a finite Abelian group.

3) We have ~1~, then each orbit closure is naturally equipped with
a transverse structure, where d is the dimension of
the orbit closure minus l. In this case, we have qo  2 and there are

following cases:

3a~ qo = 0: the fibres of the fibration equipped with the restricted flow
is obtained as the suspension of an isometry of a spherical manifold.



3b) q0 ~ 0: the ambient manifold M is finitely covered by a

Tq0+1-bundle over S‘q-q° -1 X ,S’1, , whose fibre is equipped with a fixed
irrational linear flow. In particular, the dimension of orbit closures
are the same and at most 3.

In the cases 1~ and ~~, the fibration M -~ ,S’1 is naturally defined so that~
each orbit is contained in a fibre.

In the cases 2) and 3b), there is no closed orbit and the holonomy
homomorphism 03C6 is injective. Moreover acts on lI$q, Rq0 freely
via ~.

Remark. - As we noticed above (Sim+(IIBq, IIBq°) , RqB Rq0)-flows are
naturally Riemannian.

The flows (N 9 ~g) in Theorem A are constructed as follows.

DEFINITION . Let g be an element of CO+(q~ such that 1  (q)  e.

Then g induces an automorphism y(g) on ,S‘1 x = ~0~~~~e~. . We
simply take the suspension of g, namely, we put Ng = Il8 x S’1 x and

put ~’9 = x ~p~ ~ p E S1 x rSq-1 ~, , respectively. Now we put =

(t - 1 , y(g)(p)~ and define as the quotient of by ~~(g)~.

Note that if HN denotes the closure of the holonomy group of (Ng 
then = 118 + holds if and only if log g ( is irrational.

As we have already mentioned in ~1~, we have the following corollary.

COROLLARY B. - Let (M, ~’) be a transversely similar flow of codimen-
sion q, q > 2. Suppose that all the orbits of ~’ are dense, then (M, ~’) is

an (Isom+ -flow and differentiably conjugate to an irrational linear

flow on the torus.

Theorem A is a generalization of the classification of transversely hyper-
bolic flows by Epstein ~fi~ . For the detail see Theorem 4.2.

Remark.- Noticing that the group of similarity transformations

Sim+ is naturally contained in the group of conformal transformations
of the sphere, we can consider transversely flat conformal flows whose holon-

omy groups are contained in In this case, it turns out that we

need to add only (SO ( q + 1 ) , Sq)-flows to the list of above theorems (see
[1]). This case is classified by Carrière [5].



This paper is organized as follows. In the first section, we give some
definitions and the proof of the first part of Theorem A. In the section 2,
we treat the case qi = q - q0 ~ 2 and the group Ho is studied. In particular
we will see that we have either or R+, and the latter
case is extensively studied. The case q1 = 2 is treated in the section 3. In
the section 4, the case |H0| = {1} is again considered and it is shown that
there is a restriction concerning dimension of the orbit closures. Then some
examples are given in the last section.

1. Prelimenaries

Let M be an n-dimensional closed manifold and F a q-dimensional
foliation of M. We say (M, ~’) is transversely similar if (M, ~’) is a

Rq)-foliation. We denote by M the universal covering of M
and by  the lifted foliation of F to M. Then there is a submersion
D : : M -~ JR q which is called the developing map and the holonomy
homomorphism § : : Sim+ (IIBq) . These mappings satisfy the
equivariant condition such that

D(’Y~) _ ~(’Y) D(~) ~

where x E M and y E The image of by § is called the

holonomy group and denoted by r.
We denote by H the closure of r in Sim+0 (R q, Rq0) and by H0 the identity

component of H. We put ro = r n Ho. It is well-known that this group Ho
is Abelian (See [6], [12] or [4]).

If we denote by M the leaf space of the lifted foliation (M, ~) and by p
the natural projection from M to M, then the developing map D factors
as A o p. Since the action of on M preserves ~’, we have a natural
action of on M. Then by definition, the mapping A satisfies the
same equivariant condition as D.
Now we begin the proof of Theorem A. First we show that under the

assumption M fibers over S1.

DEFINITION 1.1.2014 We define the radial vector field R on Rq0 as

follows. We consider RqBRq0 = Rq0 x {0}), where q1 = q - qo, and

put
Rx = where x = .

Note that R is invariant under the action 



PROPOSITION 1.2. Let (M,F) be a RqBRq0)-foliation
Then M fibres over S‘1.

Proo f . We define a I-form w by the formula

W=~H{~~’)~

Then w is invariant under the action of and hence induces a

I-form w on M.

An easy computation shows that w is closed and non-vanishing. Conse-

quently, the form w is also closed and non-vanishing. Then the proposition
follows from the theorem of Tischler ~14~ . ~

We refer this fibration M --~ S’1. Note that the group of the period
of w is equal to

Now we identify following spaces in the natural way, namely,

RqB Rq0 ~ Rq0 x Rq0 x Sq1 x R+.

Then = Sim+(IIBq°) x SO(q1) acts on Rq0 x Sq1 x I18+ by the
formula

(g1 ~ g2){~~ y~ t) _ g2{y)~ a

where (g1, g2 ) is an element of Sim+ (lI8 q° ) x 
From now on, by taking a double covering if necessary, we assume that

the holonomy group r is contained in Sim+0 (II8 q, II8 qo ) .
We will make use of the following proposition (see Bröcker and Tom

Dieck [2]). We leave the proof to the reader.

PROPOSITION 1.3. Let G be a Lie subgroup of SO(n) which is a

torus. If we consider G = then by taking conjugation, we can find
ai, ... E such that any element ~ E G "-_’ Td is uniquely
represented as

where 

( cos 203C0-1 (a2, x~ - 
sin 203C0-1 (ai, x~)R(qi,x) = 

sin 203C0-1 {a2, x~ cos 203C0-1 {ai , x~

and ~ ~ , ~ ~ denotes the Euclidean inner product.



If we have qi = q - q0 ~ 2, then X = IIR q B JR qo is simply connected and
the projection p from M to M coincides with the developing map D and
M is isomorphic to a connected component of Here if we have

qo = q - 1, then we consider one of the connected components. Then the
Ho-orbit of a point x in X corresponds to an orbit closure. However, if we
have qi = 2, then M is the universal covering space of and A
is the covering map onto In particular X is no longer simply
connected and we must take care. So we divide the proof into the two cases
according to whether qi is equal or not equal to 2.

2. The case where qi is not equal to 2

First we show the following lemma, which will play a crucial role in the
classification.

LEMMA 2.1.2014 If we have qo = 0, then Ho is contained in CO+ (q~ =
CO+(qI). . If we have qo > 0, then as a subgroup x SO(ql) we
have

Ho = x ,

where H1 is a closed, connected subgroup defined by H1 = H0~SO(q1) and
JR qo denotes the full group of parallel translations of 

Proof. - It suffices to show the lemma in the case where we have qo > 0.
First note that r cannot be contained in Isom(Rq) because X/r equipped
with the quotient topology is compact. In fact, if we suppose the contrary,
then any element g of r satisfies 9 ~ = 1. So the function d on X = 
defined by the formula

d(x) 

is invariant under the action of r, and thus defines a continuous unbounded
function on M. This is a contradiction. So possibly by changing the model

by a parallel translation, we can find an element yo of r of the form
ro where ro  1 and Ao E SO(q).

Let h be an element of Ho satisfying h(x) = r Ax + v. We define elements
hv,n of Ho by the formula

~=[~] >



then it is easy to see that we can find an increasing sequence I = (in) of
positive integers such that hv,in converges to the element hv of Ho given by

= ~-~-v. .

Now we define

V = {v E JR q there is an element h E Hoof the form h(x) = r Ax + v ~
= {v E there is an element h E Ho of the form h(x) = x + ~} . .

Then it is easy to see that V is a closed, connected Z-module. Thus V is a
vector subspace of JR q.

The same argument shows that we have

{ v E Rq there is an element h E H of the form h( x) = r Ax + v}
= {v there is an element h E H of the form h( x) = x + ~} . .

We denote by V1 this space, which is by definition H-invariant. Notice that
the identity component of VI coincides with V.

Now we claim that we have V = V1. Suppose the contrary and fix a
point p = (0, xo) E X = x (Rq1 B {0}). Then we can find a point
q = (u, xo) E Vi x {.ro} B ~ x which is nearest to p with respect to gH.
Notice that by definition of Vi we can find an element h of H given by the
equation h( x) = x + u.
We denote by dH the distance determined by gH, which is H-invariant.

Since yo(u) E holds we have

dH(P, - dH(P, ~ p + ~’o Aou)
 = q) ~

It follows that we have because we have ro Ao u E h1.
Thus we have u = 0, which is a contradiction. Therefore we have V = V1
and V is H-invariant.

Now we show that V coincides with . Suppose the contrary and
decompose Rq0 as V EB W, where W is the orthogonal complement of V
with respect to the Euclidean metric. It is straightforward that the action
of H preserves the decomposition

= V e .



Then for a point x in X C we write x = (XV, xw, according to this
decomposition and we define a function on by

f(x) = ~xW~ ~x1~ .

It is easy to see that the function f is invariant under the action of
and we have a unbounded continuous function on M. This

is a contradiction.

Now the commutativity of Ho and the fact that we have Rq0 ~ {0} show
that any element of Ho is of the form (x + v, B). . It follows easily that if we
put Hi = Ho n then we have

H0 = Rq0 x H1.

Now it is clear that Hi is connected and closed. 0

Note that in the case where qo > 0 holds, Ho is contained in 
If all the orbits are closed, whe have the following. Recall that we have

a fibration p : : M ~ M, whose fibre is either Il8 or ~S’1. .

PROPOSITION 2.2.2014 If all the orbits are closed, then a

(CO+(q) , Rq B {0})-flow whose orbits form the fibres of a Seifert fibration.
In this case, each orbit is contained in a fiber of .

Proof. - It is well-known that if all the orbits are closed, then the orbits
of F form the fibres of a Seifert fibration. The lemma 2.1 shows that we
have Rq0 = {0} and H is contained in CO+(q).

Since hall the orbits are closed, the group

is infinite cyclic, say (ro), where 1  ro.

Now we identify 51 with and denote by II the natural projection
from to 51. For any point x in M, we choose a lift x of x in M and
define

a(x) = .

The discreteness of H ~ shows that a is well-defined and coincides with /
defined above. Thus each orbit is contained in a fibre of ~. D



Now we look at the group then we have either |H0| = I18 + or

~1~.
First we assume we have |H0| = II8+, then Lemma 2.1 shows that we

have qo = 0 and there is no closed orbit. It follows easily that r acts on
x II8+ freely, and that the holonomy homomorphism § is injective.

We show that the following theorem.

THEOREM 2.3. Let (ltl, ~’) be a (CO+(q) , ~0~~-,flow with 
Ii8+. Then by changing the similarity structure without changing the flow,
we may suppose that the radial vector field induces a non-vanishing global
vector field on M which is tangent to the orbit closures and transverse to
orbits. Moreover we have Ho = II8+ x Ko and H = II8+ x where K0 and
K denote the kernel of the homomorphism ( . |, and acts on Rq B {0}
as a group of multiplications.

Proof. - Let ~i be as in the statement. Then ~i is compact and hence
admits the Haar measure ~c.

Let 03C3 be a section : H ~ Il$+. We define a vector field Xo on

x ~ 1 ~ by the formula

= dt t=1

Then Xo is tangent to the Ho-orbits.

Now we define a vector field X on by the formula

X(x) = k~Kk-1*X0(kx)d .

Then X is invariant under the action of 

We extend X to x by the formula

t) = t)) ~

where g is an element of H with ’ g ~ = t. .



The invariance of X under the action of ~i shows that X is well-defined.
Moreover we see that for an element h of H we have

= (hg) t)~ = t)~ .

That is, X is an H-invariant vector field.

Let ~pt be the 1-parameter transformation group associated with X, where
t E a multiplicative group. We define a diffeomorphism p : I~8 q ~ ~ 0 ~ --~

by the formula

t) = 1) 

where we consider I~8 q ~ ~ 0 ~ = S’q -1 xM+as usual.
Then clearly we have = R, the radial vector field, and that

H(x, t) = x II8+ for (x, t) E x II$+. By the invariance of X we
have for an element h of H that

p-1 0 ~t o p( x, t) = p-1 o h 1)) = p 1 (t~(~~ 1)~~
= 1)) , Ihlt) = (h(x, 1)) , Ihlt) .

Since X (x, 1) can be regarded as an element of co (q), we see that ~t is an
element of CO + ( q ) for each t . Thus p-1 H p acts on I~8 q B ~ 0 ~ as a subgroup
of CO+(q).
We consider ~ as a section of ] . ], then we see that from the above

calculation that ~(I18+) acts on ~0~ as a group of multiplications. Notice
also that if we have = 1 then we have p-1 hp = h as elements of CO+(q).

Finally, we choose a lift X of X to M so that X induces a vector field Y
on M. Since X is tangent to Ho-orbits, we see that Y is tangent to orbit
closures. It is clear that Y is transverse to orbits of ~’. This completes the
proof. D

We go back to the proof of Theorem A. Since ro is dense in R+, we can
find two elements g1 and g2 such , ~g2 ~ ~ is dense in II$+. Here we
assume that 1   holds.

Since Ho is commutative and r acts freely, we see from Proposition 1.3
that we have

Ho C R+ x (SO(2) ® ... C SO(2)) .



Thus we can write

g2 = |g2| (R(t1) ® ... ~ R(tl)) ,

where 

R(ti) = ( cos 
sin 

R(ti) = (
sin 203C0-1ti co s 203C0-1 ti)

We define an automorphism 03C8 of RqB{0} by the formula

~ ~ ... ° t ~ .
Let h = be an element of Ho, then routine

computations show that we have

= r exp (log|h| log|g2|)(R( s1 - log|h| log|g2| t1)~ ... ~ R (sl-log|h| log|g2| tl)) x.

Thus we have C CO+(q). In particular, by putting h = g2 we
have

Now let yi and y2 be elements of 7Ti(M) such that we have ~(~y1 ) = g1
and ~(y2) = g2, respectively. Then we consider a fibration

By taking quotient corresponding to (y2) we have a fibration

~ (~q B - ~1 x 

It is easy to see that N = M/ (y1, y2 ~ is compact, we see from the theorem
of Fried [8] that the flow on l’V is obtained as a suspension. Now it is clear
that the monodromy is given by thus we showed Theorem A in the case

= holds.

In this case we can describe ro more explicitly. We choose an orbit L
of ~’, which is not closed. Then L is a smoothly embedded torus equipped
with an irrational linear flow from 0. We denote by L one of the lifts of L to
M. Then we can choose an embedded torus TL in L which is transverse to



~’ ~~, so that we have L ^--, R x T~, where ? corresponds to the orbits and TL
denotes one of the lifts of TL contained in L. . It follows that D restricted on

TL is a diffeomorphism onto its image, denoted by CL and TL is a covering
space of TL. Since we have Ho = R+ x ~io and CL is determined from an
orbit closure, we have CL = UL x R+, where UL is an embedded torus in

defined by UL = CL n (5q-l x ~ 1 ~) .
In particular there are elements g1, ..., gk and h of ro such that

gl, ... , g~ generate the covering transformations and h induces
the holonomy of (L , Here we may assume the group ... , 

is contained in SO(q) and finite, and that > 1 holds.

Now we claim that we have ro = ..., gk, h). . In fact, lef f be an
element of ro, then we have

f = g03B111 g03B122 ...g03B1kkhb,
where ai, ... , ak and b are integers. Since ro acts freely, we have f =

g03B111 ... g03B1kkhb

.

Noticing that there is an injection from r/ro to H/Ho = which
is finite, we see that r and hence 03C01 (M) is a finite extension of F  Z2,
where F is a finite Abelian group.

Before we end the case where = JR+, we make one more remark. The
existence of the flow (Nq shows that there is no dimensional restriction
like the case where we have and qo > 0. However, if we assume
the singular foliation ~’ defined by the orbit closures is regular, we have the
following.

THEOREM 2.4. - Suppose that IIg+ and ~’ is regular, then we
have either ~~o = ~l~ or Ko = ,S’1, , where Ko is defined as in Theorem 2.3.
In particular the dimension of orbit closures is either 2 or 3, and each orbit
closure inherits a natural transverse similarity structure from (M, ~").

Proof. - Consider the foliation ~C defined by the action of Ao on 
Since F is regular, J~ is also regular. On the other hand it is known that
orbit closures are tori. Thus the leaves of 03BA consist of either points or tori.
It follows now from the theorem of Lu [11] that we have either Ao = ~ 1 ~ or
Ao = 51. The last statement follows from Theorem 2.3 0

Now we treat the case where we have Noticing that in this
case we have Ho C Isom+(JRd) for some positive integer d, we see that the
group Ho has the following structure.



LEMMA 2.5. - If {1} holds, then we have

where Ho = Ho n SO(q1) and Rq0 acts on Rq0 as a group of parallel
translations.

Notice that we have also Ho = pr2(Ho), where pr2 is the projection pr2
from Isom+(Rq0) x SO(q - q0) to SO(q - qo).

Now we show the following.

PROPOSITION 2.~. If we have ~1~, then M fibres over ,S’1
so that each orbit of ~’ is contained in a fibre. The universal covering
of the fibre is II8 x Rq0 x and naturally inherits a transverse

(Ii$q° x SO(q - qo) II$q° x -1) structure. Each connected component of
the lift of each orbit closure projects down to Rq0 x Td, where Td is a torus
contained in . The collection of such tori forms a singular foliation

of -1 defined by the action of the torus ~o .

Remark. - Later we will show that qo and d are under a strong restric-
tion.

Proof. - In this case Ho and ro are contained in Isom+ (Ii8 q) and the
group

lH l = {|h|| h E Hl

is infinite cyclic, say (ro) , where ro > 1.

Now we define a mapping a : M ~ ,5’1 as follows. First we identify ~S‘1
with and denote by II the natural projection from to ,S’1. Let
x be a point in Nf and choose a lift  of x in M. We write = (zo, z1),
and put

= 

It is easy to see by using the same argument as in the proof of Proposition
2.2 that the mapping a is a well-defined and coincides with ~, whose fibre
is equal to ~r (I~ x x 

-1 )) and union of orbits of ~’.



Now we choose an orbit L of F and let T be its closure. We denote by T
one of the connected components of the lift of T to the universal covering
of M. The projected image T of T in X by the developing map D = p is
contained in Rq x -1. . Noticing that II8 x T covers a torus, Lemma 2.1
shows that T is homeomorphic to Rq x Tq, where Td is a torus in Sq-q0-1.
The correspondence between T and T shows that the collection of such
tori as T forms a singular Riemannian foliation of Sq-q0 -1.

It is clear from the definition that Ho is a torus, which acts on 
faithfully. Then -1, is obtained as the orbits of the action of

Ho ~ ~

In the case where we have and qo > 0, there are no closed
orbits and we can repeat the same argument as in the case where we have

( = R+ to deduce that r acts freely on and the holonomy
homomorphism § is injective.

3. The case where qi is equal to 2

In this section we assume that we have q1 = 2, namely, Rq0 = Rq-2
holds. In this case, we take the universal covering of X = and
then follow the argument in the case where qi is not equal to 2.

We denote by Rg the rotation by angle 8 around JR q-2. Notice that l~e
commutes with any element of Now we put

Hq-1 = {x = (x1, ..., ~ Rq |xq-1 > 0, xq = 0},

and define a diffeomorphism h : x S’1 ~ by the formula

t) = .

Then we identify the universal covering space of with x Ii$

and the lift of Sim+0(Rq,Rq0) with x R.

The action of Sim+(JRq-2) x R on x R = x R+  R is given
by the formula

(~~ e)(~~ r~ t) = ~~(~)~ t + 8) ~

where (h, 8) is an element x IIB.



Now it is clear that the pair of mappings

(D, : (, 03C01(M)) ~ (Rq B Rq-2, Sim+0(Rq,Rq-2))

lifts up to a pair

(D, ) : (,03C01(M)) ~ (Hq-1 x II8 , x R) .

We denote by r the image of the holonomy homomorphism by Hits
closure in x Ii8 and by Ho the identity component of H. Notice
that the metric gH on Rq-2 lifts up to H given by

9H { x ) - r2 1 9E ( v ) ® 9E(t) ,

where x = (v, r, t) E Rq-2 R+ R = Then  R acts

as a group of isometries. For an element y = (gl, g2) of x I~B,
we PUt ~’Y ~ _ 

We have the following lemma, an analogue to Lemma 2.1.

LEMMA 3.1. We can write Ho as follows, namely,

0 = Rq0 x 1,

where H1 is a closed, connected subgroup defined by H1 = 0 n Ilg and Rq0
denotes the full group of parallel translations of .

Notice that Ho is contained in x and that H1 is equal to
either ~0~ or I~B.

Proof. - As in the proof of Lemma 2.1, we can find an element yo of r

being of the form yo = ro Ao, where ro  1 and Ao E SO(q). This element
yo lifts to an element r~o of r which satisfies

t) = (roAx, t + 8) .

Let h be an element of I~o satisfying

h(x, t) = (sBx + v, t + ~) .



Then the similar argument as in the proof of Lemma 2.1, we see that the
element hv given by the formula

t) = (~ + v , t)

belongs to Ho. Moreover we see that Ho contains the full group of parallel
transformations along Rq0 = 

Ho ~ ~ ~~~ t) ’~ ~~ + t~ t) ~ v E .

The rest of the proof is parallel to that of Lemma 2.1 and left to the reader. 0

We end this section with the following theorem.

THEOREM 3.2.2014 There is no closed orbit and each orbit is contained in
a fibre of 03BE : M - ,S1. The universal covering of the fibre is Rq0+2 and
naturally equipped with a structure of a flow. Each connected

component of the lift of the closure of each orbit projects down to Rq0 x
{one point} or Rq0 x R.

Proof. - The first assertion is a direct consequence of Lemma 3 .1. Then
note that we have

x R+) x R .

Now notice that the additive group

is infinite cyclic, say ~ro~ , where ro > 1.

We define a mapping a : M ^-_, ~$ x x R+ x I~ --~ by the formula

= r. .

Then as in the proof of Proposition 2.6, we see that a is well-defined and
coincides with ~, which is constant along each leaf closure.

Finally we recall that we have Ho = Rq0 x Hi where we have Hi = R
or Hi = ~ 0 ~ . This completes the proof. D



4. The dimension restriction

Here we give the proof of the remainder part of the theorem.

PROPOSITION 4.1.- Suppose that we have |H0| = {1}, then qo  2

holds. Moreover we have the following cases:

1) We have qo - 1 and then d is an even number. In particular, the

dimension of orbit closures in even.

2) We have qo = 2 and then d = 0 holds. In particular, the dimension

of orbit closures is 3. Hence M admits a Riemannian foliation whose
leaves are 3-dimensional tori.

Proof. - We may assume we have 0. We fix an orbit L of ~’, then
in the case where 2, we have L = 7r(R x Rq0 x T d x {t0}) for some
to E II8+. More precisely, if we fix a point x of Td, then we have
Hoz = x Td. . Here we consider Rq0 x Td  {t0} = Rq0 x Td.

Since we have ~ , we can choose an element yo = ro Ao of r such

that ~ro~ , where ro  1. Let G be the group obtained by dividing Ho
by the isotropy group at a point of Rq0 x Td. . Then G is naturally identified
with Rq0 x Td. . Now from the construction of the fibration a, if we denote by
~c the monodromy of this fibration, then we have the following commutative

diagram 
R Rq0 x Td 03C6 Rq0 x Td = G

~ 
, 

A
R x x Td Rq0 x Td = G

where ~p is the restriction of the developing map D to LI8 x JR qo x Td, and p
is given by conjugation by yo.
Now we go up to the universal coverings, then the above diagram lifts up

as follows. 
R Rq0 Rd Rq0 Rd

;1 = P
R x JR qo x ~ ) JR qo 

Here we identify Rq0 Rd with G.



Note that we may assume is a linear surjective mapping, and that by
Lemma 4.7 of [6] we may assume that  is of the form x ~ Ax + b, where
A E SL(qo + d + 1, ~) and b E 

In the case where we have ql = 2, we have L = x Rq0 x {s0} x {t0})
or L = 03C0(R x Rq0 x II8 x {t0}) for some so E II$ and some to E Thus we
can proceed as in the case where 2 holds.

Now let yo be the lift of the action of yo on Rq0 x Td, then the mapping
yo : Rq0 x Rd x {t0} ~ Rq0 x Rd  {rt0} is given by the formula

0(x1, x2) = (r0 B0x1, B1x2 + 03B80),

where Bo E SO(qo), Bl E SO(d) and (Jo E JR d. It follows that we have

(x1,x2) = (r0 B0x1, B1x2) .

Notice that, since we have ~(b) - ~p o ~c(0) = p(0) - 0, the lifted

monodromy can be replaced by the mapping

We will observe the eigenvalues of A. First note that the kernel is
one of the eigenspace of A and we let (Ao, ... , a,~ ~ be the collection of the
eigenvalues of A. Let be the basis of the generalized eigenspace of A j ,
where i = 1, ..., nj and j = 0, ..., , .~. Namely, we have

for some positive integer k.

We write (z) = {1(z),2(z)), where z E R x Rq0  Rd, then we have

~((A - ~)~~ = ((roBo - ~)~5~1 ~ (B1 - ~)~5~2~ .

It follows that we have

(roBo - = 0 and (Bl - ~1~)~~p2{vi ) = 0 .

On the other hand, since the collection = 1, ..., n j , j = 0, ..., , .~~
forms a basis of we have ~(vi ) = 0 only for i = 1 and j = 0 .



Now we assume that we have j ~ 0, then there are two cases:

1) 0 holds. We have = ro and ~p2 (vi ) = 0

2) cp2 (v2 ) ~ 0 holds. We have = 1 and = 0.

Since ~ is surjective, we have by changing the order of Aj that

|03BB1| = |03BB2| = ...= |03BBt| = ro, >

|03BBt+1 | = |03BBt+2 | = ... - | = 1 and |03BB0|  = r-q00,

where 1  t  qo, 1  s  d and t + s = .~.

We show that the characteristic polynomial gA of A is irreducible. Let

f be the minimal polynomial of Ao over Q, then we have f(A)vo = 0.

Noticing that v~ corresponds to the direction of the induced flow on L,
I(A) is a constant mapping on Since = 0 holds, we have

I(A) = 0 and hence the minimal polynomial of A is irreducible over ~ .
It is clear that gA divides the polynomial Since is an UFD

and f is irreducible, we see that g A is a power of f by a positive integer.
Since we have > 1, Ao is a simple root. It follows that f = gA holds
and hence g A is irreducible over Q. Thus any root of f is a simple root.

Now we suppose we have qo > 2, then we may assume that we have
~1, where denotes the complex conjugate. Of course Ai is an eigenvalue

and we may assume ~12 ~ ~1.
Let F be the minimum splitting field of f . We consider FCC. Let 03B8 be

an automorphism of F over Q such that 8(~1 ) _ ~~ holds, then 8 induces a
permutation among the eigenvalues. Since 9 is an automorphism of a field,
we have

8(~11 ) . 8(~1 ) = 8(~12 ) . 8(~12) .

This implies we have

= ro , m = -1, 0, 1 or 2.

But this is impossible since we assumed that qo > 2 and we have ro  1.

If we have qo = 1 and d is an odd number, the the number s defined above
is odd. It follows that A has 1 or -1 as its eigenvalue. This contradicts the
irreducibility of gA .



If we have qo = 2 and d ~ 0, then we can find an automorphism 03B8 of F
such that 9(a3) = Ao. Since we have ~~13~ = 1, A3 is not a real number and
hence A3 is another eigenvalue of gA satisfying ~a3~ = 1. Then we have

e(a3) ~ ~(a3) = 1 .

This shows that we have ro = 1, which is a contradiction. D

As we mentioned in the introduction, we have another proof of the
following theorem of Epstein [6]. This is the case where we have qi = 1.

THEOREM 4.2. - Let (M, ~’) be an Ifwe assume
that (M, 0) its both oriented and transversely oriented, then we have the

following cases:

1) All the orbits are closed and form the fibres of a Seifert fibration.

2) If there is a non-closed orbit, then (M, F) is differentiably conjugate
to the suspension of (T, ~’~, f) over S’1, where T is a d-dimensional
torus and 0’ is an irrational linear flow of T, where d is either 2 or
3, and f is a diffeomorphism of T preserving ~’~.

Proof. - The case 1 ) follows from the general theory of Riemannian
foliations. So we show the case 2).

As in [6], we see that in this case the flow is a (Sim+(JRq, Hq)-flow
and we have q - qo = 1. Hence holds and we have a fibration
a : M -~ ,5’1, whose fibre has a natural transverse 
structure.

The proposition 4.1 shows that we have qo  2 and the dimension of
the leaf closure is equal to q. It is easy to see that the closure of each
orbit is precisely the fibre of the fibration a. Then by the general theory of
the Riemannian foliation, we see that the induced foliation of each fibre is
locally constant. D

COROLLARY 4.3. - If we have 0 and q1 = 2, then M fibres over
T2 and the fibre is (qo + 1)-dimensional torus equipped with an irrational
linear flow.



Proof. - If we have qo = 2, then Proposition 4.1 shows that the Ho-
orbit of a p oint x = of R2 x I1g x is R2  {xs} x {p}. It follows
that the additive group

[H] = ~8 there is an element h c H of the form t) = (Ax + v t + 0))

- ~ 8 ~ there is an element h E H of the form h(x, t) = (Ax, t + 8) ~
is discrete, say 

We write D(x) = D2{~), D3(~)) and define a mapping ~ 
S’1 = x by the formula

~3(~) = {D2{~) mod 80 , D3{~) mod ro) . .

If we have y = then we have = ~(~)(~). The above argument
shows that we can write = (rk0 Axh + v, xs + ro). Thus 
defines a mapping ,Q from T2. It is easy to see that ~3 is a fibration.
The above construction shows that the fibre of ,Q is a 3-dimensional torus

equipped with an irrational linear flow.

If we have qo = 1, then again Proposition 4.1 shows that the Ho-orbit of
a point x = xs,p) of I~8 x II~ x Il8+ is Ii8 x x ~p~. Then the same
argument applies and we obtain the result. D

From now on, we assume that we have 3 and that holds.

Recall that in this case, we have the natural fibration cx : lt~l -~ whose

fibres are foliated by restricting 0.

THEOREM 4.4. - If we have qo = 0 and ~1~, then the fibre of
a equipped with the flow is obtained as the suspension of an isometry of a
spherical manifold.

Proof. - Let F be a fibre of a. Recall that in this case is an

{SO(q) , 5’~)-flow. Then the theorem of Carriere [5] applies and the result
follows. D

THEOREM 4.5. - If we have qo ~ 0 and {1}, then M is finitely
covered by a Tq0+1-bundle over x ,S‘1. . The flow restricted to each
fibre is a fixed irrational linear flow.

Proof. - First we assume qo = 2 holds. Let L be an orbit of 0, then

Proposition 4.1 shows that the developing image of a connected component



of (L) is R2 x {p}, where p E Thus Ho and ro act on x R+
trivially.
We put M = Since ro acts on x R+ trivially, a

simple argument shows that M is diffeomorphic to R+,
where is equipped with a fixed irrational linear flow induced by the
action of on 

Now recall that in this case we can find an element yo of ro such

that generates We put g = ~-1 (yo ) and write g = 
Sim+(qo) x then we can write

y~ t) _ y~ t)~ >

where (x, y, t) E x x R+ and g1 is the mapping induced from g1.
From this we deduce that if we put Mo = then Mo is a 

bundle over 5q1-l x 51.

Secondly we assume that qo = 1 holds. In this case we have the associated
singular Riemannian foliation defined in Proposition 2.6.
The proposition 4.1 shows that the leaves of this foliation is of even

dimension. It follows from Proposition 1.3 that trivial.
Now we can repeat the same argument as in the first case and the theorem
is proved. D

5. Examples

First we show examples related to the flows (Ng, defined in the
introduction.

Example 5. ~

Consider the Hopf fibration ,53 -~ 52 and let X be a vector field

tangent to the fibres. We choose X appropriately so that if we consider
its 1-parameter group then is dense in the fibre passing
through x .
Now we put X = 53 x and define transformations of X by

the formula t) = (x) rt) and t) = {x, 2t), respectively. Notice
that if we consider 53 as the unit sphere in C~ then we have

z2) _ ~

where 9 is an irrational number. Therefore p is an orthogonal transforma-
tion.



We put N = and consider the suspension (M, ~’) of (N, f ) over
,S’1, where f is the automorphism induced by y~. It is clear that (M, ~’)
is a {CO+(4) , JR4 B (0))-flow and that for a suitable choice of r, we can
construct both examples where the dimension of each orbit closure is equal
to 2, or where the dimension of each orbit closure is equal to 1. .

Example 5. 2

Let us consider T d = and let 03C6 be an automorphism of T d induced
from the parallel translation of JR d by a vector (81, , ... , 9d ) . We put

_ ... % R(0d_1 )) . .

If we choose y~ so that all the orbits are dense in Td, we can deduce from
Fried [7] that , ~’9 ) contains an orbit L such that the closure L of L in N9
equipped with the restricted flow does not inherit any transverse similarity
structure from F9.
Now we give an example where holds but ro is non-trivial.

Example 5.3

Let (M, ~’) be a such that the closure of each

orbit is of dimension 3 and forms a fibre of the fibration a : M --~ ,51, whose
monodromy map  is represented by the matrix

0 0 1
1 0 -1

0 1 0 /
This is just an example of Epstein [6]. We denote by § the holonomy
homomorphism and by D the developing map defining (M, ~’).
Now we put (M’, 0’) = x ,S’d , ~ x ,Sd ), where ~’ x ,Sd =

We define mappings

~~ : 7ri(M’) = --~ Sim+(JP$.d+3,JR2)
and

D’: M’ = M x Sd ~ Rd+3 B R2 = H3 x Sd

as follows, namely, we put

03C6’(03B3’) = 03C6(03B3) x idRd and = (D(x),p) .



As is easily seen, the pair (~‘, D‘) defines a transversely similar flow of M’
obtained as the suspension of the pair (T3 x ,Sd , ~c x id) over S’1.

This example shows that the codimension itself admits no restriction
while the closure of each orbit is of dimension at most three.
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