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The defect of weak approximation
for homogeneous spaces(*)

MIKHAIL BOROVOI(1)

Annales de la Faculté des Sciences de Toulouse Vol. VIII, n° 2, 1999
pp. 219-233

RÉSUMÉ. 2014 Soit X = HB G un espace homogene défini sur un corps de
nombres k, ou G est un k-groupe lineaire connexe qui satisfait certaines
conditions, et ou H est un k-sous-groupe connexe de G. Pour un ensemble
fini S de places de k, on définit un groupe abelien fini AS (X qui est le
defaut de 1’approximation faible pour X par rapport de S, et on decrit
AS (X en termes du groupe de Brauer de X .

ABSTRACT. - Let X = HBG be a homogeneous space defined over a
number field k, where G is a connected linear k-group satisfying certain
conditions, and H is a connected k-subgroup of G. For a finite set S of
places of k we define a finite abelian group As(X) which is the defect
of weak approximation for X with respect to S. We describe in
terms of the Brauer group of X.

Introduction

Let k be an algebraic number field, V the set of places of k, and S C V a
finite subset. Let X be an algebraic variety over k such that 0. We
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say that X satisfies the condition of weak approximation with respect to S
if

kv denoting the completion of k at v. We say that X satisfies the condition
of weak approximation if

X satisfies (WAS) for all finite S. (WA)

This is the same as to require that X (k) is dense in 03A0v~03BD X(kv).

Let ks = 03A0v~S kv; then X(ks) = Let X(k)S denote the
closure of X(k) in X(ks), and let X(k)v denote the closure of X(k) in

Clearly, (WAS) holds for X if and only if X(k); = X(ks),
and (WA) holds for X if and only if X(k)v = 

Let T be an algebraic k-torus. Set A(T) = The

abelian group A(T) is the defect of weak approximation for T; in other
words, it is the measure of failure of (WA) for T. In particular, T satisfies
(WA) if and only if A(T) = 0. The group A(T) was studied by Voskresenskil
[Vol], [Vo2]. He showed that A(T) is finite, and related it to a certain group

As Sansuc later showed, A(T) can be computed in terms
of the Brauer group of T, cf. [Sa], 8.12.

For any connected linear k-group G one can define the set A(G) =
above, A(G) is the defect of weak approximation

for G. Sansuc ([Sa], 3.3), generalizing Voskresenskii’s results, proved that
the subgroup G(k)V is normal and that the quotient group A(G) is finite

. and abelian. He showed that it is possible to compute A(G) in terms of the
Brauer group of G, cf. [Sa], 8.12.

In this paper we consider the case of a homogeneous space. Let X =

HBG, where G is a connected linear k-group and H C G is a connected
k-subgroup. We suppose that A(G) = 0 and LII(G) = 0, where III(G) is the
Tate-Shafarevich group of G. These conditions hold for example when G is a
simply connected group, or an adjoint group, or an absolutely simple group,
or if G splits over a cyclic extension, cf. [Sa], 5.3. For such X we construct
a certain finite abelian group As(X) which is the defect of (WAS) for X.
We construct As(X) in terms of Hand G, but then we compute As(X) in
terms of the Brauer group of X. We obtain a formula for As(X) in terms
of the Brauer group of X, similar to Sansuc’s formula ([Sa], 8.12) for A(G)
in terms of the Brauer group of G for a connected k-group G.



The plan of the paper is as follows. In Section 1 we state the main
results. In Section 2 we restate the problem of weak approximation for
homogeneous spaces in terms of Galois cohomology. In Section 3 we prove
a theorem describing AS (HBG) in terms of H and G. In Section 4 we prove
a theorem describing AS (HBG) in terms of the Brauer group of HBG.

The results of this paper were announced in [Bol]. The case of a homo-
geneous space HBG of a simply connected group G was treated in ~Bo2~ .
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Notation

k is a field of characteristic 0, k is an algebraic closure of k, r = 
When k is a number field, then V, Vex>, V f are the set of all places of k, of
infinite places, of finite places, resp. For v E V, kv denotes the completion
of k at v. For a finite subset S C V we set ks = 03A0v~S kv . We write A for
the adèle ring of k. For a connected k-group G we set

where ® denotes the subset of the direct product consisting of families (v)
for which v = 1 for all but a finite number of places v.

Let G be a connected linear group over a field F. Then:
GU is the unipotent radical of G.
Gred = G/Gu; it is a reductive group.

(Gred)derived; it is a semisimple group.
(]tor = Gred /Gss, it is a torus.

. denotes the universal covering of it is a semisimple simply con-
nected group.
p: is the composition map.

Let A be a finite abelian group, then AD denotes the dual group for A,
AD = Hom(A, Q/Z) .



1. Main results

1.1. Let k be a field of characteristic 0. Set r = Gal(k/k). Let G be
a connected linear k-group. We refer to [Bo3], [Bol] for the definition of
the algebraic fundamental group (see also 2.1 below). It is a finitely
generated abelian group endowed with a r-action. The r-module xi(G)
depends on G functorially.

Set B(G) = the torsion subgroup of the group of r-coinva-
riants of 7rl(G). The finite abelian group B(G) depends on G functorially.
Kottwitz [Kol], (2.4.1) proved that B(G) = Pic(G)D, the dual group for
the Picard group Pic(G) of G.

1.2. Let k be a number field and S a finite set of places of k. Let G
be a connected linear k-group and H C G a connected k-subgroup. Set
X = HBG. We are going to construct a finite abelian group Cs(H, G)
which is the defect of (WAS) for X.

The embedding H-G defines homomorphisms and

B(H) --~ B(G). Set B(H, G) = ker~B(H) --~ B(G)), it is a finite abelian
group. 

°

Let v be a place of k. Set rv = Fix an embedding k-kv;
then we can regard rv as a subgroup of r. Set Bv(H,G) = 
We obtain a homomorphism a": B"(H, G) --~ B(H, G). Set BS (H, G) =

the subgroup of B(H,G) generated by the groups
for S. Set B’(H,G) = B~°(H,G). Then C

B’(H, G). We set Cs(H,G) = 

1.3. THEOREM. - Let G, H and X be as in 1.2. Suppose that A(G) = 0
and III(G) = 0. Then there exists a canonical surjective map X(ks) -

Cs(H,G) with kernel X(k)S.

We see that the condition (WAS) for X is equivalent to the condition
Cs(H, G) = 0. We set As(X) = Cs(H, G) and say that As(X) is the defect
of (WAS) for X.

Theorem 1.3 will be proved in Section 3.

1.4. Set B‘~ (H, G) = (~S G), where S runs over all the finite
subsets of V. We set CúJ(H,G) = It is clear that

G) = 0 if and only if Cs(H, G) = 0 for all finite S C V.

1.5. COROLLARY. - HBG satisfies (WA) if and only if C~,(H,G) = 0.



Proof. - Indeed, G) = 0 if and only if Cs(H, G) = 0 for all finite
S. By Theorem 1.3 Cs(H,G) = 0 for all S if and only if (WAS) holds for
HBG for all S. Thus G) = 0 if and only if (WA) holds for HBG. o

1.6. COROLLARY. - Let L/k be a finite Galois extension of k in k such
that Gal(k/L) acts trivially on and Let So C V be the finite
set of places (nonarchimedean, mmified in L) with noncyclic decomposition
groups in Gal(L/k). . Then Cs(H,G) = . In particular, if Sn
So = ~z1 then HBG satisfies (WAS).

Proof. - Let v E V, and let w be a place of Lover v. Let Dw denote the
decomposition group of w in Gal(L/k). It is easy to show that the subgroup
.Bv(Bv(H, G)) C B(H, G) depends only on the conjugacy class of Dw in
Gal(L/k). If Dw is cyclic and v E S, then, by Chebotarev’s density theo-
rem, there exists a place v’ ~ S such that a"- (B"- (H, G) ) = 
and so = BS(H,G). Thus BS(H,G) = and

Cs(H, G) = CS~S0 (H, G). In particular, if S n So = Ø, then Cs(H, G) =
= 0, and HBG satisfies (WAS). o

1.7. COROLLARY (Real approximation). - Let G, H be as in Theorem
1..~. If S C Voo then HBG satisfies (WAS).

Indeed, all the archimedean places have cyclic decomposition groups,
hence S n So = m, and HBG satisfies (WAs).

1.8. For completeness we state here a result from (Bo2~. Let T be a k-
torus. Set LIS(T) = coker (Hl(k,T) -> For a connected k-group
H, let Htor denote the biggest quotient torus of H, see Notation.

1.9. PROPOSITION. - Let G, H be as in 1.2. Assume that G is simply
connected. Then Cs(H, G) = .

Proof. - See (Bo2~.

1.10. Let X be a k-variety. We denote by Br(X) the cohomological
Brauer group of X. Consider the morphisms X - Speck and the in-
duced homomorphisms Set Brl(X) = ker 03B2,
Bra(X) = Brl (X)/im a:.

Let k be a number field, S a finite set of places of k. Set B s (X ) =

03A0v~S Bra(Xkv)], s(X) = sg(X), = Us ss(X).
1.11. THEOREM. - Let G, H, X be as in Theorem 1.3. Then As(X) =

(ss(X>ls(X)>D.



Theorem 1.11 will be proved in Section 4. This theorem shows that the
group As(X) = Cs(H, G) does not depend on the representation of X in
the form X = HBG.

1.12 COROLLARY. - Set
= then = 

Note that the formula of Corollary 1.12 is similar to Sansuc’s formula

A(G) = (~Sa~, 8.12) for the defect of weak approximation
A(G) for a connected k-group G.

2. Orbits

2.1. Let k, S, G, H, X be as in 1.2, and assume that A(G) = 0. The
group G acts on X on the right. Let O(X, G, k) denote the set of orbits of
the group G(k) in X(k). Let O(X,G, ks) denote the set of orbits of G(ks)
in X(ks). We have a canonical map is: O(X, G, k) --~ O(X, G, ks) induced
by the embedding X (k) -~ X (ks).

Let v E V, XV E X(kv), then the morphism x" g,

is smooth. It follows that the map G(kv) -> is open.

Now let zs E X(ks). We see that the map G(ks) -~ g, is

open. Hence the orbit xs G(ks) is an open subset in X(ks). Since all the
orbits are open, we conclude that every orbit of G(ks) in X(ks ) is open and
closed.

By assumption (WA) holds for G. Hence (WAS) holds for G, i.e. G(k)
is dense in G(ks). Let os be an orbit of G(ks) in X(ks). Assume that os
has a k-point x. Since the map G(ks) - X g, is continuous,
the G(k)-orbit ~’ ~ G(k) is dense in the G(ks)-orbit os. Since os is closed in
X (k), we see that the closure of x G(k) in X (ks) is os. We conclude that
the closure X (k)S of X (k) in X(ks) is Uis(o) where o runs over O(X, G, k). .

2.2. Set

K = G)), Ks = H) - G)) .

The Galois cohomology exact sequences associated with the subgroup H of
the group G (cf. [Se], 1-5.4, Prop. 36) yield identifications O(X, G, k) = K,
O(X, G, ks) = Ks . With these identifications the map is: O(X, G, k) -
O(X, G, ks) becomes the restriction to K of the localization map

2.3. We wish to construct an exact sequence 
0. This will give us a surjective map O(X, G, ks) - Cs(H,G) with kernel



is(O(X, G, k)), see 2.2. This in turn will give us a surjective continuous map
X(ks) -~ Cs(H, G) with kernel X (k)S, see 2.1. This will prove Theorem 1.3.

’ 

3. The defect of weak approximation

In this section we prove Theorem 1.3.

3.1. We recall the definition of the algebraic fundamental group 
Let G be a connected linear group over a field k of characteristic 0. Let T
be a maximal torus of the reductive group Gred (see Notation). Consider
the composed homomorphism p: GSS -.~ and set =

C Gsssc. Set

where X* denotes the cocharacter group over k. Then does not depend
on the choice of T. It is a finitely generated abelian group with a r-action,
where r = Gal(kjk). For details see [Bo3], Ch. 1.

We have defined B(G) by B(G) = Both 7rl(G) and B(G)
depend functorially on G.

3.2. PROPOSITION. - There is a canonical functorial isomorphism
B(G) - Pic(G)D.

Proof. - This result is essentially due to Kottwitz. Kottwitz [Kol], 2.4.6
constructs an isomorphism Pic(G), where Z(G) is the center of
a connected Langlands dual group G for G. Let X*(Z(G)) denote the char-
acter group Hom(Z(G), Gm,c) of the algebraic C-group of multiplicative
type Z(G). The isomorphism X*(Z(G)) - 7rl(G) (cf. [Bo3], 1.10) yields iso-
morphisms 7rl(G)r and = B(G),
whence Pic( G)D .

A homomorphism of connected reductive groups ~: G2 is called
normal if ~(Gi) is normal in G2. A connected Langlands dual group is
functorial only with respect to normal homomorphisms, and therefore Kot-
twitz’s is functorial only with respect to normal homomorphisms.
However our groups and B(G) are functorial with respect to all homo-
morphisms of connected linear groups, and using Lemma 2.4.5 of Kottwitz
[Kol] one can easily show that the isomorphism B(G) rr Pic(G)D is func-
torial with respect to all homomorphisms. a

3.3. Let k be a number field, and let G be a connected linear k-group. Set
Bv(G) = B(Gk") for v E V. We have a homomorphism B(G),



which corresponds to the corestriction homomorphism -

(G)r)tors, where rv is a decomposition group.

3.4. Let F be a local field of characteristic 0. Let G be a connected F-

group. There is a functorial map H1 (F, G) ~ B(G), defined by Kottwitz
[Ko2], 1.2, see also [Bo3], 3.10 and 4.1(i). The definition of [Bo3] shows that
~iF is functorial with respect to all homomorphisms, not only normal. The
map is surjective; if F is nonarchimedean, then ~3F is bijective, see [Ko2],
1.2.

Let k be a number field, v E V, and let G be a connected k-group. We
have a map (3v = Bv (G). The map ~3v is surjective. If
v E V f then is bijective.

Set

Since 03B2v is surjective, we have im v = im 

Consider the localization map

(we use the assumption that G is connected). We define a map J.L 
Hl(A, G) --> B(G). This map is functorial in G.

3.5. PROPOSITION (Kottwitz [Ko2]). - kerp = 
H1(A,G)].

Proof. - See [Ko2], 2.5 and 2.6. See also [Bo3], 5.16. 0

3.6. Let k be a number field. Let H be a connected k-subgroup of a
connected linear k-group G. Consider the sets

K = Hl (k, G)~, Kv = 

We define

Let B(H, G) and Bv (H, G) be as in 1.2. Since all our constructions are
functorial, we can define maps

Here the symbols ~3~,, av, ftv and ft are used to denote the restrictions of
the maps defined by the same symbols in 3.3 and 3.4. Note that Bv (H, G)



and B (H, G) are abelian groups and av : Bv(H, G) -~ B(H, G) is a homo-
morphism.

3.7. PROPOSITION. - For v E V f the maps -~ Bv (H, G) are

bijections.

Proof. Consider the commutative diagram with exact rows

where the maps a and a’ are injective. The right and the middle verti-
cal arrows are bijective because v E V f, hence the left vertical arrow is
bijective. 0

3.8. PROPOSITION. - If III (G) = 0 then

B(H, G)] = im [loc: j~ -. KA]. .

Proof. - Consider the commutative diagram with exact rows

The middle and the right columns of the diagram are exact by Proposition
3.5. By diagram chasing one can prove that the left column is exact.

We write down the diagram chasing. It is easy to see that the composition
K ~ KA ~ B(H, G) is zero. Now let 03BEA E AA, = 0. Let ~A denote
the image of in Then = 0, hence r~A = for
some 77 E H1(k,H). Since ~A comes from KA , the image of ~A in Hl (A, G)
is zero, hence = 0. Since III(G) = 0, we see that = 0, hence
7/ is the image of some ~ E K. Since = the image of loc(~)
in is The map Hl (A, H) is an embedding, hence
loc(~) = ~p,. Thus ~p, E im [loc: K - KA]. o



3.9. Let B’(H, G), BS(H, G) and Cs(H, G) be as in 1.2. We set =

- B(H, G), vs = mod BS(H, G): Ks ~ Cs(H,G).
3.10. THEOREM. - If III (G) = 0 then the sequence

is exact.

Theorem 1.3 follows from Theorem 3.10, see 2.3.

Proof. - 3.10.1. We prove that vs is surjective.

Let Bs(H, G) denote the subgroup of B(H,G) generated by the groups
for v E S. Then B’(H,G) = BS(H, G) + Bs(H, G).

Let v E Voo n S. Using Chebotarev’s density theorem, we see

that there exists v’ fj S such that = ~"~(B".(H,G)), and
so BS(H,G) = It follows that BS(H,G) = 
and Cs(H, G) = Csnvf (H, G).

Let v E Vf. By Proposition 3.7 the map /~v: K" -~ Bv(H,G) is bijective.
Hence = av(Bv(FI,G). But a"(B"(H,G)) is a subgroup of B(H,G)
(because Àv is a homomorphism), hence is a subgroup of B(H, G).

To prove that vs is surjective, we first assume that S C Vf. Then for any
v E S, is a subgroup of B(H, G), and we see that the image 
of KS in B(H,G) is a subgroup and equals Bs(H, G). But B’(H,G) =

Bs(H, G) + BS(H, G) and

Cs(H,G) = B’(H, G) = (Bs(H,G) + .

Since JJs(Ks) = Bs(H, G), we see that the map vs: KS --> Cs(H, G) is

surjective.

Now we do not assume that S C VI. The map G) =

Cs(H, G) is surjective, hence the map vs: Cs(H, G) is surjective.

3.10.2. We prove that lIs(locs(K)) = 0.

Let x E K. Set zs = locs(x) E Ks, xS = locs(x) E KS, where KS =
and locs, locs are the localization maps. Let KS --~ B(H, G)

be the map defined by (x") H By Proposition 3.5 = 0

for all x E K. Thus + = 0. But E

BS(H,G). Thus vs(locs(x)) = 0.

3.10.3. We prove that ker(vS:Ks --> Cs(H, G)] C locs(K).



Consider the map KS -~ B(H, G). We prove that =

G). Using Chebotarev’s density theorem we can show that for ev-
ery v E Voo ’- S there exists v’ ~ S U Voo such that w (Bv (H, G) ) =
w~ (Bv~ (H, G)). Thus = But for v ~ S U Voo the
map -~ Bv(H, G) is bijective (Proposition 3.7), hence =

w (Bv (H, G) ) We see that for such v, is a subgroup. Hence

But c It follows that = BS(H,G).
Now let Xs E Ks. Assume that vs(xs) = 0. Then E BS (H, G).

We have already proved that BS(H, G) = hence is a

group and there exists xs E KS such that = Set xA =

(xs,xS) E KA, then = 0. By Proposition 3.5 xp, = loc(x) for some
x E K. We see that zs = locs(x). Thus ker Vs C locs(K). This completes
the proof of Theorem 3.10 and Theorem 1.3. o

4. Relation with the Brauer group

In this section we prove Theorem 1.11.

4.1. Consider the canonical map G -> HBG = X. Set Br(X, G) =
ker(Br(X) -~ Br(G)], Bra(X,G) = ker~Bra(X) --~ Bra(G)), where Bra (X) is
defined in 1.10. The torsor G -~ X under H gives rise to the exact sequence

cf. [Sa], (6.10.1). Write Pic(G, H) = coker [Pic(G) - Pic(H)], Pici(G, H) =
ker[Pic(G, H) -> Pic(Gk, Hk)). From the commutative diagram with exact
rows

we obtain the exact sequence

where Bri is defined in 1.10.



4.2. We have

Pic(G, H)D = coker [Pic(G) -~ = ker(B(H) --~ B(G)] = B(H, G) . .

Set

We define G), Bi (H, G), Bi (H, G) and Cls(H, G) like Bv (H, G),... ,
Cs(H,G) but with Bl(H,G) instead of B(H,G), i.e. Bl"(H,G) = 
Gkv)’ = = Bi (H,G), =

Bi (H, G) /Bi (H, G).
4.3. LEMMA. - Cls (H, G) = Cs(H, G).

Proof. - Let X: B(Hk, Gk) - B(H, G) be the homomorphism induced
by the morphism of pairs (Hk, Gk) - (H, G). We have B(Hk, = 

Gkv). From the commutative diagram of pairs

we obtain the commutative diagram

We see that B(H, G)) ~ im X. Hence BS(H, G) ~
imX and B’(H, G) D im X. We have Bl(H, G) = Hence

4.4. Let X be a k-variety. A k-point x E X(k), x: Spec(k)  X, de-
fines a homomorphism Brl(k) = Br(k). Define Brx(X) =

Br(k)]. There is a structure morphism s: X -~ Spec(k)
defining a homomorphism s*: Br(k) -> Bri(X). We have x* os* = 1Br(k). Us-
ing these two homomorphisms we can prove that Bri(X) = Brx(X) 
and that Bra (X ).



Now let X = HBG as before. We set Brl(X, G) = 
Brl(G)]. We have proved in (4.1.1) that Picl(G, H) = Brl(X, G). We have

where xo denotes the image in X(k) of the unit element e E G(k). We have
isomorphisms Bra(X) = Brxo(X), Bra(G) = Bre(G), whence

We define the groups Bs(X, G) and B(X, G) in terms of Bra(X, G) in
the same way as Bs(X) and B(X) were defined in terms of Bra(X), i.e.
BS(X, G) = ker[Brd(X, G) --> B(X,G) = 

4.5. PROPOSITION.- Cs(H,G) = .

Proof. - We have

For a homomorphism p: A --~ B of torsion abelian groups we have

In our case take

then

Thus



Using this we obtain

4.6. PROPOSITION. - If III(G) = 0 and A(G) = 0, then B(G) = 0 and
Bs (G) = 0.

Proof. - By ~Sa~, 8.14 there exists an exact sequence

Since A(G) = 0 and III(G) = 0, we see that B~(G) = 0. Since Bs(G) C
B~,(G), we conclude that Bs(G) = 0. Take S = ~, we obtain that B(G) = 0.
o

4.7. LEMMA. - If Bs(G) = 0 then Bs(X,G) = Bs(X).

Proof. - Consider the commutative diagram with exact columns

From the fact that the middle row and the lower row are exact, one can

easily deduce that the upper row is exact. Since Bs(G) = 0, we see from
the diagram that Bs(X, G) = Bs(X). . o

4.8. It follows from Proposition 4.6, Lemma 4.7 and Proposition 4.5 that

Cs(H, G) = This proves Theorem 1.11.
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