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On a Galoisian Approach to the
Splitting of Separatrices(*)

JUAN J. MORALES-RUIZ(1) and JOSEP MARIA PERIS(2)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, nO 1, 1999

Pour les systemes hamiltoniens analytiques de deux degres
de liberté avec une orbite homoclinique associée a un point d’equilibre
selle-centre, nous faisons le rapport entre deux différents criteres de non-
integrabilite : : le critere (algebrique) donne par la theorie de Galois
differentielle (une version sophistiquee du theoreme de non-integrabilite de
Ziglin sur les equations aux variations complexes et analytiques attachees
a une courbe integrale particuliere) et un theoreme de Lerman sur
l’existence des orbites homocliniques transversales dans la partie reelle de
1’espace des phases. Pour obtenir ce résultat, on utilise une interpretation
du theoreme de Lerman donne par Grotta-Ragazzo.

ABSTRACT. - For two degrees of freedom analytic Hamiltonian sys-
tems with a homo clinic orbit to a saddle-center equilibrium point,
we make the connection between two different approaches to non-
integrability : the (algebraic) Galois differential approach (a sophisticated
version of Ziglin’s non-integrability theorem on the complex analytical
variational equations associated to a particular integral curve) and a the-
orem of Lerman about the existence of transversal homoclinic orbits in
the real part of the phase space. In order to accomplish this we use an
interpretation given by Grotta-Ragazzo of Lerman’s theorem.
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1. Introduction

The motivation of this work is to clarify the relations between the real
chaotic dynamics of non integrable Hamiltonian systems and the purely
algebraic Galois differential criteria of non integrability based on the analysis
(in the complex phase space) of the variational equations along a particular
integral curve. This problem was posed in [13] (Sect. 6).

Concretely, and as a first step to understand the above problem, we con-
sider the relatively simple situation of a two degrees of freedom Hamiltonian
system with a (real) homoclinic orbit contained in an invariant plane and
asymptotic to a center-saddle equilibrium point. In this situation Lerman [9]
gives a necessary criteria (in terms of some kind of asymptotic monodromy
matrix of the normal variational equations along the homoclinic orbit) for
the non existence of transversal homoclinic orbits associated to the invari-

ant manifolds of the Lyapounov orbits around the equilibrium point (i.e.,
real "dynamical integrability" in a neigbourhood of the homoclinic orbit).
This condition was interpreted by Grotta-Ragazzo [4] in terms of a global
monodromy matrix of the algebraic normal variational equation in the com-
plex phase space and he conjectured the existence of some kind of relation
between the Lerman’s theorem and Ziglin’s non integrability criteria about
the monodromy of the normal variational equations ([17], [18]). The present
paper is devoted to clarify this relation. Instead of Ziglin’s original theorem
we prefer to work with a more general theory in terms of the differential
Galois group of the variational equations ([2], [12], [1], [11]). This theory (as
stated in [11]) roughly says that a necessary condition for (complex analyti-
cal) complete integrability is the solvability (in the Galois differential sense)
of the variational equations along any integral curve. In fact the identity
component of the Galois group must be abelian (see Theorem 2).

The main result of our paper says that (under suitable assumptions of
complex analitycity) the two above necessary conditions for integrability are
indeed the same, when we restrict the analysis to a complex neighbourhood
of the real homoclinic orbit (Prop. 3). The Section 6 is devoted to a detailed
analysis of an example with a normal variational equation of Lame type.



2. Differential Galois Theory

The Galois differential theory for linear differential equations is the

Picard-Vessiot Theory. We shall expose the minimum of definitions and
results of this theory ([6], [10], [15]).
A differential field K is a field with a derivative d/dt := ’, i.e., an additive

mapping that satisfies the Leibnitz rule. Examples are M (R) (meromorphic
functions over a Riemann surface R) with an holomorphic tangent vector
field X as derivative, C (t) = (C{t}~t-1~ (convergent Laurent series),
~((t~~~t-1~ (formal Laurent series). We observe that between the above fields
there are some inclusions.

We can define (differential) subfields, (differential) extensions in a direct
way by impossing that the inclusions must commutes with the derivation.
Analogously, an (differential) automorphism in K is an automorphism that
commutes with the derivative. The field of constants of K is the kernel of
the derivative. In the above examples it is C. From now on we will suppose
that this is the case.

be a linear differential equation with coefficients in the differential field K.

We shall proceed to associate to (1) the so called Picard-Vessiot extension
of I~. The Picard-Vessiot extension L of (1) is an extension of K, such that
if u1, ..., u~ is a "fundamental" system of solutions of the equation (1) (i.e.,
linearly independent over C), then L = (rational functions in K in
the coefficients of the "fundamental" matrix ... ur", ) and its derivatives).
This is the extension of K generated by K together with Uij. . We observe
that L is a differential field (by (1)). The existence and uniqueness (except
by isomorphism) of the Picard-Vessiot extensions is proved by Kolchin (in
the analytical case, K = ,~i (7Z), this result is essentially the existence and
uniqueness theorem for linear differential equations).

As in the classical Galois theory we define the Galois group of (1)
G := Gal~{L) as the group of all the (differential) automorphims of L which
leave fixed the elements of k’ . This group is isomorphic to an algebraic linear
group over C, i.e., a subgroup of GL(m, C) whose matrix coefficients satisfy
polynomial equations over C.



By the normality of the Picard-Vessiot extensions it is proved that the
Galois correspondence (group-extension) works well in this theory.

THEOREM 1.2014 Let be the Picard- Vessiot extension associated to a

linear differential equation. Then there is a 1 - 1 correspondence between
the intermediary differential fields K C M ~ L and the algebraic subgroups
H C G := Gal~~(L), such that H = GaIM(L). Furthermore, the normal
extensions correspond to the normal subgroups H C GalK(L) and
G/H = GalK(M).

As a corollary when we consider the algebraic closure K (of Ii in L),
= G / Go, where Go = is the connected component

of the Galois group, G, containing the identity. Note that this identity
component corresponds to the transcendental part of the Picard-Vessiot
extension. Here we have used the Zariski topology: a closed set is, by
definition, the set of common zeros of polynomials.

Another consequence of the theorem is that if A C R is a Riemann

surface contained in R and L is a Picard-Vessiot extension of .Mt (~Z.), then

Gal,~,~~~~(L) C 
We will say that a linear differential equation is (Picard-Vessiot) solvable

if we can obtain its Picard-Vessiot extension and, hence, the general
solution, by adjunction to K of integrals, exponentials of integrals or
algebraic functions of elements of K (the usual terminology is that in this
case the Picard-Vessiot extension is of Liouville type). Then, it can be

proved, that the equation is solvable if, and only if, the identity component
Go is a solvable group. In particular, if the identity component is abelian,
the equation is solvable.

Furthermore, the relation between the monodromy and the Galois group
(in the analytic case) is as follows. The monodromy group is contained in
the Galois group and if the equation is of fuchsian class (i.e., has only regular
singularities), then the monodromy group is dense in the Galois group (in
the Zariski topology).
We recall here the classification of the algebraic subgroups of SL(2,C).

From [8, p. 7] (or [5, p. 32]), it is possible to prove the following result.

PROPOSITION 1.2014 Any algebraic subgroup G of SL(2, C) is conjugated
to one of the following types:

1) finite, Go = where 1 = 0 1 J ;



We remark that the identity component Go is abelian in the cases 1)-5). .

3. Non integrability and Galois Differential Theory
Let us now consider a complex analytic symplectic manifold of dimension

2n and XH a holomorphic Hamiltonian system defined on it. Let r the
Riemann surface corresponding to an integral curve z = z(t) (which is not
an equilibrium point) of XH . Then we can obtain the variational equations
(VE) along r,

By using the linear first integral dH(z(t)) of the VE it is possible to reduce
it by one degree of freedom, and obtain the so called normal variational
equation (NVE)

where, as usual,

is the matrix of the symplectic form (of dimension 2(n - 1)). Furthermore
the coefficients of the matrix S(t) are holomorphic on r.



Now, we shall complete the Riemann surface r with some equilibrium
points and (possibly) the point at infinity, in such a way, that the coefficients
of the matrix S(t) are meromorphic on this extended Riemann surface
r D r. So, the field of coefficients K of the NVE is the field of meromorphic
functions on r. To be more precise, r is contained in the Riemann surface
defined by the desingularization of the analytical (in general singular) curve
C in the phase space given by the integral curve z = z(t) with their adherent
equilibrium points, the singularities of the Hamiltonian system and the
points at infinity. For more information see [11]. Anyway, in Sections 5
and 6 we shall make explicit all the neccesary details in our particular case.

Then, in the above situation, it is proved in [11] the following result.

THEOREM 2. - Assume there are n meromorphic first integrals of XH
in involution and independent in a neigbourhood of the analytical curve C,
not necessarily on C itself, and the points at the infinity of the NVE are
regular singularities. Then the identity component of the Galois group of
the NVE is an abelian symplectic group.

We note that, for two degrees of freedom and if the NVE is of fuchsian
type, the above result is contained in [2] and [12] (in fact, this particular
case is the only result that we will need in this paper).

Furthermore, the conclusion of the theorem is the same if we restrict
the NVE to some domain A of r and the Galois group of this restricted

equation is, by the galoisian correspondence, an algebraic subgroup of the
Galois total group of the NVE (Sect. 2).

To end this section, we shall give an intrinsic Galois differential criterium
for a second order linear differential equation to be symplectic. We say that
the equation (with coefficients P and Q in a differential field K)

is symplectic (or Hamiltonian) if it has a Galois group contained in SL(2, C).
Now, for all u in the Galois group, the Wronskian W E -K~ if, and only if,
W = u(W) = , which is equivalent to det(a) = 1. From this

it is easy to prove that the above equation is symplectic if, and only if,
P = d’/d, d E K (it sufhces to consider the Abel equation W’ + PW = 0
and then W = 1/d). For more information on the galoisian approach to
linear Hamiltonian systems ([I], [11]).



4. Grotta-Ragazzo interpretation of Lerman’s theorem

Let A~y be a two degrees of freedom real analytic Hamiltonian system
with an homoclinic orbit to a saddle-center equilibrium point.

Let ~ be the flow map along the homoclinic orbit,between two points in
the homoclinic orbit and contained in a small enough neigborhood U of the
equilibrium point.

THEOREM 3 (cf. [9]). - There are suitable coordinates in U such that

in these coordinates, the linearized flow is given by

being R the 2 x 2 matrix corresponding to the normal variational equation
along Now assume that the stable and unstable invariant manifolds of
every (small enough) Lyapounov orbit are the same. Then R must be a

rotation.

From now on in this paper we will restrict to classical Hamiltonian

systems H = (1/2)(yl + y2) + V(xl, x2). Then if the homo clinic orbit r~
is contained in an invariant plane (xl, yl), we can write the Hamiltonian as

being yi the canonically conjugated momentum to the position and

with v and W non-vanishing real parameters.
In his interpretation of Lerman’s Theorem, Grotta-Ragazzo considered

the (complexified) NVE along the (complex) homoclinic orbit r (r: xl =

Yl = x2 = Y2 = 0)

By the change of independent variables x := x1 (t), he obtain the "algebraic"
form of the NVE



Among the real singularities of this variational equation there are the
equilibrium point :ci = x = 0 and the branching point (of the covering
~~) )

corresponding to the zero velocity point of the homoclinic orbit. Let 03C3 be

the closed simple arc (element of the fundamental group) in the x-plane
surrounding only the singularities x = 0, x = e and mq the monodromy
matrix of the above equation along cr. Then Grotta-Ragazzo obtained the
following result (cf. [4, Theorem 8]).

THEOREM 4. - The matrix R in Theorem 3 is a rotation if, and only if,
m; = 1 (identity).

In his proof Grotta-Ragazzo used the relation between the monodromy
mq and the reflexion coefficient of the NVE.

5. Differential Galois approach

In this section we shall give the relation between the Grotta-Ragazzo
result in the last section (Theorem 4) and the Galois differential obstruction
to integrability (Theorem 2). In order to get this, we start with a

reformulation of Theorem 4.

So, let XH be a two degrees of freedom hamiltonian system with a saddle-
center equilibrium point and an homoclinic orbit I‘~ to this point contained
in an invariant plane x2 = 0, y2 = 0.

Now we consider this real Hamiltonian system as the restriction to the
real domain of a complex holomorphic Hamiltonian system (with complex
time), as in Section 3. If we add the origin to the homoclinic orbit, then we
get a complex analytic singular curve. The origin is the singular point and by
desingularization one obtains a nonsingular (in a neighbourhood of origin)
analytic curve F. On r there are two points, 0+ and 0-, corresponding
to the origin. We note that the homoclinic orbit is, up to first order,
defined by 0, while the desingularized curve is defined by the pair
of disconnected lines xl - 0, y1 - 0 with two points at the origin. These
points are, in the temporal parametrization, t = +00 and t = -~ (a
standard book on complex curves is [7]).



We are only interested in a domain of the Riemann surface r wich
contains T’~ and the points 0+ and 0- . This Riemann surface floc is

parametrized by three coordinate charts ~4-, At and A+ with coordinates
x := x 1, t and y := yi respectively. Then, by restriction to a small enough
domain, it is always possible to get a Riemann surface 0393loc such that the
only singularities of the NVE on it are 0+ and 0- .

Let; be the closed simple path in Fioc surrounding If we denote by
the corresponding monodromy matrix of the NVE, then by the double

covering t -~ x of the above section, we have = m;. . Hence, by the
Theorem 4, the following result.

PROPOSITION 2.2014 The matrix R in Theorem 3 is a rotation if, and only
if, = 1.

In order to obtain the connection with the Galois Theory we need to make
some analysis on the algebraic groups of SL(2, C) generated by hyperbolic
elements.

LEMMA 1.2014 Let M be a subgroup of SL(2, C) generated by k elements
mi m2, ... , mk, such that each m2 has eigenvalues (ai, 03BB-1i) with | ~ 1,
i = 1, 2, ... , k. Then the closed group M (in the Zariski topology) must be
one of the groups ,~~, 6) or 7) of the Proposition 1.

Proof. - As M is an algebraic subgroup of SL(2, C), it is one of the

groups 1)-7) in the Proposition 1. We are going to analyze each of the
cases. The group M is not a finite group as mi has infinite order. Also mi
is not contained in the triangular groups of types 2) or 3) of Proposition 1,
because the eigenvalues of all the elements of these groups have eigenvalues
on the unit circle.

Finally, if we are in case 5), necessarily mi E Go (because the eigenvalues
of G B Go are in the unit circle). But then M C Go (Go is a group)
and M ~ G (M is the smallest algebraic group wich contains M, and
furthermore Go is an algebraic group). 0

As we shall show, this elementary result is central in our analysis.
Now we come back to the local homoclinic complex orbit rloc with

the two singularities 0+, 0- coming from the equilibrium point, and with
monodromy matrices m+, , m-. . Let = m+m- be the monodromy
around the two singular points as in the analysis in the first part of this



section. Let Gloc be the Galois group of the NVE restricted to floc (this is
a linear differential equation with meromorphic coefficients over the simply
connected domain of the complex plane floc obtained by adding to floc
the two singular points 0+ and 0"). As a direct consequence of the lemma
above we get the following result.

PROPOSITION 3.2014 The monodromy matrix mq is equal to the identity
if, and only if, the identity component is abelian. Furthermore, in
this case, the Galois group is of the type .~~ of the Proposition 1.

Proof. - If m+m_ - 1 it is clear that the monodromy group ~ is
abelian, for the monodromy group is generated by a single element (for
instance, m+ ). As the equation is of Fuchs type, then M = Gioc is abelian
and of the type 4) of the Proposition 1 (as the reader can verify, the Zariski
closure of the group generated by a diagonal matrix of infinite order in
SL(2, C) is always of the type 4)).

Reciprocally, we know that the monodromy group has two generators
m+, m- with eigenvalues inverses one of the another and liying outside of
the unit circle. By the lemma, if the identity component is abelian,
then as M = Gioc, G is of the type 4). Furthermore, from the fact that
the two matrices m+, m- have inverses eigenvalues (A+ = a=1 ), being
(~+ , ~+1 ) and (a _ , the eigenvalues of m+ and m- respectively, we
get the desired result. D

In this way, we have proved that two unrelated first order obstructions
to integrability, are in fact the same (under the suitable assumptions of
analyticity). The first one given by the condition in the Lerman’s theorem
has been formulated in terms of real dynamics (the existence of transversal
homoclinic orbits). The second one is formulated in an algebraic way
(Theorem 1) and only has a meaning in the complex setting. Summarizing,
we have obtained the following differential Galois interpretation of the
Lerman and Grotta-Ragazzo results.

THEOREM 5. - If the identity component (Gloc)o is not abelian, then
there does not exist an additional meromorphic first integral in a neigbourg-
hood of floc and the invariant manifolds of the Lyapounov orbits must in-
tersect transversall y.



6. Example

We shall to apply the above to a two degrees of freedom potential with
a NVE of Lame type.

We take in (3)

where we normalize v = 1 and b := w2. So, the system depends on four

(real) parameters ei, e2, a, b, being e2 and b > 0.

We are going to explicite for this example C, F, and F, introduced
in the Sections 3 and 4 (from these constructions we get 0393loc and floe as in
Section 5).

The (complex) analytical curve C is y1 + = 0 (x2 = y2 = 0).
Without loss of generality we assume ei > 0 and then either 0  ei  e2

or e2  0  ei. In both cases we can take I‘~ as the unique real homoclinic
orbit contained in C, 0  :ci ~ e1 (the canonical change xl -~ 2014:ci)

y1 -~ "2/1) , reduces all the possibilities to the above one). The complex
orbit r is C minus the origin (we recall that the temporal parameter t is a
local parameter on F).

The desingularized curve r is the projective line P 1. In fact, by the
standard birrational change :ci = X, yi = we get the genus zero
curve y~ = (x - e1)(x - e2). Now, with the change y = (1/2) (ei - 
x = (1/2)(el - e2)x -I- (1/2)(el -~- e2), one obtain the curve x2 - y2 = 1. This
last curve is parametrized by the rational functions

If we compose all these changes we obtain a rational r-parametrization
of f. So, r = r U {r = ±1/62/61 , , r = J:l}, being r = the two

points corresponding to the origin xx = yi = 0, and r = ~1 the two points
at the infinity. It is interesting to express in this parametrization:



Then, the NVE in these coordinates is

where

with

We know from the general theory that this equation is symplectic. It is easy
to check this in a direct way, so P = (d/ dr) (log( e1 r2 - e2 )) (see at the end
of Section 3). Furthermore, their singularities are r = tl (with difference of
exponents 1/2) and r (with exponents From this, and
from the symmetry in r it follows that it is possible to reduce this equation to
a Lame differential equation if we take r2 as the new independent variable.
But we prefer to make this reduction in another more standard way.

So, by the covering f = P~ (r )-~ x = .ci), as in Section 4, we
obtain the algebraic NVE (5),

In order to show that this equation is of Lame type, it is necessary to make
some transformations. First, if we take z = I/a?, we get

where ~ = x = 1, 2.



The next reduction is obtained by the change (cf. [14, p. 78])

By the above change, (8) is transformed into

With the change of the independent variable

(10) becomes into the standard algebraic form of the Lame equation ([14],

where f(p) = 4p3 - g2p - g3, with

Finally, with the well known change p = ~(T), we get the Weierstrass form
of the Lame equation

being P the elliptic Weierstrass function.

This equation is defined in a torus II (genus one Riemann surface)
with only one singular point at the origin. Let 2wi, 2w3 be the real
and imaginary periods of the Weierstrass function P and gi, g2 their

corresponding monodromies in the above equation. If g* represents the

monodromy around the singular point, then g* = [gi, g2 ~ ([16], [14]).



It is easy to see that r]l corresponds, by the global change r - r, to
the real segment between the origin and 2wi in the plane r. Hence, the
monodromy mq = md (Sect. 5) is equal to (In reference [14, Chap. IX],
it is studied the relation between the monodromy groups of the equations
like (12) and (13), by the covering II --~ pI, T ~ p. For a modern account,
see [3]).
We shall need the following elementary property of the Lame equation.

LEMMA 2 . - Let

be a Lamé type equation. If g1 = 1 (or if g2 = 1~, then the monodromy
(and the Galois) group is abelian.

Proof. - From gi = 1 it follows g1 - 1 or g1 - -1 (because g~ is in

SL(2, C)). If gi = 1, it is clear that g* = [gl , g2 = 1 (the case gi = -1
is analogous). As the monodromy group is generated by gi and g2, the
necessary and sufhcient condition in order to have an abelian monodromy
group is g* = 1. The Galois group is also abelian because for a fuchsian

equation, it is the Zariski adherence of the monodromy group. 0

We remark that gf = 1 (or g~ = 1) corresponds to the so called Lame’s
solutions ([14], [16]).

Now if, as usual, we write A = n(n + 1), being n a new parameter, the
condition g* = 1 is equivalent to be n an integer (this follows easily from
the roots n, - (n + 1) of the indicial equation at the singular point).
We come back to our example. As A = -(4b + 1 /4) with b > 0, n is not

an integer (the roots of the indicial equation are - 1 /2 + and 1,
equivalent (by the Proposition 3) to not abelian. Therefore we have

obtained the following non-integrability result.

PROPOSITION 4. - Let

be a Hamiltonian, where



(with real parameters b > 0, e2, a). Then the invariant manifolds
of the Lyapounov orbits around the origin of the above Hamiltonian system
must intersect transversally, and there does not exist an additional global
meromorphic first integral.

We note that the (global) Galois group G of the NVE is either of type
6) or 7) of Proposition 1, because by Proposition 3 and Lemma 1, the local
Galois group Gloc is already of this type and C G (since floc C f,
Sect. 2). We shall go to prove that G is SL(2, ~).
We need the following result of (11~.

be a linear differential equation, being the entries of A(x) meromorphic
functions on a Riemann surface Y. Let : X -~ Y be a finite branched
covering between Riemann surfaces (i.e., a change of variables z r--~ x~, Let

be the resulting differential equation on X . Then, the identity component of
the Galois groups of (16) and (17) are isomorphics.

The above result is proved by Katz for compact Riemann surfaces [6,
Prop. 4.3]. And, for fuchsian differential equations (only regular singulari-
ties), this result is obtained also in [1, Prop. 4.7].

Now, the relation between the Galois groups of the initial NVE (defined
over r) and of the equation (13) is given by the following lemma.

LEMMA 4. - The identity component of the Galois groups of the NVE
(eq. (6)) and of the equation (13) are the same.

Proof. - First, the identity component Go of the Galois group of each
of the above equations (7), (8), (10), (12) and (13) is the same. In fact,
it is clear the equivalence between (7) and (8), and between (10) and
(12). On the other hand, in the change (9) we only introduce algebraic
functions which do not affect to the identity component. Furthermore, by
the Lemma 3 the coverings P~ = I‘ -~ P~ (r - x) and II --> P~ (r ~ p)
preserve the identity component of the Galois group. Hence, the identity



component of the Galois group of the equation (6) is the same that the

identity component of the Galois group of the algebraic NVE (eq. (7)). D

So, we shall compute the identity component of the Galois group of the
equation (13).
We recall that the roots of the indicial equation at the origin are

- 1/2 = ~2i~. The eigenvalues of the corresponding monodromy matrix
g* are not in the unit circle and cases 1), 2) and 3) of Proposition 1 are not
possible. As n is not an integer, the abelian case 4) is impossible too. We
can not fall in case 5), for this metaabelian case do not appears in the Lame
equation ([12, pp. 160-161]). Finally, if we are in case 6), the commutator of
the monodromy matrices along the periods, g* = [gi, g2 ~, has eigenvalues
equal to 1. Necessarily we are in case 7), G = Go = SL(2, C). Then by the
above lemma, the identity component for the NVE (eq. (8)) is also SL(2, C)
and its Galois group must be SL(2, C).

Finally, we remark that the family of (complex) Hamiltonians

is obtained from (15) by the symplectic transformation y ~ iy, t ~
it. . Hence, the above family and the family (15) represents the same
Hamiltonian system, and the Proposition 4 is true for the both families (it
is implied that in the family ( 18) the phase space is given by the coordinates

(iy1, iy2, x1, x2), with Yl y2 , x1 , x2 reals).
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