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Realization of Hölder Complexes(*)

LEV BIRBRAIR and MARINA SOBOLEVSKY(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, nO 1, 1999

Un complexe de Holder est un graphe fini tel qu’a chaque
arete est associe un nombre rationnel positif et on sait que c’est un in-
variant bi-lipschitzien des ensembles semi-algebriques singuliers de dimen-
sion 2. On montre dans cet article que tout complexe de Holder peut etre
realise comme un ensemble semi-algebrique de dimension 2. Pour ce faire
on plonge le graphe dans un tore de dimension n qu’on fait contracter sur
un point singulier de telle sorte que les generateurs s’evanouissent avec
les vitesses rationnelles et différentes.

ABSTRACT. - Holder Complex, a graph and a rationaly-valued func-
tion on the set of the edges of the graph, is a bi-Lipschitz invariant of 2-
dimensional semialgebraic singular sets. Here we prove that each Holder
Complex can be realized as a 2-dimensional semialgebraic set. For this

purpose we embed the graph to an n-dimensional torus. The torus is

vanishing in a singular point such that the generators are vanishing with
different rational rates. .

1. Introduction

The paper is devoted to the local geometry of 2-dimensional semialgebraic
sets. The local bi-Lipschitz classification theorem is proved in [1]. The
main notion of the classification is a so-called Geometric Holder Complex.
It is a local version of a simplicial complex with some additional geometric
information (see the definition below). A Holder Complex can be considered
as a combinatorial object - a finite graph with a rational-valued function
defined on the set of edges.
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The following question is natural. Let us define a Holder Complex in a
combinatorial way. Does it correspond to some semialgebraic set?

The answer is positive. To prove the Realization theorem we define a

semialgebraic set T’{,Ql , , ... , ~3k ) . It is a generalization of the real algebraic
set which gives an example of the noncoincidence of Lp-cohomology and
Intersection Homology [2]. The set T{,Q1, ... , ,Q~ ) has a toric link at the
singular point and all generators of the torus have different vanishing rates
in this point. It gives us a possibility to separate vanishing rates of all edges
of a Holder Complex.

2. Definitions and notations

Let us recall some definitions from ~1~ . Let F be a connected graph
without loops, Vr = a2, ... , be the set of vertices and Er =

g2, ... , g~ ~ be the set of edges of the graph.

DEFINITION 2.1. A Holder Complex {I‘, ~Q) is a graph F with an

associated function Q: Er ~ [1, ~ [ n Q (here Q is the ring of rational

numbers).

DEFINITION 2.2. - A Curvilinear triangle T is a subset of homeo-

morphic to a 2-dimensional simplex satisfying the following properties.

1) Each internal (in the induced topology) point t E T has an open neigh-
bourhood Ut C T such that Ut is a smooth 2-dimensional submanifold
of at each point t’ E Ut.

~) The boundary of T is a union of three analytic curves y2, 13 such

that y2 (for i = 1, 2, 3) has a neighbourhood at each internal (in the
induced from II~ topology on y2) point which is a smooth I-dimensional
su b m a ni fold of . 

>

3) Locally T is a smooth manifold with a boundary at each smooth point
of the boundary.

Boundary points ue call vertices of T.

DEFINITION 2.3. - A standard 03B2-Hölder triangle ST03B2 is a subset of the
plane I~2 bounded by the following curves:



Let us consider a cone CI‘ over r. Let Ao be the vertex of Cr. We
can consider CI‘ as a topological space with the standard topology of a
simplicial complex.

DEFINITION 2.4. - A subset H{r,,Q) is called a Geometric Holder

Complex corresponding to {r,,Q) if it satisfies the following conditions.

1~ H(I‘, ,Q) is a subanalytic subset 

,~~ There exists a homeomorphism F: Cr - H{I‘, ,Q).
3) The set H{I‘, ,Q) n is empty or homeomorphic to T, for every

r. (We use the notation for the sphere centered at the point
F(Ao) with the radius r.)

,~~ The image of the triangle (Ao ai, g) (where ai and a~ are vertices
of r, g is the edge connecting ai and a~, is the subcone

of cr over g ) has the following properties : :

(a) F(Ao, ai, a~, g) is a subanalytic subset 

(b) F(Ao, ai, a~, g) is subanalytically bi-Lipschitz equivalent to the

standard triangle 

(c ) let - be this subanalytic bi-Lipschitz
map; then

DEFINITION 2.5. - A 03B2-Hölder triangle is a subset of Rn satisfying
the following conditions.

1) HT03B2 is a curvilinear triangle.

2) HT03B2 is bi-Lipschitz equivalent to some standard 03B2-Hölder triangle
ST;~ .

3) The bi-Lipschitz map L: ST03B2 ~ HT03B2 is subanalytic. (The image of
the point (0, 0) is called a Holder vertex of 

DEFINITION 2.6. - A standard 03B2-horn SH03B2 (here ,Q ~ Q n 1, +~[) is
a semialgebraic set in R3 defined by the following conditions:

(xl, x2, y) are coordinates of a point in I~83 and ~Q = p/q with GCD(p, q) = 1. .



We proved in ~1~ that every 2-dimensional semialgebraic (as well as
semianalytic and subanalytic) set X is a Geometric Holder Complex in
a neighbourhood of a given point ao E X corresponding to some Holder
Complex. Here we are going to prove the following result.

REALIZATION THEOREM. - Let (I‘, ,Q~ be a Holder Complex. Then there
exist a semialgebraic 2-dimensional set X C a point ao E X and ~ > 0
such that X n is a Geometric ~older Complex corresponding to the
.Holder Complex {r, ~3) (here is a closed ball in Il8’~ centered at the

point ao with the radius ~~.

3. The set ... , , ,~k ). Polar maps

We consider the space with coordinates (x1, y1, x2, y2~ ...,

Zk, Yk, z). Let , ... , 03B2k) (here ,Q2 - pi/qi with Pi, qi ~ Z and

GCD(pi, qi) = 1) be a subvariety of given by the following equa-
tions :

(The set described in the paper [2] is a special 3-dimensional example of

D(/~i ~ ~2)~)
Let

LEMMA 3 .1

, ...,~3k)=J~--~1. .

,~) The link ... , ~3k) at the point (0, ... , 0) is homeomorphic to
Tk (a k-dimensional torus).

(Remind that the link of T(,Q1, ..., ,Qk) is the intersection of , ..., ,Qk)
with a small sphere centered at (0, ... , 0).)



Proof

1) Consider a section of T(,Ol, ... , by the plane z = c. We obtain the
equations

where ci = Clearly, these equations define a k-dimensional torus.
The variety ..., 13k) we obtain as a suspension of it. So, (1) is proved.

2) Let r(z) be a function defined in the following way:

This function r(z) is a one-to-one function, for small z. Thus, for sufh-
ciently small e > 0, the link T (,Q1, ... , pk ) n is equal to the torus
T (~1 ... , , r~k ) n ~ (xl Yl, ~ ... , xk Yk, ~ z) z = r 1 (~) } . ~

Each point of T(/31, ..., Qk) has uniquely defined polar coordinates
(~1, ~2, ..., ~k, z): ~i is the angle coordinate of the corresponding point
of the circle x2 + yf = ci and z is a z-coordinate Let xO =

(~~, z4) = (~~, ... za) be a point of T(,Q1, ... , , ,Qk). Let L~o be a
curve on ... /3k) defined as follows:

We call Lxo a polar line generated by x~. Now we can define a polar map
in the following way.

Denote, for g > 0, the set

bY Z’~ (~1 ~ ... , ~k ) ~ Let Pm ~ E2 ~ ~’~1 ~~1 ~ ... , ~k ) --~ z’~2 ~~1 ~ ... , ~~ ) be a
map defined as follows:

We call P~l, E2 a polar map. Observe that is a bi-Lipschitz map.



Remark 3.1. - T(,Q1) is an usual B1-horn.

Remark 3.2. - , ... , ,Qk) is included to T(,Q1, ... , Qk , ... , ,Q~)
(here n > k + 1) as a semialgebraic subset defined by the following equations

= b1 ~ ~k-~2 = b2, ..., lbn ~ ..., bn-k 6R.

4. Proof of the Realization theorem

We use the induction on the number of edges. Suppose that each Holder
Complex (r, ,Q) whose graph F has less or equal than 1~ edges is realized as
a semialgebraic subset of T(Qi , ..., ~3k ) such that all vertices of T belong
to the section by the plane z = 1 and, for each vertex a, we have ~i (a) = 0
or ~~ (a) _ ~r. (We can identify the graph r and its image by the map F;
see Definition 2.4.)

For k = 1, the assertion is trivial: r has two vertices ai and a2. Set
= 0, ~(a2 ) _ ~r and the edge connecting al and a2 be a half-circle.

So, (r, /?) is realized as a half of the standard /?-horn.

Now consider a Holder Complex {I‘, ,Q) such that F has (k + 1) edges.
Let g be an edge such that B(g) = mingEEr ,Q(g). Let us consider a graph
r = r - g. We have two possibilities: F is a connected graph or T’ is not

connected.

Suppose that F is not connected. Then it is a union of two connected

components F = I‘1 U r2 (we include also a case when one of these

components is just a vertex). We can suppose that g1, ..., E Erl ,
... gk E E2, gk+l = g. Now consider a set ... , ,(3k, {3(g))

and a section of that by the plane z = 1. This section is a (k + 1)-
dimensional torus (see the proof of the Lemma 3.1). By the induction
hypotheses, the subcomplex ,Q1 ), where ,Ql = ,Q I r1, can be realized
as a semialgebraic subset of T(,Ql , ..., ,Qk) which can be considered as a
semialgebraic subset of T (,Q1, ..., /3k, ,Q(g)) given by the equation ~k+1 - 0
(see the Remark 3.2). By the same way, (r2, ,Q2 ), where ~32 = ,Q ( r2 ,
can be realized as a semialgebraic subset of ... , ,Qk ) which can be
considered as a semialgebraic subset of T (,Q1, ... , ,Qk, ~3(g)) given by the
equation ~r. Suppose that g connects vertices ai E F~ and a2 E f2;



let ai has polar coordinates ..., 0) and let a2 has polar
coordinates ..., ~(~2)) ~)’ We connect these two vertices by the
following curve = {~i(~), ~(~ ... , ~~+i(~)~ 1} where

1  i  k, 8 E [0, , ~r ). Clearly, iY(0) = al and = a2. Define

the union of the polar lines generated by ~{8).

LEMMA 4.1.2014 The set Hp{9) is a ,Q{g)-Hodder triangle.

Proof. - H~~g) is a semialgebraic set because it is defined by the system
(3) which can be written as a system of algebraic equations and inequalities
in terms of variables ~, , yi , for 1 ~ i  J~ + 1, and by the inequalities
0  z  1. Hence, n Bo,e: (here Bo,c is a closed ball 

centered at 0 with the radius c) is a Geometric Holder Complex H(r, a)
corresponding to some graph F with some rational-valued function a defined
on its edges [1]. Since -H~(o) is a curvilinear triangle (by the construction),
H~~9) n for sufhciently small 6’o  ~, is bi-Lipschitz equivalent to the
standard ao-Holder triangle where ao = ming~E0393 a(g) [1, Second Structural
Lemma]. But H /3(g) n Bo,eo is bi-Lipschitz equivalent to H~{9) (the bi-
Lipschitz equivalence is given by the polar map 

To complete the proof of the lemma we must show that ao = ,Q{g). Let
Ie be the equidistant line in H03B2(g), namely 03B3~ = H03B2(g)~S0,~. By [I],
there exists a subanalytic bi-Lipschitz map T: -+ STao such that

STao n{(x, y) E R~! ~ x = E~. Denote by the length of ~y~.
Since T is a bi-Lipschitz map, we have

for some positive constants Cl and c2. To prove that ao = (3(g) we will
compute the length of yE from another side. Consider the function



which is a one-to-one function, for small z. So, is a well-defined

function, for small 6:. By the Lemma 3.1,

Consider the following set

It is a smooth manifold homeomorphic to a (k + 1)-dimensional torus. The

equidistant line y~ belongs to this set. There are (k + 1) differencial 1-forms
, ..., and on TE corresponding to the coordinate system

~~1, ... , ~k, BY (3), we have

By the definition of the equidistant line 

Using the above formula we obtain

If z sufficiently small (z  1) there exists C2 > 0 such that

because = ~i~

By the definition of the function r(g), we have r(g) = ag + o(g), with
a>0.



Hence, C2~ ~ (9 ~ where = aC2 .,. . To obtain an estimate of 
from below let us go back to the formulas (3)

By (3), = 1. Thus,

for some positive constant Ci . So,

From (4) and (5) we obtain that f3(g) = ao.
Lemma 4.1 is proved. D

’ 

Thus, the realization of (r, /3) is given by the union of the realizations of
~1~ ~r2 ~2~ and H~~9~. It is a semialgebraic set because it is a finite

union of semialgebraic sets.

Now consider the second case: r is a connected graph. In this case,

by the induction hypotheses, (r, ~) (where /? = ,Qlr) can be realized

as a semialgebraic subset of T(/31, ..., which can be considered as

a semialgebraic subset of , ... f3k, /3(g)~ defined by the equation
1/;k+l = 0. The edge g connects two vertices al and a2. Now we can

glue the realization of (f,,8) and the curvilinear triangle H~~g~ generated
by the curve = {~1(B), ~2(B), ..., 

for 1 ~ i ~ I~, 8 E ~ 0 , 2~r l, a1 - (~1 (a1 ), ... , 0) and a2 =
(~1 (a2~, ... ~~l 

Set H~(g~ := ~8 L,~~B~ . By the same arguments as in the Lemma 4.1, we
can prove that H~(g~ is a triangle.
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The union of the realization of (r, ~3) and Ha~9~ is a semialgebraic
realization of (r, {3).

The Realization theorem is proved. D
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