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Infinite Trees and
Inverse Gaussian Random Variables(*)

OLE E. BARNDORFF-NIELSEN(1) and TINA HVIID RYDBERG(2)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, nO 1, 1999

On montre que la resistance totale d’un arbre infini peut
etre modelisee par une variable aleatoire de type gaussienne inverse, en
tenant compte aussi du cas ou l’arbre n’est pas infini dans toutes les
directions et possede des puits de potentiel qui dependent des trajectoires. .
On etudie aussi des lois conditionnelles sur les arbres finis.

ABSTRACT. - It is shown that the total resistance of an infinite tree
can be modelled as a reciprocal inverse Gaussian random variable, also
in cases where the infinite tree is not infinite in all directions and,
furthermore, has path dependent potential drops. Finally we study
conditional distributions on finite trees.

KEY-WORDS : (reciprocal) inverse Gaussian distributions; Kirchon-
Ohm laws.

1. Introduction

The present paper generalizes results found in O. E. Barndorff-Nielsen
and A. E. Koudou [2]. In O. E. Barndorff-Nielsen [1] it was shown that
for finite trees with independent inverse or reciprocal inverse Gaussian (IG
or RIG) edge resistances, the total resistance is a RIG random variable

provided the distributional parameters involved satisfy certain natural
conditions. O. E. Barndorff-Nielsen and A. E. Koudou [2] extended the
result to infinite trees, but assumed that the potential drop did not depend
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on the specific path. We will generalize this result to situations where the

potential drop may be path dependent. Furthermore, they assumed that

the tree was infinite in all directions. Here we will study trees that can have

both finite and infinite parts. Section 2 summarizes the relevant properties
of the inverse Gaussian and reciprocal inverse Gaussian distributions and
the Kirchoff-Ohm laws, and the extensions of earlier work, indicated above,
are established in Section 3.

2. IG, RIG and GIG distributions

The generalized inverse Gaussian distribution has density
function

where the domain of variation of (A, 6, y) is given by

and where Kx denotes the modified Bessel function of the third kind with

index A. In case 6=0 and y = 0 the norming constant in (1) has to be

interpreted in terms of the limit of Kx(y) for y 1 0 (For relevant properties
of the Bessel functions see e.g. B. J~rgensen [3]). The GIG distributions

possess the property that

Furthermore, for every constant a > 0

The most prominent member of the family of GIG distributions is the inverse

Gaussian IG(6, y) = GIG(-1/2, b, y) with density function given by



The IG distribution can be given a probabilistic interpretation as the first
hitting time to the level 6 of a Brownian motion with drift y and diffusion
coefficient 1.

Using the relation in (2) leads from IG(6, y) to the reciprocal inverse
Gaussian = GIG(1/2, b, y) distribution with density function

Like the IG distribution the RIG distribution can be given a probabilistic
interpretation. In fact the RIG distribution is the distribution of the last

hitting time to the level 6 of a Brownian motion with drift y and diffusion
coefficient 1 (cf. P. Vallois [4]). These hitting time interpretations are of
direct relevance for the type of models for resistances on trees considered in
the next section, see [2].

The gamma (r) distribution is also in the family of GIG distributions.
It is the special case where A > 0 and 6 = 0, i.e. GIG(A, 0, y) = r(A, y2/2),
and the density is then given by

We have the following well known convolution properties of GIG random
variables:

Note that the properties 2) and 3) are immediate consequences of the hitting
time interpretations.

By the Kirchoff-Ohm laws, if two networks with resistances R and R’
are connected sequentially the total resistance is R + R’ while if they are
connected in parallel the overall resistance is



3. Infinite trees

Let T = (V, ~, s) be an infinite rooted tree, i.e. a connected oriented

acyclic graph, with root s, set of vertices V and set of edges ~ . If v E V~ ~ s}
let ((v) denote the vertex preceding v according to the order on the tree.
A path is a sequence p = (vl, ..., ...) such that vn = d n. We
define an infinite ray ~r = (s, vl, ..., , vn, ...) as an infinite path starting at
s and a finite ray ~r = (s, VI, ..., vn ) as a finite path starting at s and such
that there does not exist v E VB7r for which vn = ((v). Let

9T = {infinite rays} U {finite rays}

denote the boundary of T.

Let p be a potential function on T, is a function 03C6 : 03BD ~ [0, oo ),
suppose that 03C6 is non increasing according to the natural order on T, and
let

be the drop in potential along the edge e e = ~~(v), v ~ . We assume
that p is zero at 8T, i.e. if ~r = (s, VI, ..., , vn ) is a finite ray then p(vn ) = 0
and if 03C0 = (s, vl, ..., , vn, ...) is an infinite ray then 0 as n ~ oo.

For v E V, let Vv denote the subset of the boundary which can be reached
from a path starting in v and let Tv be the subtree with root v. We identify
Vv and 8Tv .

Let y be a deterministic measure on 9T, satisfying

Furthermore, let M be a random measure on 8T, such that

~ if A and B are disjoint, then M(A) and M(B) are independent ;
~ the distribution of M(A) is IG (y(A), 0) for any Borel subset of 8T. .

The existence of such measures follows simply from the particular case
discussed in Proposition 5.1 of [2].
We equip the edges e e = ~ ~(v), v } with inverse Gaussian random

variables Xe such that the Xe’s are mutually independent and independent
of M, and



Fig. 1 Example of a tree which consists of a finite (dashed line) and an infinite part. .
The boundary of the tree is the thick dashed line. .

The dotted line delimits the tree T(3) of height 3, s denotes the root of the tree.

The influence of the boundary on the resistance will be modelled by means
of the random measure M. In particular, if ~r = (s, VI, ..., vn) is a finite
ray we equip ~r (or vn) with the gamma random variable

The tree T equipped with these random resistances we denote by T.

It is our goal to give a natural definition of the resistance of the whole
tree T and to show that with this definition we have

In order to do this we define the following auxiliary variables. Let 

denote the tree of height n, see Figure 1. At height n we define three other
trees and T t’~~ see Figures 2 and 3:

: Take T(n) and to each end vertex v E associate the

gamma random variable Wv = (M(~T~,)) -1 with distribution

r(l/2, (1/2)~y(~Tv)2). Such a random variable has already been associated
to all finite rays.



Fig. 2 T(3) from Figure 1 and the added random variables.
The dotted line delineates 7’(3) and the dashed line delineates ~’~3~ .

Fig. 3 from Figure 1 delineated by the dashed line and the added random variables.
Notice that the left side has been cut in the edges.

The parts which have been cut are shown by dashed edges.

and let (n)c be the subtree with root s whose boundary is given by



To each of these end vertices associate the gamma random variable Wv =
with distribution r{1/2, (1/2)y(~T~,)2) and an inverse Gaussian

random variable Cv with distribution IG - pn (we interpret
as the degenerate distribution at 0). The random variables

Cv are assumed to be independent and independent of M and of the edge
resistances Xe of . In view of the convolution property 2 of the inverse
Gaussian distribution, if v E the resistance X e of any edge e with
initial point v and endpoint u could from the start have been written as
Cv +Qe where Qe - IG p(u) and Cv and Qe are independent.
So Cv may be viewed as corresponding to the part of the edge, starting from
v, which have more potential than ~~ .

: Take and to each end vertex v E ~T t’~} ~T associate an inverse
Gaussian random variable Zv with distribution y{8T’v )) and such
that the Zv’s are independent and independent of M and ~Xe ~~.

By this construction of T ~’~~ and T t’~~ we have that

Below we will show that:

(i) is increasing;

This will imply that converges a.s. to a random variable R(T),
with ,C ~R(T)~ = which we define as the total resistance
of T.

To establish (ii) we first note that

independently of n. This follows from [2] since Theorem 3.1 therein applies
directly as



Furthermore we have, again by [2, Theorem 3.1], that

since

By the assumption that pn -+ 0 it follows that

Together with (5) and (6), this implies (ii) as follows from standard

properties of Laplace transforms.

Then the resistance can be written as a function f~,

where ~ I ~,~n_1~ denotes the set of edges in Tt’~-1) .
It can be shown, using the same technique as in [2], that for any u E 

the function fn can be expressed as a Mobius transformation

where AuDu - BuCu > 0, and thereby we have that f n is increasing in Wu. .
Next, note that can be expressed in terms of fn, as

where



See Figure 4 for an illustration.

Fig. 4 Part of a tree showing the vertices v, ~(v) and (-1 (v).

In order to establish (i) we need to show that Wu  V v E . By
(8) and (9) we have

Further, noting that, by definition, = we find from (8) that
 and thereby

Hence (i) is established. D
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