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Scattering theory with two L1 spaces:
application to transport equations

with obstacles(*)

MUSTAPHA MOKHTAR-KHARROUBI(1),
MOHAMED CHABI(1) and PLAMEN STEFANOV(2)

Annales de la Faculté des Sciences de Toulouse Vol. VI, n° 3, 1997

Nous donnons une théorie des opérateurs d’ondes pour les
groupes positifs agissant dans deux espaces L~ et relions leur existence a
des principes d’absorption limite dans l’esprit de [2]. Une application a
des equations de transport dans des domaines exterieurs [1] est donnée.

ABSTRACT. - We give a theory of wave operators for positive groups
acting on two L1 spaces by relating them to limiting absorption principles
in the spirit of [2]. An application to transport equations in exterior
domains [1] is given.

1. Introduction

This paper is motivated by existence of wave operators for neutron like
transport equations in exterior domains. The existence of such operators
will imply that the time evolution of the transport solution is asymptotically

I -~ oo) equivalent to that of a free solution (i.e. with no collision nor

obstacle) on the whole space. This problem was already analyzed directly
by Stefanov [1]. Our aim here is to tackle it by means of the abstract ideas
introduced by Mokhtar-Kharroubi [2] to deal with scattering problems on L1
spaces. Such ideas rely on limiting absorption principles and are intimately
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connected to positivity and to the L1 structure of the underlying space (i.e.
the a d d iti vit y of the norm on the positive cone). We note that the abstract
scattering theory in [2] is concerned with two groups acting on the same
L1 space and differing only by a (relatively) bounded perturbation of the
generator. Our purpose here is to extend this formalism to groups acting
on different L1 spaces. This is clearly necessary in view of the comparison
of exterior Cauchy problems to free dynamics on the whole space. Of course
some compatibility conditions relating the two spaces are to be imposed. In
our concrete problem the two spaces are related by the restriction operator
(to the exterior domain) and the (trivial) extension operator to 

Actually in the abstract framework we give in the first part of this paper,
the two L1 spaces are connected by abstract operators under a structure

assumption.

We point out that scattering problems with two spaces were analyzed
by several authors (e.g. Kato [3], Birman ([4], [5]), Schechter [6]). However
they deal with unitary groups on Hilbert spaces while we are concerned with

positive groups (in the lattice sense) on L1 spaces. Actually the problems
are different as well as the mathematical tools to deal with them. In our

analysis the positivity and the additivity of the L1 norm on the positive
cone play a key role. More precisely our framework is the following.

Let X = and Y = be two L1 spaces and let ~ t E 
be a positive and bounded group on X with generator T. . Let B E

,C (D(T), X ) be a positive operator and ~ U(t) ~ t the group generated
by T + B. Finally let E be a positive and bounded group on
Y with generator G.

We are concerned with the existence of the wave operators

where R E ,C{~’; X) and J E .C(X; ~’). Our basic assumption is

Then taking advantage of some results of [2] one proves that the existence
of W- (T + B , G) and W+{G T + B) is closely related to the existence of



the strong limits B (A - T) -1 and s-lim~~o_ B(A - T) -1 and to
the size of their spectral radii. We also give converse results which show the
optimality of our assumptions.

In the second part of our paper, we consider neutron transport equa-
tions in exterior domains where T stands for the advection operator with
reflecting boundary condition, and B for the collision (scattering) operator,
while G is the advection operator on the whole space. Then we show how
our abstract formalism applies to this problem. In particular we show how
Assumption (H) may be verified using some technical results by Stefanov [1]. .

2. Existence of the wave operators

In this section we shall recall some results of [2] and give sufficient
conditions for the existence of wave operators defined in section 1.

Let X, Y, Uo(t), Wo(t) and B be given as in section 1 then we have the
following results.

THEOREM 1

1) If = exists and ]
 l, then T + B generates a positive and bounded (co) semigroup
{U(t) It 2:: 0~ and Uo(-t)U(t) exists.

2) If, in addition, Wo(-t)JUo(t) exists, then W+(G, T +
B) = Wo(-t)JU(t) exists.

Proof. - See [2, Th. 1 and Th. 4] for the first part. For the second

part, we consider the decomposition

Since

exist, we have the result. 0

THEOREM 2

1~ Let and exist and ~  1;
then T + B generates a bounded (co) semigroup ~U(t) ( t > 0~ and
W_ (T + B , T) = U ( -t ) Uo (t ) exists.



2) If, in addition, exists, then W-(T+B, , G)
= exists.

Proof. - See [2, Th. 1 and Th. 2~ for the first part. For the second

part, we consider the decomposition

Since Uo(-t)RWo(t) and U(-t)Uo(t) exist, the
result follows. D

3. Converse results

We prove converse theorems to show that our assumptions are necessary
in some sense.

THEOREM 3.2014 Let B ~0~ - ~’) 
-1 

exist and r~ [B ~0~ - T) 1~  l; if

exists then W+(G, T) = Wo{-t)JUo{t) exists.

Proof. - In view of [2, Th. 1)], T + B generates a (co) group U( ~ ) and
then by [2, Th. 3], the strong limit U(-t)Uo(t) exists and the
result follows from the decomposition

In the following, another consequence of the existence of the wave

operators is given.
Let Wo ( ~ ), Uo ( ~ ) J, R and B be as in section 1 such that T+ B generates

a (co) group (not necessarily bounded).
We introduce X* the dual space of X and R* the dual of R defined on

X* , then we have the following theorem.



THEOREM 4

~~ Let there exist a1 > 0 such that

and let W+(G , T + B) exist ; then ~~(t) ~ t > 0~ is bounded,
 1. .

2) Let there exist a2 > 0 such that

and le1 W - (T + B, G) exist; then (U(t) It > 0) is bounded,
B (0+ - exists and ra [B (0+ - T)-1]  l .

Proof

I) Suppose that W+ (G , T + B) exists then, by the uniform boundedness
theorem, there exists M > 0 such that

i.e. U( ~ ) is bounded.

Finally using [2, Th. 6 and Corol. 2] yields the result.

2) Suppose that Y~ (T + B , G) exists then, by the uniform boundedness
theorem, there exists M > 0 such that

or equivalently II Wo (t)R*U*(-t)II  M and

i.e. ~ U*{t) ( t > 0} is bounded, consequently ~ U{t) ~ t > 0~ is bounded and
we argue as in the first part. 0



4. Application to transport equations in exterior domains

We consider a problem studied by Stefanov [1]. First of all, we introduce
the relevant operators.

Let Q be the exterior of a compact obstacle e with twice

continuously differentiable boundary ~03A9 and let V = We define the

operator To by

where w denotes the velocity obtained by reflecting v at the point x with
the explicit expression

where n denotes the inner normal to 8Q at the point x E 8Q and ( . , . ) is

the scalar product in 

It is known (see [1]) that, with a suitable domain D(To), To generates
the following (co) group on L1(0 x V)

where

denotes the flow in the space of a particle starting from the point x with

velocity v. Let ~a( ~ , ~ ) E x V) be the collision frequency and let T
be the operator defined on D(T) = D(To) by

then (see [1]) T generates the following (co) group:

The collision operator is defined as

where l~(~, v, v~) > 0 a.e.



On the other hand, let Go be the advection operator on x ~)

then Go generates the (co) group (of isometries) [7]

Let ~p ( . , . ) = f k( . , v , . ) dv . We introduce some assumptions on O, ~a
and .

DEFINITION . - We say that the obstacle O is non-trapping if for every
compact ~~ C Q, there exists a constant such that

(where ~h~ is the caracteristic function of k’~.

Remark l. - O is non-trapping means that for every compact ~~’ C fi,
there are no trajectories with lengths greater than .~(Iz’) having their initial
and final points in K.

We introduce the assumptions

Remark 2. - Since v) is measure preserving, So( . ) is a (co) group
of isometries. On the other hand, (Fl) is necessary and sufficient for



~Uo{t) ~ t  0~ to be bounded, while ( t > 0~ is always bounded
when is positive.

Let Co {S2 x V) (resp. x V)) denote the subspace of C~0-function
f on S~ x V (resp. I~~ x V) such that f (x, v) = 0 for ~v)  vo, where vo is

a constant depending on f , then Co (S2 x V) (resp. x V)) is dense
in ~1 {S2 x V) (resp. L1 x V)) [7] and we have the following results.

LEMMA 1. For C denote ~f~K = 
Then

dt  oo for all f in x V) and for all compact
~~ C ~ N~

a2) ~W0(t)f~K - 0 as t ~ -~ for all f in x V) and for all
compact ~1 C 

bl~ let e be non-trapping, then

for all f in C~0(03A9 x V) and for all compact K C S2;

b2) Let e be non-trapping, then

for all f in x V) and for all compact K C Q.

Proof. - Let f e x V) and let K C RN be compact; then for
t - -cxJ

so that

On the other hand, 1 implies

by density arguments. This ends the proof of al) and a2).



bl) and b2) were proved in [1] when = 0, we use the same arguments.
Let K ~ 03A9 be compact and let f E x V).
Denote by the caracteristic function of the set K and let f E

x V), then

since Tt{x, v) is measure preserving, using a change of variables (y, w) =
T t{x, v), we get

this proves b 1 ) .
Finally, since the function t 2014~ (I Uo{t) I) ~ is uniformly continuous, we

derive b2) for f E x V) and we end the proof by density arguments. 0

We introduce the inclusion operator J : x V) -~ x V) and the
restriction map R : x V) -~ x ~), then we have the following
result relating Uo(t) to Wo {t ) .

THEOREM 5

1) Let (F0) hold, then the wave operator

~~ Let ~ be non-trapping and let ~Fl~ hold, then the wave operator



Proof. - Let d > 0 be such that e E II~~ ~  d } and let 
be a smooth function such that

and denote by 03C6 the multiplication operator by the function 03C6(x). Then for
V), we have

By Lemma 1 a2),

On the other hand,

let f E x V) then, by using Lemma 1 al),

By changing variables and using assumption (FO), we get

so that the wave operator Y~ {~’, Go) - exists

by density arguments. For 2), the same arguments give for x V)

Wo{-t)JUo(t) f = + .

By Lemma 1 b2), 
’

On the other hand,



Let f E x V), then by using Lemma 1 bl),

By changing variables and using assumption (Fl), we get

so that the wave operator W+(Go, T) = Uo(-t)RWo(t) exists
by density arguments. 0

Finally we consider the perturbation B and begin with a result which
shows that the above assumptions are sufficient for the existence of the
absorption limits.

LEMMA 2

1 ) Let hold, then = B ~a - T~ -1 exists and
T 1  

2) Let (Fl) and (F3) hold, then B ~0_ - = - 

exists and - 

.

Proo f

1) Let V), we have

the monotone convergence theorem yields for f > 0 and ~1 --; 0+

On the other hand



since ~a( ~ , ~ ~ > 0 and v’) is measure preserving on S2 x V (see ~l,
Th. 2.1]) and using Fubini theorem, we get

Now let (F2) hold then

i.e. B ~0+ - T~ 
1 

exists and T~ 1 II  F+(Qp).
2) For f E x V) and A  0, we have

then -B ~~ - is a positive operator for A  0, as in 1), ~ ~0_ - 
exists if(F3) holds and F- t~a} ’ ~

The application of Theorems 1 and 2 gives the following results.

THEOREM 6

1 ) Let ~FO~-~F3~ hold and let  1 then the wave operator

~~ Let e be non-trapping and let ~Fl~ and hold and let  1,
then the wave operator

Proof

1) In view of Theorem 5 1), exists and by
Lemma 2 2), B ~0+ - T) 1 exist 

 1, then the result follows from Theorem 2.

2) In view of Theorem 5 2), exists and by
Lemma 2 1), B(0+ - exists and  l,
then the result follows from Theorem 1. D
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