Annales de la faculté des sciences de Toulouse

VLADIMIR GOL'DSHTEIN MARC TROYANOV

The L_{pq} -Cohomology of SOL

Annales de la faculté des sciences de Toulouse 6^e série, tome 7, n° 4 (1998), p. 687-698

http://www.numdam.org/item?id=AFST_1998_6_7_4_687_0

© Université Paul Sabatier, 1998, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The L_{pq} -Cohomology of $SOL^{(*)}$

VLADIMIR GOL'DSHTEIN(1) and MARC TROYANOV(2)

RÉSUMÉ. — On prouve un résultat de non-annulation de la cohomologie non réduite du groupe de Lie SOL.

ABSTRACT. — We prove a non vanishing result for the unreduced L_{pq} -cohomology of the Lie group SOL.

1. Introduction

SOL is the three dimensional Lie group of 3×3 real matrices of the form

$$\begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix}.$$

This is a solvable and unimodular group; it is diffeomorphic to \mathbb{R}^3 (with coordinates x, y, z). A left invariant Riemannian metric is $ds^2 = e^{-2z} dx^2 + e^{2z} dy^2 + dz^2$; its volume measure is given by dx dy dz and is bi-invariant. For more information about the geometry of this group, see [9].

Let us recall the definition of the unreduced L_{pq} -cohomology groups, let $(M, \mathrm{d}s^2)$ be a complete connected Riemannian manifold of dimension n. We

^(*) reçu le 12 septembre 1997, accepté le 19 juin 1998

⁽¹⁾ Departement of Mathematics, Ben Gurion University of The Negev, P.O. Box 653, IL-84105 Beer Sheva (Israel)

E-mail: vladimir@bgumail.bgu.ac.il

The first author was supported by U. S.-Israeli Binational Science Foundation, grant No 94-00732

⁽²⁾ Département de Mathématiques, E.P.F.L., CH-1015 Lausanne (Switzerland) E-mail : troyanov@math.epfl.ch

note $L^p(M, \Lambda^k)$ the space of differential forms of degree k with measurable coefficients on M such that

$$\|\theta\|_p := \left(\int_M |\theta|^p\right)^{1/p} < \infty.$$

We denote by $Z_p^k(M)$ the set of differential forms in $L^p(M,\Lambda^k)$ which are closed in the sense of current and by $B_{pq}^k(M)$ the set of forms $\theta \in L^p(M,\Lambda^k)$ such that there exists a form $\phi \in L^q(M,\Lambda^{k-1})$ with $d\phi = \theta$. The unreduced L_{pq} -cohomology of (M, ds^2) is by definition the quotient

$$H_{pq}^k(M) := Z_p^k(M)/B_{pq}^k(M)$$
.

Other papers dealing with L_{pq} cohomology are [2], [3], [8] and [10]. The goal of this paper is to prove the following result about the unreduced L_{pq} -cohomology of SOL.

Theorem 1. — We have $\dim(H^2_{pq}(SOL)) = \infty$ for every $1 < p, q < \infty$.

2. Auxiliary results

The main ingredient in the proof of Theorem 1 is the next proposition (which is a kind of duality argument in L_{pq} -cohomology).

PROPOSITION 2.1.— Let $\alpha \in Z_p^k(M)$, and suppose that for every $\epsilon > 0$, there exists a form

$$\gamma = \gamma_{\epsilon} \in L^{p'}(M, \Lambda^{n-k}) \cap L^{q'}(M, \Lambda^{n-k})$$

such that

$$\left\| \mathrm{d} \gamma \right\|_{q'} \leq \epsilon \quad \textit{and} \quad \int_{M} \gamma \wedge \alpha \geq a$$

where a>0 is independent of ϵ (here 1/q+1/q'=1/p+1/p'=1). Then $\alpha \notin B_{pq}^k(M)$ (in particular, $H_{pq}^k(M)\neq 0$).

For the proof, we will need the following integration-by-part lemma (for differential forms of class C^1 , this lemma is due to Gaffney [1]).

LEMMA 2.1.— Let M be a complete Riemannian manifold. Let $\beta \in L^q(M,\Lambda^{k-1})$ be such that $d\beta \in L^p(M,\Lambda^k)$, and $\gamma \in L^{p'}(M,\Lambda^{n-k}) \cap$

 $L^{q'}(M,\Lambda^{n-k})$ be such that $d\gamma \in L^{q'}(M,\Lambda^{n-k+1})$ where 1/p+1/p'=1/q+1/q'=1.

Then $d\gamma \wedge \beta$ and $\gamma \wedge d\beta$ are integrable and

$$\int_{M} \gamma \wedge d\beta = (-1)^{n-k+1} \int_{M} d\gamma \wedge \beta.$$

Proof. — By Hölder's inequality, the forms $d\gamma \wedge \beta$, $\gamma \wedge d\beta$ and $\gamma \wedge \beta$ all belong to L^1 . For smooth forms β with compact support, the lemma is true by definition of the weak exterior differential (of γ).

Assume first that β is smooth with non compact support and satisfies the conditions of the lemma. On a complete Riemannian manifold M, we can constuct a sequence $\{\lambda_i\}$ of smooth functions with compact support such that $\lambda_i(x) \to 1$ uniformly on every compact subset, $0 \le \lambda_i(x) \le 1$ and $\left| \mathrm{d}\lambda_i \right|_x \le 1$ for all $x \in M$. The forms $\lambda_i \beta$ have compact support, thus the lemma holds for each $\lambda_i \beta$. Since

$$\left| \gamma \wedge \mathrm{d}(\lambda_i \beta) + (-1)^{n-k} \, \mathrm{d}\gamma \wedge (\lambda_i \beta) \right| \leq \left| \mathrm{d}\gamma \wedge \beta \right| + \left| \gamma \wedge \mathrm{d}\beta \right| + \left| \gamma \wedge \beta \right| \in L^1,$$

we can apply Lebesgue's dominated convergence theorem. Thus we have

$$\int_{M} \left(\gamma \wedge d\beta + (-1)^{n-k} d\gamma \wedge \beta \right) =$$

$$= \lim_{i \to \infty} \int_{M} \left(\gamma \wedge d(\lambda_{i}\beta) + (-1)^{n-k} d\gamma \wedge (\lambda_{i}\beta) \right) = 0.$$

Finally, for any $\beta \in L^q(M, \Lambda^{k-1})$ with $\mathrm{d}\beta \in L^p(M, \Lambda^k)$, we can construct a sequence β_j of smooth forms such that $\beta_j \to \beta$ in L^p -topology and $\mathrm{d}\beta_j \to \mathrm{d}\beta$ in L^p -topology (see Corollary 1 of [4]). Thus the same limiting process proves the lemma in all its generality. \square

Proof of Proposition 2.1.— Suppose that $\alpha=\mathrm{d}\beta$ for some $\beta\in L^q(M,\Lambda^{k-1}).$ We have by Lemma 1,

$$\int_{M} \gamma \wedge \alpha = \int_{M} \gamma \wedge \, \mathrm{d}\beta = \left(-1\right)^{n-k+1} \int_{M} \, \mathrm{d}\gamma \wedge \beta \, .$$

Using Hölder's inequality, we get

$$a \le \int_{M} \gamma \wedge \alpha \le \left| \int_{M} d\gamma \wedge \beta \right| \le \left\| d\gamma \right\|_{q'} \left\| \beta \right\|_{q} \le \epsilon \left\| \beta \right\|_{q}.$$

This is impossible since $\epsilon > 0$ is arbitrary. \square

Proposition 2.1 can be completed in the following way.

LEMMA 2.2. — Let $\alpha_1, \alpha_2, \ldots, \alpha_r \in Z_p^k(M)$ and suppose that we can find pairwise disjoint sets $S_i \subset M$ such that for every $\varepsilon > 0$ there exists $\gamma_i = \gamma_{i,\varepsilon} \in L^{p'}(M,\Lambda^{n-k}) \cap L^{q'}(M,\Lambda^{n-k})$ with $\operatorname{supp}(\alpha_i) \cup \operatorname{supp}(\gamma_i) \subset S_i$ and such that $\|\mathrm{d}\gamma_i\|_{q'} \leq \epsilon$ and $\int_M \gamma_i \wedge \alpha_i \geq a$ where a > 0 is independent of ϵ and i. Then $[\alpha_1], [\alpha_2], \ldots, [\alpha_r]$ are linearly independent elements of $H_{p,q}^k(M)$.

Proof.— Choose $\lambda_i \in \mathbb{R}$, $i=1,\ldots,r$, and set $\alpha=\sum \lambda_i\alpha_i$ and $\gamma=\gamma_\varepsilon=\sum \lambda_i\gamma_i$. The assumption on the supports of these forms implies that

$$\int_{M} \alpha \wedge \gamma = \sum_{i} \lambda_{i}^{2} \int_{M} \alpha_{i} \wedge \gamma_{i} \geq \ a \sum_{i} \lambda_{i}^{2} \ .$$

This sum vanishes if and only if all $\lambda_i = 0$. Since $\gamma \in L^{p'} \cap L^{q'}$ and

$$\left\| \mathrm{d} \gamma \right\|_{q'} \leq \sum_{i} \left| \lambda_{i} \right| \left\| \mathrm{d} \gamma_{i} \right\|_{q'} \leq \varepsilon \sum_{i} \left| \lambda_{i} \right|$$

we can deduce from Proposition 1 that $\sum \lambda_i[\alpha_i] = [\alpha] \neq 0 \in H_{p,q}^k(M)$ unless all $\lambda_i = 0$. \square

For all $x_0 \in \mathbb{R}$ the surface

$$\mathcal{H}_{x_0} := \{(x, y, z) \in \text{SOL} \mid x = x_0\} \subset \text{SOL}$$

is a totally geodesic surface isometric to the hyperbolic plane \mathbb{H}^2 . In particular a function $f: \mathrm{SOL} \to \mathbb{R}$ which is invariant under all x-translations (i.e., f = f(y, z)) can be seen as a function on the hyperbolic plane.

LEMMA 2.3.— There exists two non negative smooth functions f and g on $\mathbb{H}^2 \simeq \mathcal{H}_{x_0}$ such that:

(1)
$$f(y,z) = g(y,z) = 0$$
 if $z \le 0$ or $|y| \ge 1$;

(2) df and dg
$$\in L^r(\mathbb{H}^2, \Lambda^1)$$
 for any $1 < r \le \infty$;

(3) the support of $df \wedge dg$ is contained in $\{(y,z) \mid |y| \leq 1, 0 \leq z \leq 1\}$ and $df \wedge dg \geq 0$;

$$(4) \iint_{\mathbb{H}^2} df \wedge dg = 1;$$

(5) $\partial f/\partial y$ and $\partial g/\partial y \in L^{\infty}(\mathbb{H}^2)$, and $\partial f/\partial z$, $\partial g/\partial z$ have compact support.

Remark. — The forms df and dg cannot have compact support, otherwise, by Stokes theorem, we would have

$$\int_{\mathbb{H}^2} \, \mathrm{d}f \wedge \mathrm{d}g = 0 \, .$$

Proof. — Choose non negative smooth functions h_1 , h_2 and $k : \mathbb{R} \to \mathbb{R}$ with the following properties:

- (i) $h_i(y) = 0$ if $|y| \ge 1$, $h'_1(y)h_2(y) \ge 0$ and $h_1(y)h'_2(y) \le 0$ for all y;
- (ii) the function $(h'_1(y)h_2(y) h_1(y)h'_2(y))$ has non empty support;
- (iii) $k'(z) \ge 0$ for all z, furthermore

$$k(z) = \begin{cases} 1 & \text{if } z \ge 1 \\ 0 & \text{if } z < 0. \end{cases}$$

We set $f(y,z) := h_1(y)k(z)$ and $g(y,z) := h_2(y)k(z)$. Property (1) of the lemma is clear. We prove (3) (i.e., that $df \in L^r$ for any $1 < r \le \infty$), we have

$$df = h_1(y)k'(z) dz + k(z)h'_1(y) dy$$
.

The first term $h_1(y)k'(z) dz$ has compact support, and the second term $k(z)h'_1(y) dy$ has its support in the infinite rectangle $Q = \{|y| \le 1, z \ge 0\}$.

Choose $D < \infty$ such that $|k(z)h'_1(y)| \leq D$ on Ω . We have

$$|k(z)h_1'(y)\,\mathrm{d}y| \le D|\mathrm{d}y| = D\,e^{-z}\,,$$

thus, since the element of area of \mathbb{H}^2 is $dA = e^z dy dz$, we have

$$\begin{split} \int_{\mathbb{H}^2} \left| k(z) h_1'(y) \, \mathrm{d}y \right|^r \mathrm{d}A &\leq D^r \int_Q e^{-rz} \, e^z \, \mathrm{d}y \, \mathrm{d}z \\ &\leq 2 D^r \int_0^\infty e^{(1-r)z} \, \mathrm{d}z < \infty \,, \end{split}$$

from which one gets $df \in L^r$.

Now observe that

$$df \wedge dg = (k(z)k'(z))(h'_1(y)h_2(y) - h_1(y)h'_2(y)) dy \wedge dz,$$

hence the property (3) follows from the construction of h_1 , h_2 and k.

Property (4) is only a normalisation, and property (5) is easy to check.

The following is a vanishing result for some kind of "anisotropic weighted capacity".

LEMMA 2.4. — Given any numbers δ and q' such that $1 < q' < \infty$ and $0 < \delta < (1/2)(q'-1)$, we can construct a family of Lipschitz functions $\psi_t = \psi_t(x, z)$, $t \ge 1$, on \mathbb{R}^2 such that:

(i)
$$0 \le \psi_t \le 1$$
, supp $\psi_t \subset \{(x,z) \mid x^2 + |z|^{2s} \le 2t\}$, $\psi_t(x,z) = 1$ if $x^2 + |z|^{2s} \le t$;

(ii)
$$\iint_{z>0} \left(\left| \frac{\partial \psi_t}{\partial x} \right|^{q'} + \left| \frac{\partial \psi_t}{\partial z} e^{-z} \right|^{q'} \right) dx dz \le C t^{-\delta},$$

where the constant $C = C(\delta)$ is independent of t.

Proof. — We first choose some number s > 0 so large that $(s + 1 - q's)/2s < -\delta$ and set $\rho(x, z) := x^2 + |z|^{2s}$. We now define $\psi_t : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$\psi_t(x,z) = \begin{cases} \frac{1}{\log(2t) - \log(\rho(x,z))} & \text{if } t \leq \rho(x,z) \leq 2t \\ \frac{\log(2t) - \log(\rho(x,z))}{\log(2)} & \text{if } t \leq \rho(x,z) \leq 2t \end{cases}$$

We will prove that

$$\iint_{z>0} \left(\left| \frac{\partial \psi_t}{\partial x} \right|^{q'} + \left| \frac{\partial \psi_t}{\partial z} e^{-z} \right|^{q'} \right) dx dz \le C t^{(s+1-q')s/2s}, \qquad (2.1)$$

where the constant C is independent of t.

It will be convenient to introduce new variables $X = x/\sqrt{t}$ and $Z = z^s/\sqrt{t}$ (we assume $z \ge 0$). We have

$$x = t^{1/2} X$$
 and $z = t^{1/2s} Z^{1/s}$
- 692 -

thus $\rho = t(X^2 + Z^2)$. Let us set $\Psi_t(X, Z) := \psi_t(x, z)$, then

$$\Psi_t(X,Z) = \begin{cases} 1 & \text{if } (X^2 + Z^2) \le 1\\ \frac{\log(2) - \log(X^2 + Z^2)}{\log(2)} & \text{if } 1 \le (X^2 + Z^2) \le 2\\ 0 & \text{if } (X^2 + Z^2) \ge 2 \,. \end{cases}$$

In particular, Ψ_t is independent of t (and will henceforth be written as Ψ) and its support is the annulus $A = \{(X, Z) \mid 1 \leq (X^2 + Z^2) \leq 2\}$.

The partial derivatives of ψ_t may be written as

$$\frac{\partial \psi_t}{\partial x} = t^{-1/2} \frac{\partial \Psi}{\partial X}$$
 and $\frac{\partial \psi_t}{\partial z} = st^{-1/2} z^{s-1} \frac{\partial \Psi}{\partial Z}$. (2.2)

The maximum of the function $z \to sz^{s-1}e^{-z}$ on $0 \le z < \infty$ is achieved at z = (s-1), hence

$$|z|^{s-1} e^{-z} \le c_1 := s(s-1)^{s-1} e^{-s+1}$$
 (2.3)

for all $z \ge 0$. From the second equation in (2.2) and (2.3), we conclude that

$$e^{-z} \left| \frac{\partial \psi_t}{\partial z} \right| \le c_1 t^{-1/2} \left| \frac{\partial \Psi}{\partial Z} \right|$$
 (2.4)

We see from the first equation in (2.2) and the inequality (2.4) that

$$\left(\left| \frac{\partial \psi_t}{\partial x} \right|^{q'} + \left| \frac{\partial \psi_t}{\partial z} e^{-z} \right|^{q'} \right) \le t^{-q'/2} \left(\left| \frac{\partial \Psi}{\partial X} \right|^{q'} + \left| \frac{\partial \Psi}{\partial Z} c_1 \right|^{q'} \right).$$

Since

$$dx dz = \frac{1}{s} t^{(s+1)/2s} Z^{(s-1)/s} dx dz$$

we obtain (2.1) with

$$C = \int\!\!\int_{A^+} \left(\left| \frac{\partial \Psi}{\partial X} \right|^{q'} + \left| \frac{\partial \Psi}{\partial Z} \, c_1 \right|^{q'} \right) \, \frac{Z^{(s-1)/s}}{s} \, \mathrm{d}x \, \mathrm{d}z < \infty \,,$$

where the domain of integration is the half annulus $A^+=\{(X,Z)\mid Z\geq 0 \text{ and } 1\leq (X^2+Z^2)\leq 2\}.$ \square

3. Proof of the main theorem

The proof is technical and will be divided in five steps: we first fix some arbitrarily $\epsilon > 0$.

Step 1. We construct a closed 2-form $\alpha \in Z^2_p(SOL)$

We start by choosing a pair of functions f = f(y, z) and g = g(y, z) with the properties of Lemma 2.3. We then choose a smooth function $\lambda : \mathbb{R} \to \mathbb{R}$ such that

$$\lambda(u) = \begin{cases} 0 & \text{if } u \le -1 \\ 1 & \text{if } u \ge 1 \\ 0 \le \lambda'(u) \le 1 & \text{for all } u \in \mathbb{R}. \end{cases}$$

Then we set $\varphi(x,z) = \lambda(e^{-z}x)$, and note that

$$d\varphi = (\lambda'(e^{-z} x) e^{-z}) (dx - x dz).$$

We finally define

$$\begin{split} \alpha &:= \mathrm{d} \varphi \wedge \, \mathrm{d} f = \mathrm{d} (\varphi \, \mathrm{d} f) \\ &= \left(\lambda' (e^{-z} x) \, e^{-z} \right) \left(\frac{\partial f}{\partial y} \, \, \mathrm{d} x \wedge \mathrm{d} y + \frac{\partial f}{\partial z} \, \, \mathrm{d} x \wedge \mathrm{d} z + x \frac{\partial f}{\partial y} \, \, \mathrm{d} y \wedge \mathrm{d} z \right). \end{split}$$

Observe that $d\alpha = 0$ and

- $supp(\alpha) \subset \Omega := \{(x, y, z) \in SOL \mid |y| \le 1, z > 0, |x| < e^z\};$
- $\lambda'(e^{-z} x) \frac{\partial f}{\partial z}$ has compact support;
- $\left| \frac{\partial f}{\partial y} \right| |dx \wedge dy|$ is bounded (since $|dx \wedge dy| = 1$ and $\partial f/\partial y$ is bounded);
- $\left| \frac{\partial f}{\partial y} \right| |x| \left| \mathrm{d} y \wedge \mathrm{d} z \right|$ is bounded (since $\left| \mathrm{d} y \wedge \mathrm{d} z \right| = e^z$ and $|x| \leq e^{-z}$ on Ω).

From these estimates and $0 \le \lambda' \le 1$, we deduce easily that $|\alpha| \le \text{const } e^{-z}$ on Ω and

$$\int_{\Omega} |\alpha|^p \le \operatorname{const} \int_{0}^{\infty} e^{(1-p)z} \, \mathrm{d}z < \infty$$

for all $1 . It follows that <math>\alpha \in \mathbb{Z}_p^2(SOL)$.

Step 2. We construct a family of almost closed forms $\gamma_t \in L^r(SOL, \Lambda^1)$

Fix $0 < \delta < (1/2)(q'-1)$ and choose a function $\psi_t = \psi_t(x,z)$ as in Lemma 2.4. Define $\gamma_t := \psi_t(x,z) \, \mathrm{d} g$. In order to show that $\gamma_t \in L^r(\mathrm{SOL}, \Lambda^1)$, observe that γ_t has its support contained in the box

$$Q_t := \{(x, y, z) \in \text{SOL} \mid |y| \le 1, \ z \ge 0, \ |x| \le \sqrt{2t}\}.$$

Recall that $0 \le \psi_t(x, z) \le 1$ and the volume form of SOL is d(vol) = dx dy dz. We thus have

$$\|\gamma_{t}\|_{r}^{r} = \int_{x=-\sqrt{2t}}^{\sqrt{2t}} \int_{y=-1}^{1} \int_{z=0}^{\infty} |\psi_{t}(x,z)|^{r} |dg|^{r} dx dy dz$$

$$\leq \int_{x=-\sqrt{2t}}^{\sqrt{2t}} dx \int_{y=-1}^{1} \int_{z=0}^{\infty} |dg|^{r} dy dz$$

$$\leq (2\sqrt{2t}) \int_{y=-1}^{1} \int_{z=0}^{\infty} |dg|^{r} e^{z} dy dz.$$

By Lemma 2.3, we know that

$$\int_{\mathbb{R}^2} |\mathrm{d}g|^r \, e^z \, \mathrm{d}y \, \mathrm{d}z < \infty \quad \text{for any } 1 < r < \infty \,,$$

from which one gets an estimates $\|\gamma_t\|_r \leq C_1(r) t^{1/2r}$. In particular

$$\gamma_t \in \bigcap_{1 \le r \le \infty} L^r(\text{SOL}, \Lambda^1).$$
 (3.1)

Step 3. We estimate $\|d\gamma_t\|_{a'}$

We have

$$\mathrm{d}\gamma_t = \frac{\partial \psi_t}{\partial x} \frac{\partial g}{\partial y} \, \mathrm{d}x \wedge \mathrm{d}y + \frac{\partial \psi_t}{\partial x} \frac{\partial g}{\partial z} \, \mathrm{d}x \wedge \mathrm{d}z + \frac{\partial \psi_t}{\partial z} \frac{\partial g}{\partial y} \, \mathrm{d}z \wedge \mathrm{d}y$$

and

$$\left| \mathrm{d} x \wedge \mathrm{d} y \right| = 1$$
, $\left| \mathrm{d} x \wedge \mathrm{d} z \right| = e^z$, $\left| \mathrm{d} z \wedge \mathrm{d} y \right| = e^{-z}$.

Recall that $\partial g/\partial y$ is bounded, $\partial g/\partial z$ has compact support and $\mathrm{d}\gamma_t$ has its support in the region Q_t . Thus

$$\left| \mathrm{d} \gamma_t \right| \leq C_2 \left(\left| \frac{\partial \psi_t}{\partial x} \right| + \left| \frac{\partial \psi_t}{\partial z} \right| e^{-z} \right) \,.$$

Since $0 < \delta < (1/2)(q'-1)$, Lemma 2.4 implies

$$\|\mathrm{d}\gamma_t\|_{a'} \le C_3 t^{-\delta/q'}. \tag{3.2}$$

Step 4. We estimate the integral of $\alpha \wedge \gamma_t$

Let

$$A_t := \int_{\mathsf{SOL}} \alpha \wedge \gamma_t \,.$$

We have

$$\alpha \wedge \gamma_t = \psi_t(x, z) \, \mathrm{d}\varphi \wedge \mathrm{d}f \wedge \mathrm{d}g = \left(\lambda'\left(e^{-z}x\right)e^{-z}\psi_t(x, z)\right) \, \mathrm{d}x \wedge \mathrm{d}f \wedge \mathrm{d}g$$

(since $\mathrm{d}z \wedge \mathrm{d}f \wedge \mathrm{d}g = 0$). By Lemma 2.3, $\mathrm{d}f \wedge \mathrm{d}g \geq 0$, and since $\lambda'(e^{-z}x) \geq 0$ we see that $\alpha \wedge \gamma_t$ is a non negative 3-form. In particular $A_t \geq \int_{\Delta} \alpha \wedge \gamma_t$ for every measurable subset $\Delta \subset \mathrm{SOL}$.

We set

$$\Delta_t := \{(x, y, z) \in \text{SOL} \mid |y| \le 1, \ 0 \le z \le 1, \ |x| \le \sqrt{t}\}.$$

Recall that if $t \geq 1$, $0 \leq z \leq 1$ and $|x| \leq \sqrt{t}$, then $\psi_t(x, z) = 1$, we thus get

$$A_t \ge \int_{\Delta_t} \alpha \wedge \gamma_t = \int_{y=-1}^{+1} \int_{z=0}^{1} \int_{x=-\sqrt{t}}^{\sqrt{t}} \lambda'(e^{-z}x) e^{-z} dx \wedge df \wedge dg.$$

Now set $u = e^{-z}x$, $du = e^{-z} dx$, $u_0 = -e^{-z}\sqrt{t}$ and $u_1 = e^{-z}\sqrt{t}$. We have

$$\int_{x=-\sqrt{t}}^{\sqrt{t}} \lambda' (e^{-z}x) e^{-z} dx = \int_{u_0}^{u_1} \lambda'(u) du = 1$$

if t is large enough (i.e., $e^{-1}\sqrt{t} \ge 1$). Thus

$$A_t \ge C_4 := \int_{y=-1}^1 \int_{z=0}^1 df \wedge dg > 0.$$
 (3.3)

Observe that the constant C_4 is positive and independent of t (in fact, using equation (4) of Lemma 2.3 and (i) of Lemma 2.4, we see that $A_t \to 1$ as $t \to \infty$).

Step 5. Recapitulation

Let us summarize the previous estimates (3.1), (3.2) and (3.3):

$$\left\|\gamma_t\right\|_{p'} + \left\|\gamma_t\right\|_{q'} < \infty \,, \quad \left\|\mathrm{d}\gamma_t\right\|_{q'} \leq C_3 \, t^{-\delta/q'} \quad \text{and} \quad \int_{\mathrm{SOL}} \alpha \wedge \gamma_t \geq C_4 > 0 \,.$$

If we let $t \to \infty$ and apply Proposition 2.1, we obtain $\alpha \notin B_{pq}^2(M)$.

By the construction

$$S_t := \operatorname{supp}(\alpha) \cup \operatorname{supp}(\gamma_t) \subset Q := \{(x, y, z) \mid |y| \le 1, \ 0 \le z\}.$$

Using the group of isometries $T:(x,y,z)\to (x,y+2k,z), k\in\mathbb{Z}$, we can produce an infinite family of forms $\alpha_i\in Z_p^k(\mathrm{SOL})$ satisfying the hypothesis of Lemma 2.2. Therefore

$$\dim H^2_{pq}(SOL) = \infty$$

for all $1 < p, q < \infty$. The proof is complete \square

4. Final remark

The above proof of Theorem 1 is only true for unreduced cohomology. In fact, the work of Jeff Cheeger and Mikhael Gromov gives us the following result in the reduced case (for p = q = 2).

THEOREM 2. — The reduced L2-cohomology of SOL is trivial.

Proof. — The Lie group SOL admits uniform lattices (i.e., discrete cocompact subgroups), see [11] for explicit constructions. The result thus follows from [5], [6] and [7] since every lattice in SOL is amenable. □

Acknowledgments

Finally, we thank the referee who discovered a mistake in an earlier version of Lemma 2.1.

References

 GAFFNEY (M.) .— A Special Stoke's Theorem for Complete Riemannian Manifolds, Ann. of Math. 60 (1954), pp. 140-145.

V. Gol'dshtein and M. Troyanov

- [2] GOL'DSHTEIN (V. M.), KUZ'MINOV (V. I.) and SHVEDOV (I. A.). Differential Forms on Lipschitz Manifolds, Siberian Math. Journal 23, No 2 (1982).
- [3] GOL'DSHTEIN (V. M.), KUZ'MINOV (V. I.) and SHVEDOV SHVEDOV (I. A.).—
 Integration of Differential Forms of the Classes $W_{p,q}^*$, Siberian Math. Journal 23, No 5 (1982).
- [4] GOL'DSHTEIN (V. M.), KUZ'MINOV (V. I.) and SHVEDOV (I. A.).— A Property of de Rham Regularization Operators, Siberian Math. Journal 25, No 2 (1984).
- [5] CHEEGER (J.) and GROMOV (M.). On the characteristic numbers of complete manifolds of bounded curvature and finite volume, in Differential Geometry and Complex Analysis, Rauch Memorial Volume, I. Chavel and H. M. Farkas eds., Springer (1985).
- [6] CHEEGER (J.) and GROMOV (M.). Bounds of the Von Neuman Dimensions of L²-cohomology and the Gauss-Bonnet formula for open manifolds, J. Diff. Geom. 21 (1981), pp. 1-34.
- [7] CHEEGER (J.) and GROMOV (M.).— L²-cohomology and group theory, Topology 25 (1986), pp. 189-215.
- [8] PANSU (P.). Cohomologie L^p des variétés à courbure négative, cas du degré 1, Rend. Sem. Mat. Univ. Pol. Torino Fascicolo Speciale P.D.E and Geometry (1989), pp. 95-119.
- [9] TROYANOV (M.) .— L'horizon de SOL, Expositiones Math. 16, No 5 (1998), pp. 441-479.
- [10] ZUCKER (S.) .— L^p-cohomology: Banach Spaces and Homological Methods on Riemannian Manifolds, Proceedings Symp. Pure Math. Part 2, 54 (1993), pp. 637-655.
- [11] SCOTT (P.). The Geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), pp. 401-487.