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Local uniform convergence of the Riesz means of

Laplace and Dirac expansions(*)

MIKLÒS HORVÁTH(1)

Annales de la Faculté des Sciences de Toulouse 
~ 

Vol. VI, n° 4, 1997

R~SUM~. - On considere des extensions arbitraires non autoadjointes
a spectre discret de 1’operateur de Laplace défini sur un domaine borne
SZ. On etudie les developpements spectraux associés. On demontre que
si la fonction developpee se trouve dans un espace convenable et s’annule
pres du bord, alors le developpement converge uniformement dans chaque
compact K On demontre aussi un principe de localisation.
Finalement, on obtient les memes resultats pour les développements
suivant les fonctions propres de l’opérateur de Dirac.

ABSTRACT. - We consider arbitrary nonselfadjoint extensions of the
Laplace operator with discrete spectrum, defined in a domain ~. We study
the corresponding spectral expansions. We prove that if the expanded
function is sufficiently smooth and vanishes near the boundary then
the expansion converges locally uniformly. We prove also a localization
principle. In the final part of the paper, we obtain the same results for
the Dirac expansions.

0. Introduction 

This paper investigates nonselfadjoint Laplace operators with arbitrary
complex discrete spectrum. If the eigenfunctions form a Riesz basis in L2
(see [26]), it makes possible to study the expansions in this basis. We

prove two theorems. The first one states that if f is sufficiently smooth
then the Riesz summation of the expansion of f converge to f locally
uniformly. Theorem 2 states a localization principle like that of Riemann
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for ordinary Fourier series. The class Hp of smooth functions are defined
by finite differences. Since Hp contains most of the known function classes
(Sobolev classes, Liouville, Zygmund-Holder, Besov classes; [21] or [4], [24]),
hence our theorems hold also for those classes (with the same indices a
and p). To avoid technical difficulties in the boundary of the domain Q

considered, we assume everywhere that the function expanded vanishes near
the boundary. As we see from the statement of theorems, if we increase the
summation order s, the convergence holds also for less smooth functions.

The convergence is proved by the usual Banach-Steinhaus principle: the

operator of taking Riesz means is bounded in norm (Lemma 2) and there
is a dense subset where convergence holds (Lemma 5). The boundedness
of the Riesz means is proved by the square sum estimate of Fourier
coefficients (Lemma 4) and by the square sum estimate of eigenfunctions
(15). Using these results, any sum ~ cn(f, can be estimated by
the Cauchy-Schwarz inequality; this is the basic idea in proving Lemma 2.
The eigenfunctions un satisfy the mean value formula (7) in which Bessel
functions arise. Hence almost every proof below requires deep investigation
of the properties of Bessel functions; that’s why the paper became so lengthy.

In the second part of the paper, we extend Theorems 1 and 2 for Dirac

expansions. We consider only the Dirac operator in empty space (i.e.,
with no vector and scalar potential). In this case the four coordinates of

any eigenfunction of the Dirac operator are eigenfunctions of the Laplace
operators with another eigenvalue, see (42). Hence the mean value formula
(7) remains true and the whole proof of the Laplace case can be repeated.

1. . Setting of the problem

In this paper we consider a bounded domain

and a system {un ~ n > 1} of eigenfunctions of the Laplace operator

We assume that the un form a Riesz basis in L2(S2) (e.g. [26]) and denote
vn its biorthogonal system defined by



We don’t assume that the vn are eigenfunctions. Let be a square root
of An with 0 and introduce the notations

The Nikolskii classes are defined by the following way. Let a > 0,
1 ~ p  oo and let l~, .~ be nonnegative integers with

Then the function f belongs to if and only if it has derivatives
f«~, !/?!  ~ in the distributional sense, f E and

In this case

Here

denotes the k-th difference of f(x). It is known [24, § 2.3.2] that 
is not dense in so we introduce the notation

as the closure of in Introduce further the spectral
expansion of a function f E L2(S2) as

its A-th partial sum (resp. A-th Riesz summation of order s > 0) is defined
by

We aim to prove the following two statements.



o a

THEOREM 1. - Let f E suppf C S2, ap> N, 1  p  o,

0  s  1/2 and a + s > (N - 1)/2. Then

locally uniformly in x E S2.

THEOREM 2. - Let f E H2 (S2), supp f C SZ, a > 0, 0  s  1/2 and
a + s > (N - 1)/2. Then

locally uniformly in supp f .

Remarks

1) For the case 0 the above theorems were obtained by Il’in and
Alimov [11]. In case s = 0 these results were proved in Horvath ([6],
[9]) for Liouville classes.

2) In case N = 1 better results are known than Theorems 1 and 2

because we can transform them to the ordinary Fourier series by the

equiconvergence theorem of Joo and Komornik [18] ; see Zygmund [27].

3) Concerning the complex point spectrum, we mention the papers [19]
of Komornik, [16], [15], [17] of Joo and [10] of Horvath, Joo and
Komornik. The Riesz summation for selfadjoint Schrodinger operator
is studied e.g. in Alimov, Joo [2] and Joo [12]-[14]. .

2. Reduction of Theorems 1, 2 to Lemma 1

In this part of the paper the theorems are reduced to the following result.

o a

LEMMA 1.2014 Let 0  a, 0  s  1/2, a + s = (N - 1)/2, f E ~2 ~~) 
supp f C 03A9, x0 ~ 03A9 be a fixed point and suppose



for some p > 0. Then for any sufficiently small ~ > 0 (namely if
2e  1/2 - s) the following estimates hold. If x ~ K ~ S2, K is closed,
then

Here the constants c = c(K) may depend on ~, a, N, s but not on x, a,
P~ f.

Supposing Lemma 1 proved, we can prove Theorems 1 and 2 as follows.

LEMMA 2.- Let a > 0, 0  s  1/2, 1  p  o, 0  a -  1,
o«

a + s = (N - 1)/2, f E Hp (S2), supp f c 5~2. Let further K C S2 be closed,
then

The proof is almost identical to that of Lemma 4.3 of [2], so we omit the
details.

LEMMA 3. - Let 0  s  (N - 1)/2, ap > N, a + s > (N - 1)/2,
1  p  oo. Then there exist /?, q such that 0  /~ - N/q  1,
/? + s = (N - 1)/2, 1  q  oo and

Proof . - When a is diminishing, and then Hp (S2) is growing.
The lower bounds are a > N/p, a ~ (N - 1)/2 - s. There are three

possibilities after diminishing a as much as possible. If a + s = (N - 1)/2,
0  a - N/p  1 then we are ready. If a + s = (N - 1)/2 and a - N/p > 1,

oa
we can diminish the value p; since 52 is bounded, Hp (Q) is growing. For

p = 2, a - N/p  0, hence we find p > 2 for which 0  a - N/p  1.

Finally in case a + s > (N - 1)/2 and 0  a - N/p  1 we can suppose
also ~V/p + ~ ~ (N - 1)/2; we can apply then the imbedding theorem [24,
§ 2.8.1]



which implies

Choose q such that (N - 1)/2 - s - a + N/p = N/q. Then 1/q  1/p
and if a is sufficiently close to then 0  1/q hence p  q  oo and

Q = (N - 1)/2 - s = a - N(1/p - 1/q) > 0, so the imbedding (6) holds;
finally /~ + s = (N - 1)/2 and 0  /? - N/q = a - N/p  1. Lemma 3 is

proved. 0

LEMMA 4. - Let a, R > 0, f E supp dist(supp f, 8Q)
> R. Then

where c = c(a, R, N) is independent of f and ~e.

Proof. - Choose a natural number k such that

and let

be arbitrary. Since f E L2(0), the series f = ~ ~ f converges in

and hence in L1(SZ), too. Consequently, using the mean value formula



where [0[ = 1 runs over the unit sphere we see that

Introduce the function

where VN = ~r~’~2/r(N/2+ 1) is the volume of the N-dimensional unit ball.
We know that

Consequently



Using the definition of with 2k > a > 0, .~ = 0, we get

because hk  R. On the other hand, by (8) the coefficients of E are

if the function F(z) is defined by

Since is a Riesz basis in L2(S2), we have (e.g. [26])

Now, we prove that there exist constants 0  ci  c2  oo, depending
only on Nand k such that

Taking into account (9) and ( 10) it implies the statement of Lemma 4 if we
set h = To prove (11), we recall the expansion



It gives the following expansion for F if we observe that the starting
coefficient in (12) is V~r~2~r~-N~2:

It is known that

hence

The entire function F(z) has 2k-fold zero at z = 0 and there exists 6 > 0,
6 = 6(N, k) such that in 6 no other zeros exist. For an arbitrary
constant c = c(N, k, b) > 0, we can choose 0  cl  c2  b such that for

6:

Here the sign + is used if ~z > 0 and - if ~z  0. The sum 2N/2 F(z)
is divided into two parts. For the indices n  clzl the real parts of the
summands have the same sign, hence



On the other hand if c is sufficiently large, then

which shows that IF(z)I is bounded below in the whole strip, so (11) holds
indeed. Lemma 4 is proved. 0

LEMMA 5.- Let f E Co (S2), then

locally uniformly in S2.

Proof. - We start with the square sum estimate

which holds uniformly on the compact set K and in ~c under the weaker

condition that (un ) is a Bessel system of eigenfunctions and

is arbitrarily chosen ([6], [9]). Since f C for any a > 0, we see for
a > N/2 that



which proves Lemma 5. D

Remark. - In fact we proved that the expansion of any f E 
supp f c 0 converges absolutely and locally uniformly. The same statement
can be proved in case f E supp f N/2,
ap > N. Indeed, the case p = 2 was done above; if p > 2 then f E H~
implies f E H2 by the boundedness of Q. In case p  2, we use the
imbedding (5) ; it makes possible to increase the value p until the bound
qqo~

hence we have Hfl C ~ for some /3 > N/2 which finishes the proof.

Proof of Theorem ~. 2014 We can diminish the value ~ in case ~ ~ (~V-1)/2
to ensure the additional condition s  (N - 1)/2. Consider the imbedding

C H03B2q(03A9) given in Lemma 3; it is enough to prove Theorem 1 for

f ~ (Q), supp f c 03A9. The following auxiliary statement is true: given a
function r e Co~(R~), the operator

is continuous in Indeed, we have ~f~Lp  and for

cx = ~ + x, 0  x  1, .~ E = 2 and for any multiindex ,~, ~ ~= .~,



(here Lp denotes the Liouville class of indices p, a ; [21]). So the mapping

is continuous indeed. Now let f e H03B2q(03A9), then there exist

fn 6 tending to f in By the above proved statement, we
can suppose that there is a compact set Ii ~ 03A9 such that supp fn ~ K for

all n . Then we apply Lemma 2.

Taking an arbitrary 6; > 0, we see

independently of A. From Qq > N it follows that Hq C 
0  t  ,~ - N/q [24, § 2.7.1]; in particular

Fix an index n > n(g) and let A tend to infinity; by Lemma 5 for large A,
we have

and then I f (x) - ~~( f, x) I  3E for a large enough. The proof is complete. 0



Proof of Theorem ~.2014 (N - 1)/2, we diminish s to obtain
s  (~V-l)/2, ~+~ ~ (A~-l)/2. Then we diminish a until a+s = (~V-l)/2,

0 Q’

then H 2 is growing. Let Bsupp/, dist(x0, supp f) > p > 0. Since
0 Q;

/ 6 j~2? / can be approximated in ~-norm by functions /~ ~ 
dist(x0, supp fn) > p. We fix the value p and let tend A to infinity; for
A ~ 47r/~, Lemma 1 gives the boundedness of cr~(/, :co)’ We have

For A > 1/p, we have

We fix such an n ; then for large A, we have 12  ~ which proves Theorem 2. 0

3. Technical background of the proof of Lemma 1

We showed above the Theorems through Lemma 1. In this section we

give some estimates and an expression for o~ j~ { f , xo) which make possible to
prove Lemma 1. The proof will be finished in the fourth section.

Define the operators

and the functions

where WN is the surface of the unit ball.

oa

LEMMA 6. - Let f E H2 (S~) and suppose that the conditions of Lemma 1
hold. Let a = .~ + x, 0  x  1, ~ Then:

a) the function ~(r) can be modified on a set of measure zero such that the
new function, denoted again by ~ and its derivatives ~~, ~~~, ... , ~t~-1~
are locally absolutely continuous and



where

Proof. - Since H2 C L2, we prove the point a) for f E 
Because Co is dense in L2 there exist fn E Co with f~, --~ f in
L2. Since the multiplication by some r E Co is obviously continuous, we
can suppose that

suppfn , dist(x0, supp fn) > p 2 for all n . (16)

We know that

and then by (16) we obtain for n -> oo and k G ~

On the other hand



hence taking an appropriate subsequence

and then

So if we modify 1/; on a null-set = ff . ~ ~ f ~0~, the statement a) is

proved. To see b), denote Ak(r) the right hand sum of b). First we show
that the sum Ak converges absolutely and uniformly in r E [0 , R] . Indeed,



and then

By the rule

’ 

this implies that

From (8), we get that

The differentiated series is that of Ao(r) and converges uniformly; hence
F(r) = Ao(r) and then DkF(r) = Ak(r). Lemma 6 is proved. 0

LEMMA 7



b) For every s > 0,

whenever R satisfies

Proof. - Let 2  p  oo be defined by

then the imbeddings

hold. If we change (r ~ ~r~~~x+k-1 by the error is

hence by the Holder inequality



Hence to prove a) it is enough to show that

To this we use the following characterization of (see
[21] or [24, § 2.3.1] with the notation the function f belongs
to Hp if and only if it has a representation

where the Qm are entire function of spherical exponential type :5 2"~’~ ; in

other words, the Fourier transform has bounded support:

We shall also use the Bernstein type inequality

For our purpose it is more convenient to take a new p defined by

it means the imbedding

If ~ = k, 6 C ~ has a representation



hence

Let m* be an integer to be precised later. The sum ~~~m* can be
estimated by

and the sum Emm* by



Choose m* such that a  2"~*  2A, then the above counting gives that

But then by the Holder inequality, we obtain

so (17) holds also with 6; = 0. Thus a) is proved and we turn to the estimate
b). We see by induction on £ that there exist constants ..., such

that 
_ _ _ _ - - - A



Consequently it is enough to show that

Since 4?r, the argument of the Bessel function is not small. We
recall the asymptotical formula

We choose again p by

Putting the remainder term in (20), we get

In the main term, we have to prove that



Since

hence we can write by p ~ 4?r/A that

Here we used the notation M for the integer satisfying

By the point a), we have



To estimate Ii we have to suppose that vanishes at the centre
of the integrational interval, i.e.,

In this case

Here we have ’

and



and the other sum is

Now in case k  .~ choose m* = oo and if k = .~, let m* be the integer used
in the proof of a). In both cases

which finishes the proof of Lemma 7. 0

Denote for A > 1



LEMMA 8. - Let a > 1, R > 0, 0  s, f E H03B12, supp f C S2 and
f(x) = 0 for a.e. ~x - xo~  p. Then in case s > 0

In case s = 0, ~ j~~1 ( f zo) has to be substituted by

Proof. - Define the function

and expand the function v~~~x - xol) by the Riesz basis {vn}. The
coefficients have the form



Since f = and i~ = ~(~~, are convergent in L2 , we get
from here that

by Lemma 6b). For the indices 1, we write



Here in case s > 0, we have by [3, § 7.14.2, 7.7.4]

In case s = 0, we obtain by [3, § 13.41] that

Thus in case s > 0,



and for s = 0 the same formula holds with

On the other hand, iterated integration by parts gives

Comparing the two expressions for (/, ~~) proves Lemma 8. D

LEMMA 9 
°

a) If 03BB03C1 ~ 47T, then

b) If ap > 4~r, then



The constants may depend on R, i, e., on dist(xo, aS2) .

Proof. - Define m* by the property ~  2’n *  2a . We have

which shows (25). Now for m ~ m* - 2

and analogously

Summing up for m ~ m* - 2 the estimate (24) follows. In case s = 0, we
have



so (26) is proved. To show (27), we use the estimate [23, § 18.10]

Applying this in (27) we have



Now if 1/2  X then we can continue this estimate (leaving the norm of f)
by ~ c; if 1/2 = x then by  c; finally if 1/2 > x
then by  cax-1~1/2-x  c. So the statement (27) is proved; we investigate
(28). Take the expansion

Applying this we get

We shall prove that



Indeed :

for r ~ we use the formula

For the remainder term

for the second main term, we get by integration by parts

and analogously for the first main term twofold integration gives

which proves (31). Similarly for m > 1,

where c is independent of m. Indeed, for the remainder of (21)

and for the main term we integrate by parts to obtain



Thus we have by (30)

Lemma 9 is proved. D

4. Completing the proof of Lemma 1

In this section we prove two further lemmas but first we show how to
deduce then Lemma 1.



Proof of Lemma 1

(through Lemmas 10 and 11) If 03BB03C1 ~ 4x, (24) gives the desired estimate.
If 47T, choose R > 0 such that

holds, further R > c dist(x, 8Q) with an absolute constant c > 0 and

This last condition means that we introduce R+O(1/03BB) instead of R. Since
4~r, this dependence of R on A does not disturb our estimates. Now

consider the expression (23) for ~a( f, xp). For the first three (resp. four

in case s = 0) terms the needed estimates are proved in Lemma 9 and the
fourth (resp. fifth) component is estimated in Lemma 7. So it remains the
last member in (23). The expression s + X - 1/2 = ~V/2 - ~ - 1 is the half
of an integer and belongs to the interval (-1/2,1); hence it equals to 0 or
1/2. Consider separately these cases.

Then we have to prove that

In fact the stronger estimate  holds, since



as we asserded.

As in A), we show that the stronger estimate holds, namely



Indeed,

The proof of Lemma 1 is complete. D



Sketch of the proofs of Lemmas 10 and 11

The fundamental tool making possible these estimates is a new asymp-
totical formula for Bessel functions, given in [9]. The classical asymptotical
expansions of the Bessel functions has the following form (see e.g. in Watson
[25] ) :

if z is not a negative real number nor zero. Here

and the constant in the remainder term depends only on v, k and 6 if
7r - ~ 6 > 0. To prove the lemmas we have to handle the quantities

Substituting (32) we get the remainder term

which is not appropriate for our purposes. We have proved in [9] that (34)
can be refined as

While estimating the integrals in Lemmas 10 and 11, we use the asymptotic
expansion derived from (32) with remainder term (35) if x is large and the



Taylor series expansion of Bessel functions if x is small. Throughout the
proofs we distinguish the cases A) ~  p’~ and B) ~ > pn.

In case A), we integrate by parts using the rules

in order to get a factor in the expression. Then we split the integral
into three parts:

and estimate separately using the asymptotic expansion (resp. Taylor series
expansion) corresponding to the size of the argument of the Bessel function
involved. The case B) is dealt with similarly but the partial integration is
organized with opposite roles in order to get a factor 

Following these hints the (rather lengthy) proof of Lemmas 10 and 11
can be completed; the reader interested in more details is encouraged to
contact the author. 

,

Through Lemmas 10 and 11 the proof of Lemma 1 and then that of
Theorems 1 and 2 became complete. 0

Remark.- We shall give here the construction of a Riesz basis (un) C
L2(52) where S2 = (0, a) is an N-dimensional open cube, with eigenvalues

Take first the case N = 1. Recall the following theorem of Vinogradov
and Vasjunin [22, Part III]. Let E ~~ be a sequence satisfying the
Carleson condition

and suppose that



Then for any a > 0 the system can be completed
to a system E 7G} which is Riesz basis in L2(0, a) (after
normalization). Now the system

will be Riesz basis in L2(S2) with eigenvalue

In the case when = ... = JlnN = zk, we get An = Nz2k, vn = N1/2zk
which tends to infinity if k - oo. Finally remark that (C) is equivalent to
the conditions

It is easy to check that e.g. the sequence

satisfies (C’) and hence (C).

5. Dirac expansions

In this final part of the paper, we consider the Dirac operator in JR 3, the
relativistic variant of the Laplace operator in quantum mechanics. If the
scalar and vector potentials vanish, the Dirac operator has the form

Hence h is the Planck constant, c is the velocity of light,  is the rest mass
of the particle and the Dirac matrices 11 , ... , 14 are given by the Pauli
matrices



by the rule

It is easy to check that

Consider the eigenvalue problem

where A E C is arbitrary, 9j = , x2 , x3) for 1  i  4. If we substitute

(37) into (38), we get that

where

Taking this into account, the eigenvalue problem takes the form

LEMMA 12. - All the coordinates ~i of the eigenfunctions (38) satisfy

provided that 03C8 is twice continuously differentiable.

Proof . We can easily check that

if {i, j, 1~) is a cyclical permutation of {1, 2, 3) 
{43 )

03C3k otherwise. 
43



Then it is immediate from (40) that

Consequently (41) implies

This proves (42) for i = 1, 2; the case i = 3, 4 is similar. 0

Now consider a bounded domain

and suppose that we are given a Riesz basis (~~~ ~ 1 in L2 (5~2, C~4 ) of the
eigenfunctions of the Dirac operator 

’~

Denote {v~~ i° the biorthogonal system, i.e., for which

Let n be a square root of (03BB2n - 2c4)/(c2h2) with R n > 0 and let

0 0-

Denote H~ (Q, C ) the space of all four-component vectors for which every
-

component belongs to J~p (Q). Define the Riesz means of order s  1/2
of f by

In what follows the dimension N always equals to 3.

THEOREM 3. - H03B1p(03A9,C4), supp f ~ 03A9, ap> N, 1 p 00,
0 ~ ~  1/2, a + s > (N - 1)/2. Then

locally uniformly in x.



THEOREM 4. - Let _f E H2 (S2, (C4 ), supp f C 03A9, a > 0, 0  s  1/2,
a + s > (N - 1)/2. Then

locally uniformly.

For the proof we remark first that the mean value formula (7) holds also
with ~~ instead of Un with

this follows from (42). The other main tool is the square sum estimate

(15). It has been proved in [6] and [9] under the assumption that the
eigenfunctions un form a Bessel system. Since (~n) is Riesz basis, expanding
/== (/, 0,0,0)~ we get that

so (~~~1 ) is a Bessel system from eigenfunctions of the Laplace operator.
The same is true for = 2, 3, 4. Hence (15) holds with ~~ instead
of un . Since the whole proof for the Laplace operator is based on (7) and
(15), it can be word by word repeated to obtain Theorems 3 and 4. The only
difference appears when proving Lemma 8, we have to substitute v~‘ {r) by
(v~’ (r), 0, 0, 0) to obtain the desired equality in the first coordinate; other
position of v~’ (r) yields the equality in the other coordinates.

Remark. - An orthornormal basis from eigenfunctions of the Dirac
operator is given in Evans [5], where the domain Q is a sphere; in this

system the least eigenvalue has infinite multiplicity.
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