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The Lpq-Cohomology of SOL(*)

VLADIMIR GOL’DSHTEIN(1) and MARC TROYANOV(2)

Annales de la Faculte des Sciences de Toulouse Vol. VII, nO 4, 1998

On prouve un résultat de non-annulation de la cohomologie
non reduite du groupe de Lie SOL.

ABSTRACT. - We prove a non vanishing result for the unreduced Lpq-
cohomology of the Lie group SOL.

1. Introduction

SOL is the three dimensional Lie group of 3 x 3 real matrices of the form

This is a solvable and unimodular group; it is diffeomorphic to R3 (with
coordinates x, y, z). A left invariant Riemannian metric is ds2 = dx2 +
e2z dy2 + dz2 ; its volume measure is given by dx dy dz and is bi-invariant.
For more information about the geometry of this group, see [9].

Let us recall the definition of the unreduced Lpq-cohomology groups, let
(M, ds2) be a complete connected Riemannian manifold of dimension n. We
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note LP(M, Ak) the space of differential forms of degree k with measurable
coefficients on M such that

We denote by Zp (M) the set of differential forms in Lp(M, Ak) which are
closed in the sense of current and by B;q(M) the set of forms (J E Ak)
such that there exists a form § E Lq(M, Ak-l) with d~ = 6. The unreduced
Lpq-cohomology of (M, ds2) is by definition the quotient

Other papers dealing with Lpq cohomology are [2], [3], [8] and [10]. The
goal of this paper is to prove the following result about the unreduced Lpq-
cohomology of SOL. .

THEOREM 1.- We have = oo for every 1  p, q  oo.

2. Auxiliary results

The main ingredient in the proof of Theorem 1 is the next proposition
(which is a kind of duality argument in Lpq-cohomology).

PROPOSITION 2.1.- Let a E and suppose that for every e > 0,
there exists a form

such that

where a > 0 is independent of E (here 1/q + = 1/p + = 1~. Then

a ~ (in particular, ~ 0 ).

For the proof, we will need the following integration-by-part lemma (for
differential forms of class C1, this lemma is due to Gaffney ~1~ ) .

LEMMA 2.1. Let M be a complete Riemannian manifold. Let ~Q E
be such that dQ E and 03B3 E n



be such that dy E where 1/p + =

1/q + = 1. .

Then dy and 03B3 A d/3 are integrable and

Proof. - By Holder’s inequality, the forms dy A A dQ and y A (3 all
belong to L1. For smooth forms ,Q with compact support, the lemma is true
by definition of the weak exterior differential 

Assume first that ,Q is smooth with non compact support and satisfies
the conditions of the lemma. On a complete Riemannian manifold M, we
can constuct a sequence ~az ~ of smooth functions with compact support
such that -~ 1 uniformly on every compact subset, 0 ~ ~i (x)  1 and

1 for all x e M. The forms have compact support, thus the
lemma holds for each A; (3. Since

we can apply Lebesgue’s dominated convergence theorem. Thus we have

Finally, for any ,Q E with dQ E we can construct a

sequence ,~~ of smooth forms such that ,Q~ -~ ,Q in LP-topology and ~ dQ
in LP-topology (see Corollary 1 of [4]). Thus the same limiting process
proves the lemma in all its generality. 0

Proof of Proposition ~.1. Suppose that a = dQ for some j~ E

Lq(M, We have by Lemma 1,

Using Holder’s inequality, we get



This is impossible since E > 0 is arbitrary. 0

Proposition 2.1 can be completed in the following way.

LEMMA 2.2.- Let ai, a2, ... ar E Zp (M) and suppose that we can
find pairwise disjoint sets Si C M such that for every ~ > 0 there exists

= E n with supp{ai ) U supp (’Yi ) C si
and such that II d03B3i I) q,  E and M y2 A ai > a where a > 0 is independent
of E and i. Then ~al~, [a2], ... , [ar] are linearly independent elements of

Proof.- Choose ai E R, i = 1, ... , r, and set a = and

y = The assumption on the supports of these forms implies
that

This sum vanishes if and only if all Ài = 0. Since y E LP’ n Lq’ and

we can deduce from Proposition 1 that ~ ~i (a~ ~ 0 E unless

all A; = 0. D 

For all x0 ~ R the surface

is a totally geodesic surface isometric to the hyperbolic plane In

particular a function f : SOL -~ 1~8 which is invariant under all x-translations
{i.e., f = f(y, z)) can be seen as a function on the hyperbolic plane.

LEMMA 2.3. - There exists two non negative smooth functions f and g
on IHI2 ^_r Hx0 such that:

~1~ f (y, z) = g(y, z) = 0 ifz:S; 0 or ~y~ > 1;

(2) d f and dg E A1) for any l  r  oo;



(~~ the support of df A dg is contained in {(y,x~ 1 , 0  z  1}

t~4~ f ~~2 df n dg = 1~ ;
(5) 8f/8y and 8g/8y E and 8f/8x, 8g/8z have compact

support.

Remark. - The forms d f and dg cannot have compact support, other-
wise, by Stokes theorem, we would have

Proof. - Choose non negative smooth functions hl, h2 and k : II8 --~ ~8
with the following properties:

(i) = 0 if ~y~ ~ 1~ >_ 0 and ~ 0 for all y;

(ii) the function has non empty support;

(iii) k~(z) > 0 for all z, furthermore

We set f(y, z) := hl(y)k(z) and g(y, z) := h2(y)k(z). Property (1) of the
lemma is dear. We prove (3) (i.e., that d f for any 1  r  oo), we
have

The first term dz has compact support, and the second term
dy has its support in the infinite rectangle Q =  1 , z > 0~.

Choose D  oo such that D on H. We have

thus, since the element of area of IHI2 is dA = e~ dy dz, we have

from which one gets d f E Lr. .



Now observe that

hence the property (3) follows from the construction of h,l, h2 and k.

Property (4) is only a normalisation, and property (5) is easy to check. 0

The following is a vanishing result for some kind of "anisotropic weighted
capacity" .

LEMMA 2.4.- Given any numbers 6 and q’ such that 1  q’  oo and

0  6  (1/2)(q’ - 1), we can construct a family of Lipschitz functions
03C8t = z), t > 1, on R2 such that:

where the constant C = C(6) is independent of t.

Proof. - We first choose some number s > 0 so large that (s + 1 -
q’s)/2s  -b and set p(x, z) := x2 + Izl2s. We now define 03C8t : R2 ~ R2 by

We will prove that

where the constant C is independent of t.

It will be convenient to introduce new variables X = and Z =

(we assume z > 0). We have



thus p = t (X2 + Z2). Let us set Wt (X, Z) := x), then

In particular, Wt is independent of t (and will henceforth be written as w)
and its support is the annulus A = {(X, Z) ~ 1  (X2 + Z2)  2}.

The partial derivatives of 1/;t may be written as

The maximum of the function z --~ on 0  z  oo is achieved at

z = (s - 1), hence

for all z > 0. From the second equation in (2.2) and (2.3), we conclude that

We see from the first equation in (2.2) and the inequality (2.4) that

Since

we obtain (2.1) with

where the domain of integration is the half annulus A+ = {(X, Z) ~ Z >



3. Proof of the main theorem

The proof is technical and will be divided in five steps: we first fix some
arbitrarily e > 0.

Step 1. We construct a closed 2-form a E Zp(SOL)
We start by choosing a pair of functions f = f(y, z) and g = g(y, z) with

the properties of Lemma 2.3. We then choose a smooth function A : IL8 -~ R
such that 

, _ ~ _ _

Then we set z) = and note that

We finally define

Observe that d~ == 0 and

!~/! ~1~>0, !.c!~};
2022 03BB’(e-z :c) has compact support;

2022 2014- A is bounded (since )d.c A dy| = 1 and ~f/~y is bounded);

2022 2014 |x||dy^dz| is bounded (since == ez and |x| ~ e-z on Q).

From these estimates and 0 ~ V ~ 1, we deduce easily that ~ ~ const e"~
on Q and 

_

for all 1  p  oo. It follows that a E 



Step 2. We construct a family of almost closed forms 03B3t E 

Fix 0  (1/2)(q’ - 1) and choose a function 1/;t = z) as
in Lemma 2.4. Define 03B3t := z) dg. In order to show that it E

observe that it has its support contained in the box

Qt := {(x, y, z) E SOL 1 , z > 0, ~x~  2t} .
Recall that 0 ~ 1/;t(z, z)  1 and the volume form of SOL is d(vol) =
dx dy dz. We thus have

By Lemma 2.3, we know that

from which one gets an estimates In particular

Step 3. We estimate ~d03B3t~q’
We have

and

Recall that is bounded, has compact support and dit has its
support in the region Qt. Thus



Since 0  6  (1 /2)(q’ - 1), Lemma 2.4 implies

Step 4. We estimate the integral of a A 03B3t
Let 

_

We have

(since dzAd fAdg = 0). By Lemma 2.3, df^dg ~ 0, and since 03BB’(e-z x) > 0
we see that a n yt is a non negative 3-form. In particular At > f0 a n yt
for every measurable subset A C SOL.

We set

Recall that then z) = 1, we thus get

Now set u = e-z x, du = e-z dx, uo = ~~ ~B/~ and u1 = e-z ~. We have

if t is large enough (i.e., 1). Thus

Observe that the constant C4 is positive and independent of t (in fact, using
equation (4) of Lemma 2.3 and (i) of Lemma 2.4, we see that At - 1 as



Step 5. Recapitulation
Let us summarize the previous estimates (3.1), (3.2) and (3.3):

If we let t ~ oo and apply Proposition 2.1, we obtain 03B1 ~

By the construction

Using the group of isometries T (z, y, z) 2014~ (x, y + 2k, z), k E ?L, we can
produce an infinite family of forms ai E Zp (SOL ) satisfying the hypothesis
of Lemma 2.2. Therefore

for all 1  p, q  oo. The proof is complete D

4. Final remark

The above proof of Theorem 1 is only true for unreduced cohomology. In
fact, the work of Jeff Cheeger and Mikhael Gromov gives us the following
result in the reduced case (for p = q = 2) .

THEOREM 2.2014 The reduced L2-cohomology of SOL is trivial.

Proof. - The Lie group SOL admits uniform lattices (i.e., discrete
cocompact subgroups), see [11] for explicit constructions. The result thus
follows from [5], [6] and [7] since every lattice in SOL is amenable. 0
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