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Minimal Realizations of Classical Simple Lie Algebras
Through Deformations(*)

DIDIER ARNAL(1), HÁDI BENAMOR(1)
and BENJAMIN CAHEN(1)

Annales de la Faculte des Sciences de Toulouse VII, nO 2, 1998

Soit p une algèbre de Lie simple complexe et Omin son
orbite coadjointe (non triviale) de dimension minimale. En utilisant un
star-produit sur un revetement de Omin (ou d’un ouvert dense de Omin ) ,
on donne une construction explicite des realisations minimales de p.

ABSTRACT. - Let p be a complex simple Lie algebra and Omin be its
minimal non trivial coadjoint orbit. . Using a star product on a covering
space of Omin (or an open subset of Omin ) we give an explicit construction
of the so called minimal realizations of p.

1. Introduction

The notion of star product was introduced by M. Flato and C. Fronsdal

([5], [7]) to give a new formulation for quantization of classical systems.
In such a formulation, quantization is a deformation of the associative and
Poisson structure of the algebra of classical observables. Applications of
this notion to the theory of unitary representations of Lie groups were

developped by many authors ([2], [3] and [4]).
The purpose of this paper is to give a new application of star products

for the construction of the minimal realizations of a complex simple Lie

algebra g from its non trivial minimal coadjoint orbit Onin. In particular,
we construct by a very simple and natural way the minimal realizations

given by A. Joseph ( ~8~ , ~9~ ) . Recall that a realization of g is a faithful
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representation of g as differential operators on polynomial functions and it
is minimal if the number of variables is minimal. Let us now describe our
construction.

We first define a parametrization of an open subset of the minimal orbit
Omin (Sect. 2). This subset is an orbit under a solvable subgroup of the
group G associated to g. g is then embedded faithfully in a Poisson algebra
P (an algebra of polynomials, or an algebra of polynomials localized at
one generator). We introduce the Moyal star product [5] on P (Sect. 3).
If the type of g is An, n > 1 (Sect. 4), the Moyal star product has
the covariance property and we obtain a one complex parameter family of
minimal realizations of g. If it is Cn, n > 2, we obtain the usual realization
of the symplectic algebra by quadratic polynomials ([10], [11]; ; Sect. 5).
Finally if g of type Dn, n > 4 (Sect. 6) or Bn, n > 3 (Sect. 7), the
Moyal star product is not covariant thus we replace it by an equivalent
star product which is covariant. This new star product leads us to the
minimal realizations given in [8]. .

2. Parametrization of the minimal orbit

In section 2 and 3, we recall some properties of minimal orbits and star
products and we describe the methods we shall use for each type of simple
classical Lie algebra in section 4, 5, 6 and 7.

Let g be a simple complex Lie algebra. Fix a Cartan subalgebra h of g and
a system of positive roots, we obtain the usual triangular decomposition:

is the highest root, we fix a weight vector X, . Using the Killing form ,~
of g, we identify g with its dual g*. Let ~o be the element of g* corresponding
to Let G be the adjoint group of g. The unique non trivial minimal
nilpotent orbit for the adjoint action of G is Omin = G . 03BE0.

PROPOSITION 1

1~ Let be the centralizer of X~ in g. Let H~ be the covector
associated to the highest root ~. Then there exists a Heisenberg
subalgebra ?~ of g with central element X_~, such that:



2) Let t = ~ H and R be the anadytic subgroup of G with Lie

algebra t. Then O = R . ~p is an open set of f7n,;n. The coadjoint
orbits Onin = G . 03BE0 and R . (03BE0|t) being equipped with their Kirillov ’s
canonical 2-forms S2 and W, the map y--> ~ I t is a symplectomorphism
from O onto R 

Proof

1) See the following sections 4-7. See also ~9~.
2) Let us remark that S2 and W are R-invariant. Now if X and Y are two

elements of g, one can write X = Xl + X2, Y = Y1 -~-Y2, where Xl, Yl are
in and X2, Y2 in t. Then, since [X03C8, X1 ] = [X03C8, Y1] = 0, one has:

This proves our proposition. D

Now we obtain a parametrization of C~ C by using the following
facts.

1) It is easy to parametrize the coadjoint orbit of ~’o I ~, under the action of
the solvable group R by co-ordinates (pi, ..., pn, ?i) ..., qn) where
qn # 0 (here n = 1/2 . This is equivalent to define

a symplectomorphism between B {qn = 0 ~ (with the 2-form
dpi A dqi I1 ~ ~ ~ A dpn A dqn) and R. (~o (see ~2~ , ~4~ ) . . We deduce
by Proposition 1 a symplectomorphism:

2) For X in g and x in c2n B {qn = 0~, put X (x) = (7r(.c), X).
Parametrizing the orbit R. (~o or giving the functions X X in t, are
of course equivalent. Now the explicit computation of the functions X
(X in g), which define ~r, will become very easy in sections 4-7 because
g will be an algebra of matrices and the elements of Onin are matrices
of rank one or two.

3. Star products and minimal realizations

DEFINITION 1.2014 A star product on a Poisson manifold (M , ~ ~ , ~ }),
defined on a subalgebra N of C°°(M) stable by the Poisson bracket, is a



bilinear mapping * from N x N, into the space N of formal power
series in the variable v with coefficients in N:

where cn are bidifferential operators on M such that cn(N x N) C N and

furthermore, the star product satisfies, when extended to N by bilinear-
ity, the associativity condition:

Remark 1.- Such a star product gives simultaneously:

1) a deformation of the associative structure (for the usual pointwise
product) of N,

2) a deformation of the Poisson structure of N (called the * bracket)
namely, for f and g in N,

DEFINITION 2. - Two star products *1 and *2 on M are equivalent if
there exists a formal power series T = Id + where Tr, r > 1, are
differential operators such that Tr(N) C N and

for each f, g in N.

DEFINITION 3. - Let M be the space (or an open subset of 
endowed with the Poisson bracket defined in the co-ordinates ... , pn,

q1, ... qn) by



We define on N = C°°(M) (or on a subalgebra of C°°(M) stable by the
Poisson bracket) the Moyal star product *M by

where Pr is the rth tensorial power of the Poisson bracket Pl on (5~.

Remark 2. - When restricted to the localized algebra

of the polynomial algebra ..., pn , q1, ... qn] at qn, the series f *M g
is always a finite sum. Fix the value of the deformation parameter v = 1/2,
then the Moyal star product gives an associative product on N. Now,
the Weyl’s transform W is the linear mapping from N into the algebra
of differential operators on en endowed with the co-ordinates q1, ..., qn
defined by

W is a faithful representation of the algebra (N, *) .

With the notations of Section 2, we shall see that the functions X, X in

g, are elements of the algebra N = ... , pn, q1, ... , qn, 1/qnJ. Since
x : e2n symplectomorphism, the mapping po : : X ~ X
is an injective morphism of Lie algebras from g to N endowed with the
Poisson bracket.

DEFINITION 4. - A star product * defined on N is called covariant if:

When g is of type An or Cn we shall see in Sections 4 and 5 that the

Moyal star product on 0 is covariant. The mapping leads to

an injective morphism of Lie algebras from g to N endowed with the

star bracket [’, ’ ] . Fixing the value of the deformation parameter one

obtains a representation of g by considering the mapping X ~ W (X ).



When g is of type Bn or Dn, the Moyal star product is not covariant (sects
6 and 7). ~Op is not a Lie algebra morphism from g to , [’) ’ ] ~ * ~ .
But there exists a differential operator T2 of N such that the mapping:

is a Lie algebra morphism from 9 to (~V , ~ ~ , ~ ). .
Replace ~Op by ~p means, in terms of star products, to replace the

Moyal star product by an equivalent star product which is covariant. Fix
v = 1/2, one obtains a representation of g (the minimal realization of g) by
considering the mapping X ~ .

All these considerations lead us to introduce the notion of star minimal
realization.

DEFINITION 5

1) A star minimal realization o g is a morphism

2) Two star minimal realizations 03C61 and 03C62 of g are equivalent if there
exists an equivalence morphism

such that ~p2 = A o .

4. Lie algebra of type An

In this section and the following, the notations corresponding to the
classical simple Lie algebras are those of [12].

In this section g = sl(n + 1, (~), n > 1, and fj is the abelian subalgebra of
g of diagonal matrices of g.

Let Ai, ..., be the linear forms defined on ~ by



The system of roots is 0 - ~ ~i - a j ~ 1  + 1}. . Let A+ =

~ag - 1  i  j  n -~ 1~ be the set of positive roots. We denote by
Eij the usual matrix: the only non vanishing entries of Eij has indices i

and j and its value is 1. The eigensubspace corresponding to the root 
is We identify g with g* by the trace form:

With the notations of the Section 2, one Ai - the orbit

Omin of X ~, = Ei n+1 is the set of matrices of rank 1 and trace 0. We write
g = where Ell -En+1 n+1 and 1i is the Heisenberg
algebra generated by the Xi = i+1, Yi - Ei+11, 1  i  n - 1 and

Z = En+11.
Using the usual parametrization of coadjoint orbits of exponential group,

we parametrize the orbit as follows:

The commutation rules:

give 03C8 = -03A3n-1i=1 piqi - 2pnqn.

By using the fact that the rank of the matrices in Omin is 1, one obtains

where



Now, on the algebra N = ... Pn, q1, ... qn, we define a

structure of g-module by

and denote by Hk(g, N) the corresponding k-th cohomological space.
PROPOSITION 2

1) The Moyal star product *M defined on N is covariant.

2) The dimension of the space H1(g, N) is equal to 2. H1(g, N) is

generated by the classes of cpp and ~p2, defined by

3) Each minimal realization of g in ~N , ~ ~ , ~ ~*~ is equivalent to a

minimal realization

where an, n > 1, are complex numbers.

,~~ The family of linear mappings Wa : X ~ W(X + , a E ~,
is a family of representations of g. It coincides with the family of
minimal realizations given in ~8~.

Proof

1) is obtained by a direct computation.

2) Let ~p g --~ N be a l-cocycle, i.e.,



for X, Y in g. Modifying if necessary 03C6 by a coboundary, i.e., by a mapping
of the form X ~ {X, f }, fEN, we can suppose that p(X) = 0 for all
X in 7i and that - E2 2) is a scalar. We deduce that 03C6 is a linear
combination of po and ’Pl.

3) is deduced from 2). D

Remark 3.- The family of minimal realizations Wa of g can also be
found by the method given by N. Conze in [6]. .

5. Lie algebra of type Cn

In this section, g is the Lie algebra sp(2n, C), n ~ 2, of matrices of type

where A is a n x n matrix, Band C are two symmetric n x n matr~ :,s. We
denote by (A, B, C) such a matrix. With the previous notations:

We identify g * and g by the form (X, Y) = (1/2) Tr(XY). . Omin is the
orbit of go = X~, and the elements of Omin are matrices of sp(2n, C) with
rank 1. Here 1i is the Heisenberg algebra generated by Xi = (-Ei i+1, ~, 0),
Yi _ (0,0, E1i+1 + Ei+11 ), 1  i  n - 1, and Z = (0, 0, 2E11) (then

We parametrize the orbit as follows:

As in Section 4, we deduce:



Here x : c2n B ~0} -~ Onin is a twofold covering of the whole orbit (?min
([10], [11]), ..., , ql , ..., qn ) is the matrix of rank 1 of g whose the
first line is

and the n + 1-th column is

The mapping po : X - X is the usual realization of g as a Poisson
algebra of quadratic polynomials.

The Moyal star product defined on N = ..., pn, q1, ..., qn] is

covariant and the representation X H W(X) of g in the space ... , , qn~
is well known [10]. Its restriction to even polynomials ..., qn] is an
irreducible representation of g with dominant weight

Let us remark that H1 (g, N) vanishes, by the first Whitehead lemma.

6. Lie algebra of type Dn

Here 9 is the Lie algebra so(2n, ~), n > 4, of complex matrices of type

where A, B and C are n x n matrices such that Bt = -B, Ct = -C. We
denote by (A, B, C) such a matrix. With the notations of section 4 and 5,
one has



We identify g* and g by the form (X, Y) = (1/2) Tr(XY). Omin is the
orbit of ~o = X,~ and the elements of Omin are matrices of g with rank 2.
Here ~-l is the Heisenberg algebra generated by

We parametrize the orbit as follows:

From the commutation rules we deduce

: c2n B {q2n-3 = p~ 2014~ C? is still a twofold covering of an open subset
of Omin and ... , p2~,-3 ~ q1 ~ ~ ~ ~ ~ q2n-3) is the matrix {~i~ ) of g with
rank 2 with first line

and second line



where

Let *M be the Moyal star product defined on

An easy computation shows that *M is not covariant.

LEMMA 1. - Let

Then T2(N) C N. Let B : g --~ N defined by

Then, for each X and Y in g,

Proof. - It is a direct consequence of the following results:



where

and k = 1, 2, ..., n- 2. All others c3(X,Y) (for X and Y in a Chevalley
basis of g) vanish. 0

PROPOSITION 3

1) The mapping ~ : X ~ X + is a Lie algebra morphism from
g into (N , [.,.]*M) (i.e., 03A6 is a star minimal realization). If
we fix v = 1/2, the mapping X - W ~~(X)~ is a minimal realization

of g.

2) Put T = Then the star product denoted by * and defined by

is covariant.

Proof. - Let r > 0 and X Y be in g, then

Now we deduce 1) from the previous lemma. 2) is a consequence of 1). ~

PROPOSITION 4

I) N) is generated by the class of the mapping

2) Each star minimal realization is equivalent to the star minimal real-
ization ~.

Proof. - It is similar to the proof of Proposition 2. C7

7. Lie algebra of type Bn

Here g is the Lie algebra so(2n + 1, C), n > 3, of complex matrices of
type



where A, B, C are n x n matrices, a and bare 1 x n matrices and Bt = -B,
Ct = -C. We denote by (a, b ; A, B, C) such a matrix. One has,

We identify g* and g by the form (X, Y) = (1/2)Tr(XY). Omin is the
orbit of o = -X~" Here 7-l is the Heisenberg algebra generated by

Put Xi = = qi q2n-2 ~ 1  i  2n - 3, and Z = q2~_2 . . As

in Section 6, we find that 7r : : ~ ~q2n_3 = 0~ -~ O. is the 2-covering
given by: , ..., p2~,-3 ~ , ~ .~ ~ ~ q2n-3) is the matrix (~i~ ) of g with rank
2 and second line:

and third line



where

Now we introduce the Moyal star product on the algebra

and the operator

we obtain the same types of results of Proposition 3 and Proposition 4. D
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