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On singular and supersingular invariants
of Drinfeld modules(*)

ANDREAS SCHWEIZER(1)

Nous considerons les invariants j des Fq[T]-modules de
Drinfeld de rang 2 singuliers et supersinguliers. Apres avoir donne
une liste complete de tous les invariants singuliers j E nous

construisons des "invariants universels supersinguliers" . Ce sont des

ensembles S(0) C C v~’(2) - - - d’invariants j singuliers, tels que pour
tout premier p E de degre 2n + 1, la reduction modulo p est une
bijection entre S(n) et les invariants supersinguliers en caracteristique p.
Nous donnons une construction similaire pour les premiers de degre pair.

ABSTRACT. - We consider j-invariants of singular and supersingular
Fq[T]-Drinfeld modules of rank 2. After giving a complete list of all
singular j E we construct "universal supersingular invariants" .
These are sets S(0) C C S(2) ... of singular j-invariants, such that
for every prime p E of degree 2n + 1, reduction modulo p is a

bijection between S(n) and the supersingular j-invariants in characteristic
p. A similar construction is given for primes of even degree.

0. Introduction

In it is proved that for every prime p E of odd degree d > 3,
reduction modulo p of 0 and the q values j03B2 = (Tq -T) -03B2)q-1) with
,~ E JF q , furnishes q +1 different supersingular invariants of Drinfeld modules
in characteristic p. If deg(p) = 3 these are even all of the supersingular
invariants.
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It is well known that 0 is the j-invariant of the Drinfeld module having
complex multiplication by Fq2 [T]. The fact that j03B2 is the j-invariant
of the Drinfeld module having complex multiplication by the order of
conductor T - {3 in Fq2 [T] (implicitly proved in led to the idea

of "universal supersingular invariants". Starting with S(0) = ~0~ and
S(1) = S(0) U ~j~ E these form a sequence of sets S(o) C S(1) C
S(2) C ... of j-invariants of Drinfeld modules having complex multiplication
by orders in the constant field extension such that for every prime p of degree
2n + 1, reduction of S(n) modulo p gives the supersingular invariants in
characteristic p in a one-to-one manner.

The idea to use quaternion algebras to establish injectivity of the reduc-
tion was inspired by a remark in [Ei2]; later I found out that [Ka] and [Da]
contain similar calculations.

The main problem in our argumentation bears some resemblance to
[Do], where the prime factorization of differences of singular invariants is
calculated. But while Dorman treats only maximal orders, it is exactly the
non-maximal ones we are interested in. On the other hand, much weaker
statements suffice for our intentions; we only need to know that certain
primes do not divide such a difference.

Many of our results (including Proposition 11) should carry over to
supersingular invariants of elliptic curves without difficulty (if they are
not already established). But calculation of some examples shows that the
existence of universal supersingular invariants for elliptic curves is doubtful
or at least not provable by our method.

1. Basic fact s ( compare [Gel], [Ge4])

Let Fq be a finite field with q elements, A := Fq [T] the polynomial ring,
and K := Fq (T ) its field of fractions. Throughout this paper p ~ A will be
a prime of degree d (i.e. a monic irreducible polynomial of degree d), and f
will be a monic element of A.

By .~i a~ (resp. we denote the algebraic (resp. separable) closure of
K and by 93 the integral closure of A in ~i a~ . Finally, is the completion
of K at the place oo = 

If L is an extension field of .~~ or of we say that the A-characteristic

of L is generic or char A (L) = p, respectively. For simplicity we assume that



L is algebraically closed and denote by L~T~ the twisted polynomial ring
with the commutation rule T 0 f = fq o T for all f E L.

A Drinfeld module (of rank 2) over L is an Fq-algebra homomorphism
~ : A --> L~T~, a ~ defined by ~T = LlT2 + AT + T with A, A E L
and 0. The element j(03C6) = is called the j-invariant of 03C6.
Interpreting T as Frobenius endomorphism f ~ lQ (i.e. associating to
u = 03A3 li03C4i E L{03C4} the polynomial u (X ) = 03A3 liXqi 

2 

E L[X]), the Drinfeld

module § defines a new A-module structure on (L, +) by (a, .~) ~ .

If § is a Drinfeld module in generic characteristic or in characteristic p
with p f n, then its n-torsion ker(~n) - {f ~n(.~) - 0~ is a free rank

2 A/n-module. The p-torsion for p = charA(L) is isomorphic to A/p or
trivial.

A morphism from the Drinfeld module § to the Drinfeld module Ç is an
element u of L~T~ such that u o ~T - ~T o u. The kernel of a morphism
is ker ( u ) _ ~ .~ E L : : u (.~) = 0 ~ . A morphism u from § to Ç is called an n-
isogeny, n E A, if there exists a morphism v from Ç to § such that v o u = (~~.
Then v is an n-isogeny from Ç to ~. Every non-zero morphism is an n-isogeny
for a suitable n. For example, if u(X ) is separable and ker(u) C 
then u is an n-isogeny.
An isomorphism of Drinfeld modules is a morphism u E LX. Two

Drinfeld modules § and Ç are isomorphic if and only if j (~) = j (~) .

An endomorphism of § is an element of the centralizer of ~T in L~T~.
Clearly, ~a E End(§) for all a E A. Hence we may (via ~) consider A as a
subring of End(§) .

2. Rational singular invariants

In this section we specialize to the case L = C where C is the completion
of the algebraic closure of As for elliptic curves over the complex num-
bers, the rank 2 Drinfeld modules over C are in one-to-one correspondence
with the rank 2 A-lattices contained in C (compare [Gel]).

If § and 1/; are two Drinfeld modules over C and Ai, A2 are the

corresponding lattices, then the morphisms from to 03C8 are in bijection
with the c E C such that cAi C A2. In particular, § and Ç are isomorphic
if and only if A2 = cAi for a c E CX. The existence of an n-isogeny from q;
to Ç is equivalent to the existence of a c E C x such that nAi C cA2 C Ai.



Sometimes we will write j(A) for the j-invariant of the Drinfeld module
corresponding to A. we may even write j(’-V) instead
of j ( A + Acv ) .

This may be used to define for n E A the Hecke correspondence on

j-invariants. If j = j(Ai) then consists of all j (A2 ) (counted with
multiplicities) such that nAi C A2 C Ai and A2 /nAi is a free rank 1 A/n-
module.

There exists a polynomial Y) E A~ X , Y ] such that for j C C the
divisor consists of the zeroes of j) counted with multiplicities.
See [Bae] for more information and for some explicit calculations.
The only facts we will need are summarized in the following theorem.

THEOREM 1 [Bae].2014 is a prime of degree d, then:

~a~ j) is a polynomial of degree q°~ + lover A[j];
~b~ Y) - (Xqd - Y)(X - mod p ("Kronecker congruence"~;

(c) a polynomial of degree 2qd with leading coefficient -1.

A Drinfeld module ~ over C or its j-invariant is called singular if End(§)
is strictly larger than A. From the interpretation on lattices one sees that
then End(§) is an imaginary quadratic order, that is, a (not necessarily
maximal) A-order B in a quadratic field L/K with ~ ~ We say that

~ has complex multiplication by B.

Example 2. 2014 Restricting the rank 1 Fq[T]-Drinfeld module defined
by T + T to gives a rank 2 Fq[T]-Drinfeld module with

complex multiplication by Fq[T] . From 03C6T = T2 + + T + T

one easily calculates its j-invariant, which in case q is even turns out to be

jins = = (Tq + r)(~~. .
Obviously, two Drinfeld modules having complex multiplication by an

order B are isomorphic if and only if the corresponding lattices are in the
same ideal class of B. We define

Tj CX - ~ (~.)~ .

Later we will need that the ideal class number of an order Bl with conductor
f in a maximal order B is

h(Bf) = 03C6L(f)h(B) [B*:B*f]



where * denotes the group of units, h(B) is the ideal class number of Band
~pL is the relative Euler function of L = Quot(B). It is defined by

= ~ (1 - q 
~If

where xL is the character of the quadratic extension L/K, that is, 
takes the values 0, 1, or -1 if p is ramified, split, or inert in L, respectively.

THEOREM 3 Let B be an imaginary quadratic order and ~. an
ideal of B. Then:

(a) is an algebraic integer;

~b~ is separable over Quot(B) with minimal polynomial HB(X);
(c) If Quot(B) is separable over K, then HB(X) E K[X] and hence 

is separable and algebraic over K of degree h(B).

Contrary to what is stated in ~Gel~, part (c) is not true if Quot(B) is
inseparable over ~~ .

LEMMA 4. - if 2 ~ q and j has complex multiplication by the inseparable
quadratic order then j is algebraic over K with minimal polynomial

2. Its degree of separability is = and its

degree of inseparability is 2.

Proof. - In view of Theorem 3 it suffices to show that j is inseparable
over Suppose j E . Then there exists a Drinfeld module § over

with invariant j. Since all torsion points of § are in the images
of § under isogenies are defined over But one of these images has
invariant 

LEMMA 5. - Let ~ be the Drinfeld module corresponding to the order
and det ~ be a Drinfeld module having complex multiplication by 

(a) If is a maximal order and ~ ~’ f, then there exists an af-isogeny
from ~ to ~ for some a with ~ ~ a.

(b~ If has ideal class number 1 , then contains all j-
invariants of Drinfeld modules having complex multiplication by



Proof

(a) Every ideal class in A[fw] contains an ideal ~,t = Aa + A(b - fw) with
a, b E A and p ~’ a. So there exists an af -isogeny from ~ to ~.

(b) If w is separable over K, then j(w) E K and E If

w is inseparable over then j(w) = jins and E 

Obviously ~ contains j(fw), so in either case (X ) must divide
. ~

Now we are ready to give the analogue of Weber’s list of the 13 rational

j-invariants of elliptic curves with complex multiplication (see for example
[Hu, p. 233]).

THEOREM 6. The following table is a complete list of all singular
j E Fq [T] together with the endomorphism rings of the corresponding
Drinfeld modules. The entries in the table are subject to the conditions
cx E IF’q , , 03B2 E Fq, and = Furthermore, ~ is a non-square in Fxq
and b a generator of FX4. Finally f denotes the conductor of the order 
and g is the genus of the function field 



Sketch of Proof

According to [McR], the function fields of the table are the only separable
imaginary quadratic extensions of Ifq (T) whose maximal orders have

ideal class number 1 . The corresponding values j(w) can be calculated by
the method of [DuHa] or looked up in [Ha], [Du] and [DuHa].

In some cases it is possible to descend to non-maximal orders of conductor
f whose ideal class number is still 1. The necessary and sufficient condition
for this is = q + 1 if = Fq2 [T], and 03C6K(03C9)(f) = 1 otherwise.
In any case j(fw ) lies in 1 ( j (W )) . For deg(f) = 1 the values of j ( f w ) have
been found as zeroes of (X, j(w)). . In the remaining case, xT2+T+1(o)
has been calculated via isogenies using a computer. D

One sees that in general there are only three types of separable imaginary
quadratic orders with ideal class number 1, namely: the maximal order

in the constant field extension, orders with conductor of degree 1 in the

constant field extension, and maximal orders in geometric extensions of
genus 0 where the infinite prime is ramified. For small q there are some
further orders whose ideal class number is 1 by accident.

3. Universal supersingular invariants

Throughout this section, p will be a prime in A of degree d.

Let k be the algebraic closure of the field Fp := ~4/p. We consider Drinfeld
modules in characteristic p (i.e. Drinfeld modules ~ : ~4 2014~ defined by
~T = OT2 + AT + t, where t is the image of T in A/p). Such a Drinfeld
module or its j-invariant is called supersingular, if its p-torsion is trivial, or
equivalently, if End(~) is not commutative (compare [Ge4]). Then End(~)
is a maximal order in BIp, the quaternion algebra over !{ ramified at p
and oo .

The set of all supersingular invariants in characteristic p (i.e. supersin-
gular j E k for the chosen p) will be denoted by Ep. Furthermore, we write

Fp2 for the (unique) quadratic extension of Fp in k.



THEOREM 7 ([Gel], [Ge2], [Ge4])

~a~ The cardinality of ~p equals the class number ofHp . More explicitly
we have

qd - 1 q2 - 1 if d is even,
#03A3p = {qd - 

q q2 - 1 + 1 if d is odd.

(b) 03A3p is contained in Fp2 and stable under Gal(Fp2 /Fp). Hence #03A3p =
+ 2~2(~) where is the number of supersingular invariants

in Fp and 03C32(p) is the number of pairs of conjugate supersingular
invariants in 

(c) If j E ~’~ is the invariant of a Drinfeld module having complex
multiplication by an order Band ~ is a prime above ~ in 

then j mod  is supersingular if and only ifp is ramified or inert in

Quot(B) .

If we reduce all j-invariants of Drinfeld modules over C having complex
multiplication by a certain order B, the reduced invariants are the zeroes
of HB(X) mod p. Hence the set of reduced invariants does not depend on
the choice of p above ~. Therefore we will sometimes a bit inaccurately use
the expression "reduction mod p " .

By Theorem 7(c), invariants of Drinfeld modules having complex multi-

plication by an inseparable order become supersingular modulo p for every

prime p.

Every Drinfeld module is isomorphic to one of the form ~~ = T2 ~- ~1T +T .

If 03C6 is singular, then a by Theorem 3(a).

If ~ is a prime above p in and a denotes a mod ~, then the reduction

of 03C6 is 03C6 : A ~ k{03C4} defined by 03C6T = T2 + AT + t. It is well known

that the reduction maps injectively into If 03C6 has complex
multiplication by an order Bl with conductor f and 03C6 is supersingular, this
induces an embedding c of Quot(Bf) into 

LEMMA 8. If f = ~e~ with ~ ~’ ~, then n Bf.
Especially, ifp ~’ f then is optimally embedded in 



Proof. - Clearly, c (Cauot(Bl)) n is an order B containing Bl.
If u is an element of End(§) such that u/ a f/: End(§) for all non-constant
a E A, then ker(u) is cyclic. Then, of course, ker(u) = ker(u) is cyclic, too.
In other words: End(§) for all non-constant a E A prime to p. This
shows B C Bj . . Since B is optimally embedded in the maximal order End(~)
of Hp , its conductor must be prime to p ([Eil, Satz 6]). Hence B = B f . 0

Now we assume that ~ and Ç are non-isomorphic Drinfeld modules having
complex multiplication by orders Bf1 and Bf2 with conductors fi and ~2 in
a maximal order B. == j ( 1/; ) mod p for a prime p above p, then
Ai and 03BB2 in 03C6T = T2 + 03BB103C4 + T, 03C8T = T2 + A2T + T may be chosen in
such a way that a1 _ 03BB2 mod 03B2 for a prime 03B2 above p. Then 03C6 and 03C8
reduce to the same Drinfeld module ø and isogenies u from § to Ç reduce
to endomorphisms of ~.

LEMMA 9. - Suppose ~ and ~ are given as above, have supersingular
reduction mod.p, and ~ ~’ ~1 ~2. . If one of the conditions:

. fl ~ f2.

. p is inert in Quot(B),

. B is inseparable,

is fulfilled, then End(§) and are differently embedded in End(§), i. e.

Quot(Bf1) ~ Quot(Bf2) in Hp.

Proof. - If fi ~ f2, the assertion is clear from the fact that End(~) and
End(Ç) are optimally embedded. So we may assume fi = f 2. Then by
Lemma 5 there exists an n-isogeny u from § to Ç with p f n, namely the
composition of the isogeny from ~ to the Drinfeld module corresponding to
B with the isogeny from this Drinfeld module to ~.

If = with c1 + (higher terms in T) E ~~T~ and
if m(X) E A[X] is the minimal polynomial of w1, , then w2 - c2 +

(higher terms in T) E ~B{?’} defined by u o W1 = w2 o u is a root of the
same polynomial in 

Now we assume = in Then w 1 and 12 are roots of

m(X) in k’(w 1 ). If B is inseparable this implies w 1 = w2 . We want to proof
this also for separable B. . If u = cu + (higher terms in T) E ~ ~ ~ ~ , then
u o 03C91 = w2 o u implies cuc1 = c2cu and hence cuc1 = c2cu. . But u E 
is separable (that is 0), thus ci == f2 . Since m( X) mod p is separable
(here we use that p is inert in B), we may conclude = 



In any case = implies u o w 1 = w1 o u and hence
u E n i.e. there exists ~ E with ?? = u.
As ker(u) contains no p-torsion, ker(u) must hold. But then

the images of 03C6 under ~ and u would be isomorphic, in contradiction to
j (~) . So the assumption was wrong, and the

lemma is proved. D

The conditions in Lemma 9 look somehow artificial and one might hope
that the same lemma (with a modified proof) also holds ifp is ramified.

LEMMA 10.2014 Suppose B = is a maximal order and X 2 + aX + b E
A[X] is the minimal polynomial of w. Denote by B1~ the order of conductor
fi in B. If there exist different embeddings ci of Bf1 and c2 of Bf2 (not
necessarily ~1 ~ ~2 !~ into a maximal order C~ of the quaternion algebra Hp ,
then

deg(p)  max{deg(a2f1 f2) , deg(bf1 f2)}.

Proof. - By assumption there exist W 1, w2 E C~ with = 0

and 03C92 ~ K(03C91). Hence 0 := A + Awi + + is a rank 4 A-

submodule of . As A contains s := = + ’-c.)2’-c.)1 + 

one easily sees that 0 is actually an order. An unnerving
calculation reveals that the discriminant of 0 is

D(3) = -(s + 2bfif2)(s - 2bf1f2)(s - a2f1f2 + 2bfl f2) .

Now ~ 0. Therefore p must divide one of the factors
above and we may conclude deg(p) ~ max~ deg(s), 
The minimal polynomial of is X 2 - sX + This implies
deg(s)  deg(bf1f2), for otherwise would be a real quadratic
subfield of IHIp. 0

If two orders j3i and B2 with Quot(B2) are embedded in 0,
a similar reasoning is possible but one obtains a weaker bound for deg(p).
Compare [Da, Theorem 6.1].

PROPOSITION 11. - Suppose 2 ~’ q and is a maximal imaginary
quadratic order. Denote by S(n) the set of j-invariants of Drinfeld modules
having complex multiplication by ~ with deg(f )  n. If ~ is inert in

and deg(p) > deg(D) + 2n, then reduction modp is an injective
mapping from S(n) into .



Proof. - Clearly, the elements of S(n) become supersingular upon
reduction. Suppose j, j’ 6 S(n) are different, but fall together modp. Then
Lemma 9 in combination with Lemma 10 shows deg(p) ~ deg(D) + 2n. D

A similar result holds for even q.

Now we define S(n) as the set of all j-invariants of Drinfeld modules
having complex multiplication by an order of conductor f in Fq2 [T] with

n. We use the expression "universal supersingular invariants" for
the elements of$(0) C C S(2) C ..., because it will turn out that in
this case reduction to Ep is surjective for all primes of odd degree.

LEMMA 12. - jt~) - j~ - 1) = ~-~.

Proof. - If L denotes the constant field extension F~2(r), then

#S(n) - #S(n - 1) = 03C6L(f) q + 1,

so we have to show 03C6L(f) = q2n+q2n-1. The generating function

(Z) := (03C6L(f)) Zn

has the Euler-product A(Z) = P[p Ap(Z) with

p(Z) = 03C6L(pn)Zdn = 1 + (1 - (-1)d qd) qdnZdn = 1 - (-1)dZd 1 - qdZd
where d = deg(p). If we define

M(Z) :=qnZn = (03A3 1) Zn,

n=O n=O 

then

with Mp(Z)=~Z~=201420142014~. °
P n=O 

1 - Z



Hence

~1. Z _-_ ~~ (qZ) and A Z = ~(qZ) .~~=Mp(~) ~ 
Now it is completely elementary to show

/ 00 B

1 + ~ (q2n + M(-Z) = M(qZ) , B ~l~=r1 /
and the lemma follows. D

PROPOSITION 13.2014 For any prime p e A of degree 2n + 1, reduction

modulo p is a bijection between S(n) and Ep. .

Proof. - From Lemma 10 one easily obtains #S(n~ == 
. Hence it

suffices to show that the reduction map is injective. If q is odd this is the

statement of Proposition 11. The proof for even q is almost the same. D

Ezample ~.2014 For q = 2 the set S(2) consists of the following 11 j-
invariants :

By calculation of resultants and discriminants and by substituting 0, jo,
and jo into the above polynomials, one can verify directly that these 11

values remain distinct modulo p for any prime p of odd degree d > 3.



If q is even, using the inseparable extension, we can also construct
universal supersingular invariants for the primes of even degree.

PROPOSITION 15. - For 2 ~ q denote by 6(n) the set of j-invariants of
Drinfeld modules having complex multiplication by ~ with n.

Then for any prime p ~ A of degree 2n + 2, the reduction modulo p is a

bijection between C.‘~~n) and ~~ .

Proof. - ~C~. (n) - #~~ is easily verified. The rest of the proof is the
same as for Proposition 11. ~

For 2 ~’ q there exists a weaker result.

PROPOSITION 16. - Let 2 ~’ q and D = aT + ~3 with a E , ~3 E Ifq . , If
S(n) := ~ ~ has complex multiplication by with deg(f )  n~, ,
then for every prime ~ of degree 2n + 2 which is inert in ~~ ~~/D ), reduction
modp is a bijection between S(n) and ~~ .

Proof. - If L = then proceeding as in the proof of Lemma 12
one obtains

(03C6L(f) Zn = (q2nZn) ( ~L(f)Zn)-1 .

Writing f as a polynomial in D one easily sees

£ = 0 for all n > 1 .

Thus

£ = q2n
deg( f) =n

and hence ~,5’(n) = #~ p . The rest is clear from Proposition 11. ~

It should be remarked, however, that there exist primes p which are not
inert in any field k( cxT + ), for example p = T6 - T4 + 1 E .

If for a prime p we define the Deuring polynomial Dp (X ) := fl (X - j),
the product being taken over all supersingular invariants in characteristic
p, then D p (X ) E Fp ~X ~ . Propositions 13, 15 and 16 may be reformulated
as the following results.



COROLLARY 17

(a) If Bl is the order with conduetor f in Fq2[T], then

for all primes ~ of degree 2n + 1. .

~b~ If 2 ~ q and ~ is a prime of degree 2n + 2, then

fl HA[fT](X) mod 03B2 = Dp(X),

where q3 is the prime above ~ in 

(c~ If 2 ~’ q and D = aT + ,Q with a E ,Q E , then

fl = 

for all primes ~ of degree 2n + 2 which are inert in 

We also mention the construction in [Ge3, p. ~97J . There, coming from
a totally different direction, polynomials Ad(X, Y) E A[ X , Y ] are defined
recursively, such that Ad ( 1, Y) mod p is a simple transformation for
all primes of degree d. This is also an efficient method to calculate D~ (X ).
These Ad(X, Y) seem to bear no relation to complex multiplication, so the
connection with our results is mysterious.
We conclude with some further results in the spirit of Corollary 17.

Following the line of proof in the classical situation (for example [La,
p. 143J ) , one can show the following proposition.

PROPOSITION 18

= - 

where the product is taken over all imaginary quadratic orders B containing
an element whose norm is associated to ~ and

- 1 if 2 ~’ q and .p is ramified in Quot(B)
2 otherwise.



Now Ae zeroes of HB(X) modp are supersingular if and only if p is ramified
in Quot(B). On the other hand, Kronecker’s congruence implies

~p(X,X)=-(X~-X)~=- JY (X - a)2 modp.

Combining the two, one easily obtains the following proposition.

PROPOSITION 19

(a) If 2 f q and 2 c! and 6’ is a fixed non-square in F) , then

n (X-~-)’. .

j supersingular

(b) If 2 { q and 2 { d and ~ is a fixed non-square in , then

n (X - ~)’ . .

j supersingular

(c) If 2 |q and p = s2 + with s, t ~ A not necessarily monic, then

n ~-~’

j supersingular

The supersingular invariants are closely related to Drinfeld modular
curves (compare [Ge2]). In particular, 1 is the genus of Xo(p) and
~(p) is the genus of X + (p ). A quick look at the degrees of the polynomials
in Proposition 19 shows the next corollary.

COROLLARY 20.2014 The genus of the curve X+(p) is

1 4(2g(X0(p)) + 2 - if 2 q and 2 d,

g(X+(P)) = 1 4(2g(X0(p)) + 2 - h(p) - h(~p)) if 2 q and 2 d,
1 2(g(X0(p)) + 1 - qdeg(f)) 

if 2 |

q 
and p = s2 + Tt2.B Jl t / .

We remark that this formula has already been proved in [Ge2] (for
2 { q) and [Sch2] (for 2 [ q), calculating the ramification of the covering
Xo(p)-X+(p).
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